4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
40 #include "migration/migration.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "migration/vmstate.h"
44 #include "postcopy-ram.h"
45 #include "exec/address-spaces.h"
46 #include "migration/page_cache.h"
47 #include "qemu/error-report.h"
49 #include "exec/ram_addr.h"
50 #include "qemu/rcu_queue.h"
51 #include "migration/colo.h"
53 /***********************************************************/
54 /* ram save/restore */
56 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
57 * worked for pages that where filled with the same char. We switched
58 * it to only search for the zero value. And to avoid confusion with
59 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
63 #define RAM_SAVE_FLAG_ZERO 0x02
64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
65 #define RAM_SAVE_FLAG_PAGE 0x08
66 #define RAM_SAVE_FLAG_EOS 0x10
67 #define RAM_SAVE_FLAG_CONTINUE 0x20
68 #define RAM_SAVE_FLAG_XBZRLE 0x40
69 /* 0x80 is reserved in migration.h start with 0x100 next */
70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
72 static uint8_t *ZERO_TARGET_PAGE;
74 static inline bool is_zero_range(uint8_t *p, uint64_t size)
76 return buffer_is_zero(p, size);
79 /* struct contains XBZRLE cache and a static page
80 used by the compression */
82 /* buffer used for XBZRLE encoding */
84 /* buffer for storing page content */
86 /* Cache for XBZRLE, Protected by lock. */
91 /* buffer used for XBZRLE decoding */
92 static uint8_t *xbzrle_decoded_buf;
94 static void XBZRLE_cache_lock(void)
96 if (migrate_use_xbzrle())
97 qemu_mutex_lock(&XBZRLE.lock);
100 static void XBZRLE_cache_unlock(void)
102 if (migrate_use_xbzrle())
103 qemu_mutex_unlock(&XBZRLE.lock);
107 * xbzrle_cache_resize: resize the xbzrle cache
109 * This function is called from qmp_migrate_set_cache_size in main
110 * thread, possibly while a migration is in progress. A running
111 * migration may be using the cache and might finish during this call,
112 * hence changes to the cache are protected by XBZRLE.lock().
114 * Returns the new_size or negative in case of error.
116 * @new_size: new cache size
118 int64_t xbzrle_cache_resize(int64_t new_size)
120 PageCache *new_cache;
123 if (new_size < TARGET_PAGE_SIZE) {
129 if (XBZRLE.cache != NULL) {
130 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
133 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
136 error_report("Error creating cache");
141 cache_fini(XBZRLE.cache);
142 XBZRLE.cache = new_cache;
146 ret = pow2floor(new_size);
148 XBZRLE_cache_unlock();
153 * An outstanding page request, on the source, having been received
156 struct RAMSrcPageRequest {
161 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
164 /* State of RAM for migration */
166 /* QEMUFile used for this migration */
168 /* Last block that we have visited searching for dirty pages */
169 RAMBlock *last_seen_block;
170 /* Last block from where we have sent data */
171 RAMBlock *last_sent_block;
172 /* Last dirty target page we have sent */
173 ram_addr_t last_page;
174 /* last ram version we have seen */
175 uint32_t last_version;
176 /* We are in the first round */
178 /* How many times we have dirty too many pages */
179 int dirty_rate_high_cnt;
180 /* How many times we have synchronized the bitmap */
181 uint64_t bitmap_sync_count;
182 /* these variables are used for bitmap sync */
