2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/module.h"
21 #include "qemu/cutils.h"
22 #include "qemu/option.h"
23 #include "qemu/vfio-helpers.h"
24 #include "block/block_int.h"
27 #include "block/nvme.h"
29 #define NVME_SQ_ENTRY_BYTES 64
30 #define NVME_CQ_ENTRY_BYTES 16
31 #define NVME_QUEUE_SIZE 128
32 #define NVME_BAR_SIZE 8192
38 /* Hardware MMIO register */
39 volatile uint32_t *doorbell;
43 BlockCompletionFunc *cb;
47 uint64_t prp_list_iova;
52 CoQueue free_req_queue;
55 /* Fields protected by BQL */
57 uint8_t *prp_list_pages;
59 /* Fields protected by @lock */
62 NVMeRequest reqs[NVME_QUEUE_SIZE];
68 /* Memory mapped registers */
69 typedef volatile struct {
83 uint8_t reserved1[0xec0];
84 uint8_t cmd_set_specfic[0x100];
88 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
91 AioContext *aio_context;
94 /* The submission/completion queue pairs.
98 NVMeQueuePair **queues;
101 /* How many uint32_t elements does each doorbell entry take. */
102 size_t doorbell_scale;
103 bool write_cache_supported;
104 EventNotifier irq_notifier;
106 uint64_t nsze; /* Namespace size reported by identify command */
107 int nsid; /* The namespace id to read/write data. */
110 uint64_t max_transfer;
113 CoMutex dma_map_lock;
114 CoQueue dma_flush_queue;
116 /* Total size of mapped qiov, accessed under dma_map_lock */
119 /* PCI address (required for nvme_refresh_filename()) */
123 #define NVME_BLOCK_OPT_DEVICE "device"
124 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
126 static QemuOptsList runtime_opts = {
128 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
131 .name = NVME_BLOCK_OPT_DEVICE,
132 .type = QEMU_OPT_STRING,
133 .help = "NVMe PCI device address",
136 .name = NVME_BLOCK_OPT_NAMESPACE,
137 .type = QEMU_OPT_NUMBER,
138 .help = "NVMe namespace",
140 { /* end of list */ }
144 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
145 int nentries, int entry_bytes, Error **errp)
147 BDRVNVMeState *s = bs->opaque;
151 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
152 q->head = q->tail = 0;
153 q->queue = qemu_try_blockalign0(bs, bytes);
156 error_setg(errp, "Cannot allocate queue");
159 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
161 error_setg(errp, "Cannot map queue");
165 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
167 qemu_vfree(q->prp_list_pages);
168 qemu_vfree(q->sq.queue);
169 qemu_vfree(q->cq.queue);
170 qemu_mutex_destroy(&q->lock);
174 static void nvme_free_req_queue_cb(void *opaque)
176 NVMeQueuePair *q = opaque;
178 qemu_mutex_lock(&q->lock);
179 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
180 /* Retry all pending requests */
182 qemu_mutex_unlock(&q->lock);
185 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
190 BDRVNVMeState *s = bs->opaque;
191 Error *local_err = NULL;
192 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
193 uint64_t prp_list_iova;
195 qemu_mutex_init(&q->lock);
197 qemu_co_queue_init(&q->free_req_queue);
198 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
199 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
200 s->page_size * NVME_QUEUE_SIZE,
201 false, &prp_list_iova);
205 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
206 NVMeRequest *req = &q->reqs[i];
208 req->prp_list_page = q->prp_list_pages + i * s->page_size;
209 req->prp_list_iova = prp_list_iova + i * s->page_size;
211 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
213 error_propagate(errp, local_err);
216 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
218 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
220 error_propagate(errp, local_err);
223 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
227 nvme_free_queue_pair(bs, q);
232 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
234 if (s->plugged || !q->need_kick) {
237 trace_nvme_kick(s, q->index);
238 assert(!(q->sq.tail & 0xFF00));
239 /* Fence the write to submission queue entry before notifying the device. */
241 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
242 q->inflight += q->need_kick;
246 /* Find a free request element if any, otherwise:
247 * a) if in coroutine context, try to wait for one to become available;
248 * b) if not in coroutine, return NULL;
250 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
253 NVMeRequest *req = NULL;
255 qemu_mutex_lock(&q->lock);
256 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
257 /* We have to leave one slot empty as that is the full queue case (head
259 if (qemu_in_coroutine()) {
260 trace_nvme_free_req_queue_wait(q);
261 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
263 qemu_mutex_unlock(&q->lock);
267 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
268 if (!q->reqs[i].busy) {
269 q->reqs[i].busy = true;
274 /* We have checked inflight and need_kick while holding q->lock, so one
275 * free req must be available. */
277 qemu_mutex_unlock(&q->lock);
281 static inline int nvme_translate_error(const NvmeCqe *c)
