2 * General purpose implementation of a simple periodic countdown timer.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GNU LGPL.
9 #include "qemu/timer.h"
10 #include "hw/ptimer.h"
11 #include "qemu/host-utils.h"
15 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
26 /* Use a bottom-half routine to avoid reentrancy issues. */
27 static void ptimer_trigger(ptimer_state *s)
30 qemu_bh_schedule(s->bh);
34 static void ptimer_reload(ptimer_state *s)
40 if (s->delta == 0 || s->period == 0) {
41 fprintf(stderr, "Timer with period zero, disabling\n");
46 s->last_event = s->next_event;
47 s->next_event = s->last_event + s->delta * s->period;
49 s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
51 qemu_mod_timer(s->timer, s->next_event);
54 static void ptimer_tick(void *opaque)
56 ptimer_state *s = (ptimer_state *)opaque;
59 if (s->enabled == 2) {
66 uint64_t ptimer_get_count(ptimer_state *s)
72 now = qemu_get_clock_ns(vm_clock);
73 /* Figure out the current counter value. */
74 if (now - s->next_event > 0
76 /* Prevent timer underflowing if it should already have
85 /* We need to divide time by period, where time is stored in
86 rem (64-bit integer) and period is stored in period/period_frac
89 Doing full precision division is hard, so scale values and
90 do a 64-bit division. The result should be rounded down,
91 so that the rounding error never causes the timer to go
95 rem = s->next_event - now;
100 shift = clz1 < clz2 ? clz1 : clz2;
105 div |= ((uint64_t)s->period_frac << (shift - 32));
108 div |= (s->period_frac >> (32 - shift));
109 /* Look at remaining bits of period_frac and round div up if
111 if ((uint32_t)(s->period_frac << shift))
122 void ptimer_set_count(ptimer_state *s, uint64_t count)
126 s->next_event = qemu_get_clock_ns(vm_clock);
131 void ptimer_run(ptimer_state *s, int oneshot)
136 if (s->period == 0) {
137 fprintf(stderr, "Timer with period zero, disabling\n");
140 s->enabled = oneshot ? 2 : 1;
141 s->next_event = qemu_get_clock_ns(vm_clock);
145 /* Pause a timer. Note that this may cause it to "lose" time, even if it
146 is immediately restarted. */
147 void ptimer_stop(ptimer_state *s)
152 s->delta = ptimer_get_count(s);
153 qemu_del_timer(s->timer);
157 /* Set counter increment interval in nanoseconds. */
158 void ptimer_set_period(ptimer_state *s, int64_t period)
163 s->next_event = qemu_get_clock_ns(vm_clock);
168 /* Set counter frequency in Hz. */
169 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
171 s->period = 1000000000ll / freq;
172 s->period_frac = (1000000000ll << 32) / freq;
174 s->next_event = qemu_get_clock_ns(vm_clock);
179 /* Set the initial countdown value. If reload is nonzero then also set
181 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
184 * Artificially limit timeout rate to something
185 * achievable under QEMU. Otherwise, QEMU spends all
186 * its time generating timer interrupts, and there
187 * is no forward progress.
188 * About ten microseconds is the fastest that really works
189 * on the current generation of host machines.
192 if (limit * s->period < 10000 && s->period) {
193 limit = 10000 / s->period;
199 if (s->enabled && reload) {
200 s->next_event = qemu_get_clock_ns(vm_clock);
205 const VMStateDescription vmstate_ptimer = {
208 .minimum_version_id = 1,
209 .minimum_version_id_old = 1,
210 .fields = (VMStateField[]) {
211 VMSTATE_UINT8(enabled, ptimer_state),
212 VMSTATE_UINT64(limit, ptimer_state),
213 VMSTATE_UINT64(delta, ptimer_state),
214 VMSTATE_UINT32(period_frac, ptimer_state),
215 VMSTATE_INT64(period, ptimer_state),
216 VMSTATE_INT64(last_event, ptimer_state),
217 VMSTATE_INT64(next_event, ptimer_state),
218 VMSTATE_TIMER(timer, ptimer_state),
219 VMSTATE_END_OF_LIST()
223 ptimer_state *ptimer_init(QEMUBH *bh)
227 s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
229 s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s);