183 /* last time we did a full bitmap_sync */
184 int64_t time_last_bitmap_sync;
185 /* bytes transferred at start_time */
186 uint64_t bytes_xfer_prev;
187 /* number of dirty pages since start_time */
188 uint64_t num_dirty_pages_period;
189 /* xbzrle misses since the beginning of the period */
190 uint64_t xbzrle_cache_miss_prev;
191 /* number of iterations at the beginning of period */
192 uint64_t iterations_prev;
193 /* Accounting fields */
194 /* number of zero pages. It used to be pages filled by the same char. */
196 /* number of normal transferred pages */
198 /* Iterations since start */
200 /* xbzrle transmitted bytes. Notice that this is with
201 * compression, they can't be calculated from the pages */
202 uint64_t xbzrle_bytes;
203 /* xbzrle transmmited pages */
204 uint64_t xbzrle_pages;
205 /* xbzrle number of cache miss */
206 uint64_t xbzrle_cache_miss;
207 /* xbzrle miss rate */
208 double xbzrle_cache_miss_rate;
209 /* xbzrle number of overflows */
210 uint64_t xbzrle_overflows;
211 /* number of dirty bits in the bitmap */
212 uint64_t migration_dirty_pages;
213 /* total number of bytes transferred */
214 uint64_t bytes_transferred;
215 /* number of dirtied pages in the last second */
216 uint64_t dirty_pages_rate;
217 /* Count of requests incoming from destination */
218 uint64_t postcopy_requests;
219 /* protects modification of the bitmap */
220 QemuMutex bitmap_mutex;
221 /* The RAMBlock used in the last src_page_requests */
222 RAMBlock *last_req_rb;
223 /* Queue of outstanding page requests from the destination */
224 QemuMutex src_page_req_mutex;
225 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
227 typedef struct RAMState RAMState;
229 static RAMState ram_state;
231 uint64_t dup_mig_pages_transferred(void)
233 return ram_state.zero_pages;
236 uint64_t norm_mig_pages_transferred(void)
238 return ram_state.norm_pages;
241 uint64_t xbzrle_mig_bytes_transferred(void)
243 return ram_state.xbzrle_bytes;
246 uint64_t xbzrle_mig_pages_transferred(void)
248 return ram_state.xbzrle_pages;
251 uint64_t xbzrle_mig_pages_cache_miss(void)
253 return ram_state.xbzrle_cache_miss;
256 double xbzrle_mig_cache_miss_rate(void)
258 return ram_state.xbzrle_cache_miss_rate;
261 uint64_t xbzrle_mig_pages_overflow(void)
263 return ram_state.xbzrle_overflows;
266 uint64_t ram_bytes_transferred(void)
268 return ram_state.bytes_transferred;
271 uint64_t ram_bytes_remaining(void)
273 return ram_state.migration_dirty_pages * TARGET_PAGE_SIZE;
276 uint64_t ram_dirty_sync_count(void)
278 return ram_state.bitmap_sync_count;
281 uint64_t ram_dirty_pages_rate(void)
283 return ram_state.dirty_pages_rate;
286 uint64_t ram_postcopy_requests(void)
288 return ram_state.postcopy_requests;
291 /* used by the search for pages to send */
292 struct PageSearchStatus {
293 /* Current block being searched */
295 /* Current page to search from */
297 /* Set once we wrap around */
300 typedef struct PageSearchStatus PageSearchStatus;
302 struct CompressParam {
311 typedef struct CompressParam CompressParam;
313 struct DecompressParam {
322 typedef struct DecompressParam DecompressParam;
324 static CompressParam *comp_param;
325 static QemuThread *compress_threads;
326 /* comp_done_cond is used to wake up the migration thread when
327 * one of the compression threads has finished the compression.
328 * comp_done_lock is used to co-work with comp_done_cond.