283 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
285 trace_nvme_error(le32_to_cpu(c->result),
286 le16_to_cpu(c->sq_head),
287 le16_to_cpu(c->sq_id),
289 le16_to_cpu(status));
304 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
306 bool progress = false;
311 trace_nvme_process_completion(s, q->index, q->inflight);
312 if (q->busy || s->plugged) {
313 trace_nvme_process_completion_queue_busy(s, q->index);
317 assert(q->inflight >= 0);
318 while (q->inflight) {
320 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
321 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
324 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
326 q->cq_phase = !q->cq_phase;
328 cid = le16_to_cpu(c->cid);
329 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
330 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
334 assert(cid <= NVME_QUEUE_SIZE);
335 trace_nvme_complete_command(s, q->index, cid);
336 preq = &q->reqs[cid - 1];
338 assert(req.cid == cid);
341 preq->cb = preq->opaque = NULL;
342 qemu_mutex_unlock(&q->lock);
343 req.cb(req.opaque, nvme_translate_error(c));
344 qemu_mutex_lock(&q->lock);
349 /* Notify the device so it can post more completions. */
351 *q->cq.doorbell = cpu_to_le32(q->cq.head);
352 if (!qemu_co_queue_empty(&q->free_req_queue)) {
353 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
360 static void nvme_trace_command(const NvmeCmd *cmd)
364 for (i = 0; i < 8; ++i) {
365 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
366 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
367 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
371 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
373 NvmeCmd *cmd, BlockCompletionFunc cb,
378 req->opaque = opaque;
379 cmd->cid = cpu_to_le32(req->cid);
381 trace_nvme_submit_command(s, q->index, req->cid);
382 nvme_trace_command(cmd);
383 qemu_mutex_lock(&q->lock);
384 memcpy((uint8_t *)q->sq.queue +
385 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
386 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
389 nvme_process_completion(s, q);
390 qemu_mutex_unlock(&q->lock);
393 static void nvme_cmd_sync_cb(void *opaque, int ret)
400 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
404 BDRVNVMeState *s = bs->opaque;
405 int ret = -EINPROGRESS;
406 req = nvme_get_free_req(q);
410 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
412 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
416 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
418 BDRVNVMeState *s = bs->opaque;
426 .opcode = NVME_ADM_CMD_IDENTIFY,
427 .cdw10 = cpu_to_le32(0x1),
430 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
432 error_setg(errp, "Cannot allocate buffer for identify response");
435 idctrl = (NvmeIdCtrl *)resp;
436 idns = (NvmeIdNs *)resp;
437 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
439 error_setg(errp, "Cannot map buffer for DMA");
442 cmd.prp1 = cpu_to_le64(iova);
444 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
445 error_setg(errp, "Failed to identify controller");
449 if (le32_to_cpu(idctrl->nn) < namespace) {
450 error_setg(errp, "Invalid namespace");
453 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
454 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
455 /* For now the page list buffer per command is one page, to hold at most
456 * s->page_size / sizeof(uint64_t) entries. */
457 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
458 s->page_size / sizeof(uint64_t) * s->page_size);
460 memset(resp, 0, 4096);
463 cmd.nsid = cpu_to_le32(namespace);
464 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
465 error_setg(errp, "Failed to identify namespace");
469 s->nsze = le64_to_cpu(idns->nsze);
470 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
473 error_setg(errp, "Namespaces with metadata are not yet supported");
477 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
478 (1 << lbaf->ds) > s->page_size)
480 error_setg(errp, "Namespace has unsupported block size (2^%d)",
485 s->blkshift = lbaf->ds;
487 qemu_vfio_dma_unmap(s->vfio, resp);
491 static bool nvme_poll_queues(BDRVNVMeState *s)
493 bool progress = false;
496 for (i = 0; i < s->nr_queues; i++) {
497 NVMeQueuePair *q = s->queues[i];
498 qemu_mutex_lock(&q->lock);
499 while (nvme_process_completion(s, q)) {
503 qemu_mutex_unlock(&q->lock);
508 static void nvme_handle_event(EventNotifier *n)
510 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
512 trace_nvme_handle_event(s);
513 event_notifier_test_and_clear(n);
517 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
519 BDRVNVMeState *s = bs->opaque;
520 int n = s->nr_queues;
523 int queue_size = NVME_QUEUE_SIZE;
525 q = nvme_create_queue_pair(bs, n, queue_size, errp);
530 .opcode = NVME_ADM_CMD_CREATE_CQ,
531 .prp1 = cpu_to_le64(q->cq.iova),
532 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
533 .cdw11 = cpu_to_le32(0x3),
535 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