330 static QemuMutex comp_done_lock;
331 static QemuCond comp_done_cond;
332 /* The empty QEMUFileOps will be used by file in CompressParam */
333 static const QEMUFileOps empty_ops = { };
335 static DecompressParam *decomp_param;
336 static QemuThread *decompress_threads;
337 static QemuMutex decomp_done_lock;
338 static QemuCond decomp_done_cond;
340 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
343 static void *do_data_compress(void *opaque)
345 CompressParam *param = opaque;
349 qemu_mutex_lock(¶m->mutex);
350 while (!param->quit) {
352 block = param->block;
353 offset = param->offset;
355 qemu_mutex_unlock(¶m->mutex);
357 do_compress_ram_page(param->file, block, offset);
359 qemu_mutex_lock(&comp_done_lock);
361 qemu_cond_signal(&comp_done_cond);
362 qemu_mutex_unlock(&comp_done_lock);
364 qemu_mutex_lock(¶m->mutex);
366 qemu_cond_wait(¶m->cond, ¶m->mutex);
369 qemu_mutex_unlock(¶m->mutex);
374 static inline void terminate_compression_threads(void)
376 int idx, thread_count;
378 thread_count = migrate_compress_threads();
380 for (idx = 0; idx < thread_count; idx++) {
381 qemu_mutex_lock(&comp_param[idx].mutex);
382 comp_param[idx].quit = true;
383 qemu_cond_signal(&comp_param[idx].cond);
384 qemu_mutex_unlock(&comp_param[idx].mutex);
388 void migrate_compress_threads_join(void)
392 if (!migrate_use_compression()) {
395 terminate_compression_threads();
396 thread_count = migrate_compress_threads();
397 for (i = 0; i < thread_count; i++) {
398 qemu_thread_join(compress_threads + i);
399 qemu_fclose(comp_param[i].file);
400 qemu_mutex_destroy(&comp_param[i].mutex);
401 qemu_cond_destroy(&comp_param[i].cond);
403 qemu_mutex_destroy(&comp_done_lock);
404 qemu_cond_destroy(&comp_done_cond);
405 g_free(compress_threads);
407 compress_threads = NULL;
411 void migrate_compress_threads_create(void)
415 if (!migrate_use_compression()) {
418 thread_count = migrate_compress_threads();
419 compress_threads = g_new0(QemuThread, thread_count);
420 comp_param = g_new0(CompressParam, thread_count);
421 qemu_cond_init(&comp_done_cond);
422 qemu_mutex_init(&comp_done_lock);
423 for (i = 0; i < thread_count; i++) {
424 /* comp_param[i].file is just used as a dummy buffer to save data,
425 * set its ops to empty.
427 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
428 comp_param[i].done = true;
429 comp_param[i].quit = false;
430 qemu_mutex_init(&comp_param[i].mutex);
431 qemu_cond_init(&comp_param[i].cond);
432 qemu_thread_create(compress_threads + i, "compress",
433 do_data_compress, comp_param + i,
434 QEMU_THREAD_JOINABLE);
439 * save_page_header: write page header to wire
441 * If this is the 1st block, it also writes the block identification
443 * Returns the number of bytes written
445 * @f: QEMUFile where to send the data
446 * @block: block that contains the page we want to send
447 * @offset: offset inside the block for the page
448 * in the lower bits, it contains flags
450 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
455 if (block == rs->last_sent_block) {
456 offset |= RAM_SAVE_FLAG_CONTINUE;
458 qemu_put_be64(f, offset);
461 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
462 len = strlen(block->idstr);
463 qemu_put_byte(f, len);
464 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
466 rs->last_sent_block = block;
472 * mig_throttle_guest_down: throotle down the guest
474 * Reduce amount of guest cpu execution to hopefully slow down memory
475 * writes. If guest dirty memory rate is reduced below the rate at
476 * which we can transfer pages to the destination then we should be
477 * able to complete migration. Some workloads dirty memory way too
478 * fast and will not effectively converge, even with auto-converge.
480 static void mig_throttle_guest_down(void)
482 MigrationState *s = migrate_get_current();
483 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
484 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
486 /* We have not started throttling yet. Let's start it. */
487 if (!cpu_throttle_active()) {
488 cpu_throttle_set(pct_initial);
490 /* Throttling already on, just increase the rate */
491 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
496 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
498 * @rs: current RAM state
499 * @current_addr: address for the zero page
501 * Update the xbzrle cache to reflect a page that's been sent as all 0.
502 * The important thing is that a stale (not-yet-0'd) page be replaced
504 * As a bonus, if the page wasn't in the cache it gets added so that
505 * when a small write is made into the 0'd page it gets XBZRLE sent.
507 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
509 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
513 /* We don't care if this fails to allocate a new cache page
514 * as long as it updated an old one */
515 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
516 rs->bitmap_sync_count);
519 #define ENCODING_FLAG_XBZRLE 0x1
522 * save_xbzrle_page: compress and send current page
524 * Returns: 1 means that we wrote the page
525 * 0 means that page is identical to the one already sent
526 * -1 means that xbzrle would be longer than normal
528 * @rs: current RAM state
529 * @current_data: pointer to the address of the page contents
530 * @current_addr: addr of the page
531 * @block: block that contains the page we want to send
532 * @offset: offset inside the block for the page
533 * @last_stage: if we are at the completion stage
535 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
536 ram_addr_t current_addr, RAMBlock *block,
537 ram_addr_t offset, bool last_stage)
539 int encoded_len = 0, bytes_xbzrle;
540 uint8_t *prev_cached_page;
542 if (!cache_is_cached(XBZRLE.cache, current_addr, rs->bitmap_sync_count)) {
543 rs->xbzrle_cache_miss++;
545 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
546 rs->bitmap_sync_count) == -1) {
549 /* update *current_data when the page has been
550 inserted into cache */
551 *current_data = get_cached_data(XBZRLE.cache, current_addr);
557 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
559 /* save current buffer into memory */
560 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
562 /* XBZRLE encoding (if there is no overflow) */
563 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
564 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
566 if (encoded_len == 0) {
567 trace_save_xbzrle_page_skipping();
569 } else if (encoded_len == -1) {
570 trace_save_xbzrle_page_overflow();
571 rs->xbzrle_overflows++;
572 /* update data in the cache */
574 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
575 *current_data = prev_cached_page;
580 /* we need to update the data in the cache, in order to get the same data */
582 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
585 /* Send XBZRLE based compressed page */
586 bytes_xbzrle = save_page_header(rs, rs->f, block,
587 offset | RAM_SAVE_FLAG_XBZRLE);
588 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
589 qemu_put_be16(rs->f, encoded_len);
590 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
591 bytes_xbzrle += encoded_len + 1 + 2;
593 rs->xbzrle_bytes += bytes_xbzrle;
594 rs->bytes_transferred += bytes_xbzrle;
600 * migration_bitmap_find_dirty: find the next dirty page from start
602 * Called with rcu_read_lock() to protect migration_bitmap
604 * Returns the byte offset within memory region of the start of a dirty page
606 * @rs: current RAM state
607 * @rb: RAMBlock where to search for dirty pages
608 * @start: page where we start the search
611 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
614 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
615 unsigned long *bitmap = rb->bmap;
618 if (rs->ram_bulk_stage && start > 0) {
621 next = find_next_bit(bitmap, size, start);
627 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
633 ret = test_and_clear_bit(page, rb->bmap);
636 rs->migration_dirty_pages--;
641 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
642 ram_addr_t start, ram_addr_t length)
644 rs->migration_dirty_pages +=
645 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
646 &rs->num_dirty_pages_period);
650 * ram_pagesize_summary: calculate all the pagesizes of a VM
652 * Returns a summary bitmap of the page sizes of all RAMBlocks
654 * For VMs with just normal pages this is equivalent to the host page
655 * size. If it's got some huge pages then it's the OR of all the
656 * different page sizes.