536 error_setg(errp, "Failed to create io queue [%d]", n);
537 nvme_free_queue_pair(bs, q);
541 .opcode = NVME_ADM_CMD_CREATE_SQ,
542 .prp1 = cpu_to_le64(q->sq.iova),
543 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
544 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
546 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
547 error_setg(errp, "Failed to create io queue [%d]", n);
548 nvme_free_queue_pair(bs, q);
551 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
557 static bool nvme_poll_cb(void *opaque)
559 EventNotifier *e = opaque;
560 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
561 bool progress = false;
563 trace_nvme_poll_cb(s);
564 progress = nvme_poll_queues(s);
568 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
571 BDRVNVMeState *s = bs->opaque;
575 uint64_t deadline, now;
576 Error *local_err = NULL;
578 qemu_co_mutex_init(&s->dma_map_lock);
579 qemu_co_queue_init(&s->dma_flush_queue);
580 s->device = g_strdup(device);
582 s->aio_context = bdrv_get_aio_context(bs);
583 ret = event_notifier_init(&s->irq_notifier, 0);
585 error_setg(errp, "Failed to init event notifier");
589 s->vfio = qemu_vfio_open_pci(device, errp);
595 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
601 /* Perform initialize sequence as described in NVMe spec "7.6.1
602 * Initialization". */
604 cap = le64_to_cpu(s->regs->cap);
605 if (!(cap & (1ULL << 37))) {
606 error_setg(errp, "Device doesn't support NVMe command set");
611 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
612 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
613 bs->bl.opt_mem_alignment = s->page_size;
614 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
616 /* Reset device to get a clean state. */
617 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
618 /* Wait for CSTS.RDY = 0. */
619 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
620 while (le32_to_cpu(s->regs->csts) & 0x1) {
621 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
622 error_setg(errp, "Timeout while waiting for device to reset (%"
630 /* Set up admin queue. */
631 s->queues = g_new(NVMeQueuePair *, 1);
632 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
638 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
639 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
640 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
641 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
643 /* After setting up all control registers we can enable device now. */
644 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
645 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
647 /* Wait for CSTS.RDY = 1. */
648 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
649 deadline = now + timeout_ms * 1000000;
650 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
651 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
652 error_setg(errp, "Timeout while waiting for device to start (%"
660 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
661 VFIO_PCI_MSIX_IRQ_INDEX, errp);
665 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
666 false, nvme_handle_event, nvme_poll_cb);
668 nvme_identify(bs, namespace, &local_err);
670 error_propagate(errp, local_err);
675 /* Set up command queues. */
676 if (!nvme_add_io_queue(bs, errp)) {
680 /* Cleaning up is done in nvme_file_open() upon error. */
684 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
686 * nvme://0000:44:00.0/1
688 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
689 * is the PCI address, and the last part is the namespace number starting from
690 * 1 according to the NVMe spec. */
691 static void nvme_parse_filename(const char *filename, QDict *options,
694 int pref = strlen("nvme://");
696 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
697 const char *tmp = filename + pref;
699 const char *namespace;
701 const char *slash = strchr(tmp, '/');
703 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
706 device = g_strndup(tmp, slash - tmp);
707 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
709 namespace = slash + 1;
710 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
711 error_setg(errp, "Invalid namespace '%s', positive number expected",
715 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
716 *namespace ? namespace : "1");
720 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
724 BDRVNVMeState *s = bs->opaque;
726 .opcode = NVME_ADM_CMD_SET_FEATURES,
727 .nsid = cpu_to_le32(s->nsid),
728 .cdw10 = cpu_to_le32(0x06),
729 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
732 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
734 error_setg(errp, "Failed to configure NVMe write cache");
739 static void nvme_close(BlockDriverState *bs)
742 BDRVNVMeState *s = bs->opaque;
744 for (i = 0; i < s->nr_queues; ++i) {
745 nvme_free_queue_pair(bs, s->queues[i]);
748 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
750 event_notifier_cleanup(&s->irq_notifier);