658 uint64_t ram_pagesize_summary(void)
661 uint64_t summary = 0;
663 RAMBLOCK_FOREACH(block) {
664 summary |= block->page_size;
670 static void migration_bitmap_sync(RAMState *rs)
674 uint64_t bytes_xfer_now;
676 rs->bitmap_sync_count++;
678 if (!rs->time_last_bitmap_sync) {
679 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
682 trace_migration_bitmap_sync_start();
683 memory_global_dirty_log_sync();
685 qemu_mutex_lock(&rs->bitmap_mutex);
687 RAMBLOCK_FOREACH(block) {
688 migration_bitmap_sync_range(rs, block, 0, block->used_length);
691 qemu_mutex_unlock(&rs->bitmap_mutex);
693 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
695 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
697 /* more than 1 second = 1000 millisecons */
698 if (end_time > rs->time_last_bitmap_sync + 1000) {
699 /* calculate period counters */
700 rs->dirty_pages_rate = rs->num_dirty_pages_period * 1000
701 / (end_time - rs->time_last_bitmap_sync);
702 bytes_xfer_now = ram_bytes_transferred();
704 if (migrate_auto_converge()) {
705 /* The following detection logic can be refined later. For now:
706 Check to see if the dirtied bytes is 50% more than the approx.
707 amount of bytes that just got transferred since the last time we
708 were in this routine. If that happens twice, start or increase
711 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
712 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
713 (++rs->dirty_rate_high_cnt >= 2)) {
714 trace_migration_throttle();
715 rs->dirty_rate_high_cnt = 0;
716 mig_throttle_guest_down();
720 if (migrate_use_xbzrle()) {
721 if (rs->iterations_prev != rs->iterations) {
722 rs->xbzrle_cache_miss_rate =
723 (double)(rs->xbzrle_cache_miss -
724 rs->xbzrle_cache_miss_prev) /
725 (rs->iterations - rs->iterations_prev);
727 rs->iterations_prev = rs->iterations;
728 rs->xbzrle_cache_miss_prev = rs->xbzrle_cache_miss;
731 /* reset period counters */
732 rs->time_last_bitmap_sync = end_time;
733 rs->num_dirty_pages_period = 0;
734 rs->bytes_xfer_prev = bytes_xfer_now;
736 if (migrate_use_events()) {
737 qapi_event_send_migration_pass(rs->bitmap_sync_count, NULL);
742 * save_zero_page: send the zero page to the stream
744 * Returns the number of pages written.
746 * @rs: current RAM state
747 * @block: block that contains the page we want to send
748 * @offset: offset inside the block for the page
749 * @p: pointer to the page
751 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
756 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
758 rs->bytes_transferred +=
759 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
760 qemu_put_byte(rs->f, 0);
761 rs->bytes_transferred += 1;
768 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
770 if (!migrate_release_ram() || !migration_in_postcopy()) {
774 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
778 * ram_save_page: send the given page to the stream
780 * Returns the number of pages written.
782 * >=0 - Number of pages written - this might legally be 0
783 * if xbzrle noticed the page was the same.
785 * @rs: current RAM state
786 * @block: block that contains the page we want to send
787 * @offset: offset inside the block for the page
788 * @last_stage: if we are at the completion stage
790 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
794 ram_addr_t current_addr;
797 bool send_async = true;
798 RAMBlock *block = pss->block;
799 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
801 p = block->host + offset;
802 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
804 /* In doubt sent page as normal */
806 ret = ram_control_save_page(rs->f, block->offset,
807 offset, TARGET_PAGE_SIZE, &bytes_xmit);
809 rs->bytes_transferred += bytes_xmit;
815 current_addr = block->offset + offset;
817 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
818 if (ret != RAM_SAVE_CONTROL_DELAYED) {
819 if (bytes_xmit > 0) {
821 } else if (bytes_xmit == 0) {
826 pages = save_zero_page(rs, block, offset, p);
828 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
829 * page would be stale
831 xbzrle_cache_zero_page(rs, current_addr);
832 ram_release_pages(block->idstr, offset, pages);
833 } else if (!rs->ram_bulk_stage &&
834 !migration_in_postcopy() && migrate_use_xbzrle()) {
835 pages = save_xbzrle_page(rs, &p, current_addr, block,
838 /* Can't send this cached data async, since the cache page
839 * might get updated before it gets to the wire
846 /* XBZRLE overflow or normal page */
848 rs->bytes_transferred += save_page_header(rs, rs->f, block,
849 offset | RAM_SAVE_FLAG_PAGE);
851 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
852 migrate_release_ram() &
853 migration_in_postcopy());
855 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
857 rs->bytes_transferred += TARGET_PAGE_SIZE;
862 XBZRLE_cache_unlock();
867 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
870 RAMState *rs = &ram_state;
871 int bytes_sent, blen;
872 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
874 bytes_sent = save_page_header(rs, f, block, offset |
875 RAM_SAVE_FLAG_COMPRESS_PAGE);
876 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
877 migrate_compress_level());
880 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
881 error_report("compressed data failed!");
884 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
890 static void flush_compressed_data(RAMState *rs)
892 int idx, len, thread_count;
894 if (!migrate_use_compression()) {
897 thread_count = migrate_compress_threads();
899 qemu_mutex_lock(&comp_done_lock);
900 for (idx = 0; idx < thread_count; idx++) {
901 while (!comp_param[idx].done) {
902 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
905 qemu_mutex_unlock(&comp_done_lock);
907 for (idx = 0; idx < thread_count; idx++) {
908 qemu_mutex_lock(&comp_param[idx].mutex);
909 if (!comp_param[idx].quit) {
910 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
911 rs->bytes_transferred += len;
913 qemu_mutex_unlock(&comp_param[idx].mutex);
917 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
920 param->block = block;
921 param->offset = offset;
924 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
927 int idx, thread_count, bytes_xmit = -1, pages = -1;
929 thread_count = migrate_compress_threads();
930 qemu_mutex_lock(&comp_done_lock);
932 for (idx = 0; idx < thread_count; idx++) {
933 if (comp_param[idx].done) {
934 comp_param[idx].done = false;
935 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
936 qemu_mutex_lock(&comp_param[idx].mutex);
937 set_compress_params(&comp_param[idx], block, offset);
938 qemu_cond_signal(&comp_param[idx].cond);
939 qemu_mutex_unlock(&comp_param[idx].mutex);
942 rs->bytes_transferred += bytes_xmit;
949 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
952 qemu_mutex_unlock(&comp_done_lock);
958 * ram_save_compressed_page: compress the given page and send it to the stream
960 * Returns the number of pages written.
962 * @rs: current RAM state
963 * @block: block that contains the page we want to send
964 * @offset: offset inside the block for the page
965 * @last_stage: if we are at the completion stage
967 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
971 uint64_t bytes_xmit = 0;
974 RAMBlock *block = pss->block;
975 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
977 p = block->host + offset;
979 ret = ram_control_save_page(rs->f, block->offset,
980 offset, TARGET_PAGE_SIZE, &bytes_xmit);
982 rs->bytes_transferred += bytes_xmit;
985 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
986 if (ret != RAM_SAVE_CONTROL_DELAYED) {
987 if (bytes_xmit > 0) {
989 } else if (bytes_xmit == 0) {
994 /* When starting the process of a new block, the first page of
995 * the block should be sent out before other pages in the same
996 * block, and all the pages in last block should have been sent
997 * out, keeping this order is important, because the 'cont' flag
998 * is used to avoid resending the block name.
1000 if (block != rs->last_sent_block) {
1001 flush_compressed_data(rs);
1002 pages = save_zero_page(rs, block, offset, p);
1004 /* Make sure the first page is sent out before other pages */
1005 bytes_xmit = save_page_header(rs, rs->f, block, offset |
1006 RAM_SAVE_FLAG_COMPRESS_PAGE);
1007 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
1008 migrate_compress_level());
1010 rs->bytes_transferred += bytes_xmit + blen;
1014 qemu_file_set_error(rs->f, blen);
1015 error_report("compressed data failed!");
1019 ram_release_pages(block->idstr, offset, pages);
1022 pages = save_zero_page(rs, block, offset, p);
1024 pages = compress_page_with_multi_thread(rs, block, offset);
1026 ram_release_pages(block->idstr, offset, pages);
1035 * find_dirty_block: find the next dirty page and update any state
1036 * associated with the search process.