751 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
752 qemu_vfio_close(s->vfio);
757 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
764 BDRVNVMeState *s = bs->opaque;
766 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
767 qemu_opts_absorb_qdict(opts, options, &error_abort);
768 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
770 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
775 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
776 ret = nvme_init(bs, device, namespace, errp);
781 if (flags & BDRV_O_NOCACHE) {
782 if (!s->write_cache_supported) {
784 "NVMe controller doesn't support write cache configuration");
787 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
794 bs->supported_write_flags = BDRV_REQ_FUA;
801 static int64_t nvme_getlength(BlockDriverState *bs)
803 BDRVNVMeState *s = bs->opaque;
804 return s->nsze << s->blkshift;
807 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
809 BDRVNVMeState *s = bs->opaque;
810 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
811 return UINT32_C(1) << s->blkshift;
814 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
816 uint32_t blocksize = nvme_get_blocksize(bs);
817 bsz->phys = blocksize;
818 bsz->log = blocksize;
822 /* Called with s->dma_map_lock */
823 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
827 BDRVNVMeState *s = bs->opaque;
829 s->dma_map_count -= qiov->size;
830 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
831 r = qemu_vfio_dma_reset_temporary(s->vfio);
833 qemu_co_queue_restart_all(&s->dma_flush_queue);
839 /* Called with s->dma_map_lock */
840 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
841 NVMeRequest *req, QEMUIOVector *qiov)
843 BDRVNVMeState *s = bs->opaque;
844 uint64_t *pagelist = req->prp_list_page;
849 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
850 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
851 for (i = 0; i < qiov->niov; ++i) {
855 r = qemu_vfio_dma_map(s->vfio,
856 qiov->iov[i].iov_base,
857 qiov->iov[i].iov_len,
859 if (r == -ENOMEM && retry) {
861 trace_nvme_dma_flush_queue_wait(s);
862 if (s->dma_map_count) {
863 trace_nvme_dma_map_flush(s);
864 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
866 r = qemu_vfio_dma_reset_temporary(s->vfio);
877 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
878 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
880 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
881 qiov->iov[i].iov_len / s->page_size);
884 s->dma_map_count += qiov->size;
886 assert(entries <= s->page_size / sizeof(uint64_t));
891 cmd->prp1 = pagelist[0];
895 cmd->prp1 = pagelist[0];
896 cmd->prp2 = pagelist[1];
899 cmd->prp1 = pagelist[0];
900 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
903 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
904 for (i = 0; i < entries; ++i) {
905 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
909 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
910 * increment s->dma_map_count. This is okay for fixed mapping memory areas
911 * because they are already mapped before calling this function; for
912 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
913 * calling qemu_vfio_dma_reset_temporary when necessary. */
923 static void nvme_rw_cb_bh(void *opaque)
925 NVMeCoData *data = opaque;
926 qemu_coroutine_enter(data->co);
929 static void nvme_rw_cb(void *opaque, int ret)
931 NVMeCoData *data = opaque;
934 /* The rw coroutine hasn't yielded, don't try to enter. */
937 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
940 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
941 uint64_t offset, uint64_t bytes,
947 BDRVNVMeState *s = bs->opaque;
948 NVMeQueuePair *ioq = s->queues[1];
951 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
952 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
954 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
955 .nsid = cpu_to_le32(s->nsid),
956 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
957 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
958 .cdw12 = cpu_to_le32(cdw12),
961 .ctx = bdrv_get_aio_context(bs),
965 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
966 assert(s->nr_queues > 1);
967 req = nvme_get_free_req(ioq);
970 qemu_co_mutex_lock(&s->dma_map_lock);
971 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
972 qemu_co_mutex_unlock(&s->dma_map_lock);
977 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
979 data.co = qemu_coroutine_self();
980 while (data.ret == -EINPROGRESS) {
981 qemu_coroutine_yield();
984 qemu_co_mutex_lock(&s->dma_map_lock);
985 r = nvme_cmd_unmap_qiov(bs, qiov);
986 qemu_co_mutex_unlock(&s->dma_map_lock);
991 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
995 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
996 const QEMUIOVector *qiov)
999 BDRVNVMeState *s = bs->opaque;
1001 for (i = 0; i < qiov->niov; ++i) {