1038 * Returns if a page is found
1040 * @rs: current RAM state
1041 * @pss: data about the state of the current dirty page scan
1042 * @again: set to false if the search has scanned the whole of RAM
1044 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1046 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1047 if (pss->complete_round && pss->block == rs->last_seen_block &&
1048 pss->page >= rs->last_page) {
1050 * We've been once around the RAM and haven't found anything.
1056 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1057 /* Didn't find anything in this RAM Block */
1059 pss->block = QLIST_NEXT_RCU(pss->block, next);
1061 /* Hit the end of the list */
1062 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1063 /* Flag that we've looped */
1064 pss->complete_round = true;
1065 rs->ram_bulk_stage = false;
1066 if (migrate_use_xbzrle()) {
1067 /* If xbzrle is on, stop using the data compression at this
1068 * point. In theory, xbzrle can do better than compression.
1070 flush_compressed_data(rs);
1073 /* Didn't find anything this time, but try again on the new block */
1077 /* Can go around again, but... */
1079 /* We've found something so probably don't need to */
1085 * unqueue_page: gets a page of the queue
1087 * Helper for 'get_queued_page' - gets a page off the queue
1089 * Returns the block of the page (or NULL if none available)
1091 * @rs: current RAM state
1092 * @offset: used to return the offset within the RAMBlock
1094 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1096 RAMBlock *block = NULL;
1098 qemu_mutex_lock(&rs->src_page_req_mutex);
1099 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1100 struct RAMSrcPageRequest *entry =
1101 QSIMPLEQ_FIRST(&rs->src_page_requests);
1103 *offset = entry->offset;
1105 if (entry->len > TARGET_PAGE_SIZE) {
1106 entry->len -= TARGET_PAGE_SIZE;
1107 entry->offset += TARGET_PAGE_SIZE;
1109 memory_region_unref(block->mr);
1110 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1114 qemu_mutex_unlock(&rs->src_page_req_mutex);
1120 * get_queued_page: unqueue a page from the postocpy requests
1122 * Skips pages that are already sent (!dirty)
1124 * Returns if a queued page is found
1126 * @rs: current RAM state
1127 * @pss: data about the state of the current dirty page scan
1129 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1136 block = unqueue_page(rs, &offset);
1138 * We're sending this page, and since it's postcopy nothing else
1139 * will dirty it, and we must make sure it doesn't get sent again
1140 * even if this queue request was received after the background
1141 * search already sent it.
1146 page = offset >> TARGET_PAGE_BITS;
1147 dirty = test_bit(page, block->bmap);
1149 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1150 page, test_bit(page, block->unsentmap));
1152 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1156 } while (block && !dirty);
1160 * As soon as we start servicing pages out of order, then we have
1161 * to kill the bulk stage, since the bulk stage assumes
1162 * in (migration_bitmap_find_and_reset_dirty) that every page is
1163 * dirty, that's no longer true.
1165 rs->ram_bulk_stage = false;
1168 * We want the background search to continue from the queued page
1169 * since the guest is likely to want other pages near to the page
1170 * it just requested.
1173 pss->page = offset >> TARGET_PAGE_BITS;
1180 * migration_page_queue_free: drop any remaining pages in the ram
1183 * It should be empty at the end anyway, but in error cases there may
1184 * be some left. in case that there is any page left, we drop it.
1187 static void migration_page_queue_free(RAMState *rs)
1189 struct RAMSrcPageRequest *mspr, *next_mspr;
1190 /* This queue generally should be empty - but in the case of a failed
1191 * migration might have some droppings in.
1194 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1195 memory_region_unref(mspr->rb->mr);
1196 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1203 * ram_save_queue_pages: queue the page for transmission
1205 * A request from postcopy destination for example.
1207 * Returns zero on success or negative on error
1209 * @rbname: Name of the RAMBLock of the request. NULL means the
1210 * same that last one.