1002 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1003 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1004 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1005 qiov->iov[i].iov_len, s->page_size);
1012 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1013 QEMUIOVector *qiov, bool is_write, int flags)
1015 BDRVNVMeState *s = bs->opaque;
1017 uint8_t *buf = NULL;
1018 QEMUIOVector local_qiov;
1020 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1021 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1022 assert(bytes <= s->max_transfer);
1023 if (nvme_qiov_aligned(bs, qiov)) {
1024 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1026 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1027 buf = qemu_try_blockalign(bs, bytes);
1032 qemu_iovec_init(&local_qiov, 1);
1034 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1036 qemu_iovec_add(&local_qiov, buf, bytes);
1037 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1038 qemu_iovec_destroy(&local_qiov);
1039 if (!r && !is_write) {
1040 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1046 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1047 uint64_t offset, uint64_t bytes,
1048 QEMUIOVector *qiov, int flags)
1050 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1053 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1054 uint64_t offset, uint64_t bytes,
1055 QEMUIOVector *qiov, int flags)
1057 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1060 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1062 BDRVNVMeState *s = bs->opaque;
1063 NVMeQueuePair *ioq = s->queues[1];
1066 .opcode = NVME_CMD_FLUSH,
1067 .nsid = cpu_to_le32(s->nsid),
1070 .ctx = bdrv_get_aio_context(bs),
1071 .ret = -EINPROGRESS,
1074 assert(s->nr_queues > 1);
1075 req = nvme_get_free_req(ioq);
1077 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1079 data.co = qemu_coroutine_self();
1080 if (data.ret == -EINPROGRESS) {
1081 qemu_coroutine_yield();
1088 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1089 BlockReopenQueue *queue, Error **errp)
1094 static void nvme_refresh_filename(BlockDriverState *bs)
1096 BDRVNVMeState *s = bs->opaque;
1098 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1099 s->device, s->nsid);
1102 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1104 BDRVNVMeState *s = bs->opaque;
1106 bs->bl.opt_mem_alignment = s->page_size;
1107 bs->bl.request_alignment = s->page_size;
1108 bs->bl.max_transfer = s->max_transfer;
1111 static void nvme_detach_aio_context(BlockDriverState *bs)
1113 BDRVNVMeState *s = bs->opaque;
1115 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1119 static void nvme_attach_aio_context(BlockDriverState *bs,
1120 AioContext *new_context)
1122 BDRVNVMeState *s = bs->opaque;
1124 s->aio_context = new_context;
1125 aio_set_event_notifier(new_context, &s->irq_notifier,
1126 false, nvme_handle_event, nvme_poll_cb);
1129 static void nvme_aio_plug(BlockDriverState *bs)
1131 BDRVNVMeState *s = bs->opaque;
1132 assert(!s->plugged);
1136 static void nvme_aio_unplug(BlockDriverState *bs)
1139 BDRVNVMeState *s = bs->opaque;
1142 for (i = 1; i < s->nr_queues; i++) {
1143 NVMeQueuePair *q = s->queues[i];
1144 qemu_mutex_lock(&q->lock);
1146 nvme_process_completion(s, q);
1147 qemu_mutex_unlock(&q->lock);
1151 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1154 BDRVNVMeState *s = bs->opaque;
1156 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1158 /* FIXME: we may run out of IOVA addresses after repeated
1159 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1160 * doesn't reclaim addresses for fixed mappings. */
1161 error_report("nvme_register_buf failed: %s", strerror(-ret));
1165 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1167 BDRVNVMeState *s = bs->opaque;
1169 qemu_vfio_dma_unmap(s->vfio, host);
1172 static const char *const nvme_strong_runtime_opts[] = {
1173 NVME_BLOCK_OPT_DEVICE,
1174 NVME_BLOCK_OPT_NAMESPACE,
1179 static BlockDriver bdrv_nvme = {
1180 .format_name = "nvme",
1181 .protocol_name = "nvme",
1182 .instance_size = sizeof(BDRVNVMeState),
1184 .bdrv_parse_filename = nvme_parse_filename,
1185 .bdrv_file_open = nvme_file_open,
1186 .bdrv_close = nvme_close,
1187 .bdrv_getlength = nvme_getlength,
1188 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1190 .bdrv_co_preadv = nvme_co_preadv,
1191 .bdrv_co_pwritev = nvme_co_pwritev,
1192 .bdrv_co_flush_to_disk = nvme_co_flush,
1193 .bdrv_reopen_prepare = nvme_reopen_prepare,
1195 .bdrv_refresh_filename = nvme_refresh_filename,
1196 .bdrv_refresh_limits = nvme_refresh_limits,
1197 .strong_runtime_opts = nvme_strong_runtime_opts,
1199 .bdrv_detach_aio_context = nvme_detach_aio_context,
1200 .bdrv_attach_aio_context = nvme_attach_aio_context,
1202 .bdrv_io_plug = nvme_aio_plug,
1203 .bdrv_io_unplug = nvme_aio_unplug,
1205 .bdrv_register_buf = nvme_register_buf,
1206 .bdrv_unregister_buf = nvme_unregister_buf,
1209 static void bdrv_nvme_init(void)
1211 bdrv_register(&bdrv_nvme);
1214 block_init(bdrv_nvme_init);