1211 * @start: starting address from the start of the RAMBlock
1212 * @len: length (in bytes) to send
1214 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1217 RAMState *rs = &ram_state;
1219 rs->postcopy_requests++;
1222 /* Reuse last RAMBlock */
1223 ramblock = rs->last_req_rb;
1227 * Shouldn't happen, we can't reuse the last RAMBlock if
1228 * it's the 1st request.
1230 error_report("ram_save_queue_pages no previous block");
1234 ramblock = qemu_ram_block_by_name(rbname);
1237 /* We shouldn't be asked for a non-existent RAMBlock */
1238 error_report("ram_save_queue_pages no block '%s'", rbname);
1241 rs->last_req_rb = ramblock;
1243 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1244 if (start+len > ramblock->used_length) {
1245 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1246 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1247 __func__, start, len, ramblock->used_length);
1251 struct RAMSrcPageRequest *new_entry =
1252 g_malloc0(sizeof(struct RAMSrcPageRequest));
1253 new_entry->rb = ramblock;
1254 new_entry->offset = start;
1255 new_entry->len = len;
1257 memory_region_ref(ramblock->mr);
1258 qemu_mutex_lock(&rs->src_page_req_mutex);
1259 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1260 qemu_mutex_unlock(&rs->src_page_req_mutex);
1271 * ram_save_target_page: save one target page
1273 * Returns the number of pages written
1275 * @rs: current RAM state
1276 * @ms: current migration state
1277 * @pss: data about the page we want to send
1278 * @last_stage: if we are at the completion stage
1280 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1285 /* Check the pages is dirty and if it is send it */
1286 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
1288 * If xbzrle is on, stop using the data compression after first
1289 * round of migration even if compression is enabled. In theory,
1290 * xbzrle can do better than compression.
1292 if (migrate_use_compression() &&
1293 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
1294 res = ram_save_compressed_page(rs, pss, last_stage);
1296 res = ram_save_page(rs, pss, last_stage);
1302 if (pss->block->unsentmap) {
1303 clear_bit(pss->page, pss->block->unsentmap);
1311 * ram_save_host_page: save a whole host page
1313 * Starting at *offset send pages up to the end of the current host
1314 * page. It's valid for the initial offset to point into the middle of
1315 * a host page in which case the remainder of the hostpage is sent.
1316 * Only dirty target pages are sent. Note that the host page size may
1317 * be a huge page for this block.
1318 * The saving stops at the boundary of the used_length of the block
1319 * if the RAMBlock isn't a multiple of the host page size.
1321 * Returns the number of pages written or negative on error
1323 * @rs: current RAM state
1324 * @ms: current migration state
1325 * @pss: data about the page we want to send
1326 * @last_stage: if we are at the completion stage
1328 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1331 int tmppages, pages = 0;
1332 size_t pagesize_bits =
1333 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1336 tmppages = ram_save_target_page(rs, pss, last_stage);
1343 } while ((pss->page & (pagesize_bits - 1)) &&
1344 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
1346 /* The offset we leave with is the last one we looked at */
1352 * ram_find_and_save_block: finds a dirty page and sends it to f
1354 * Called within an RCU critical section.
1356 * Returns the number of pages written where zero means no dirty pages
1358 * @rs: current RAM state
1359 * @last_stage: if we are at the completion stage
1361 * On systems where host-page-size > target-page-size it will send all the
1362 * pages in a host page that are dirty.
1365 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1367 PageSearchStatus pss;
1371 /* No dirty page as there is zero RAM */
1372 if (!ram_bytes_total()) {
1376 pss.block = rs->last_seen_block;
1377 pss.page = rs->last_page;
1378 pss.complete_round = false;
1381 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1386 found = get_queued_page(rs, &pss);
1389 /* priority queue empty, so just search for something dirty */
1390 found = find_dirty_block(rs, &pss, &again);
1394 pages = ram_save_host_page(rs, &pss, last_stage);
1396 } while (!pages && again);
1398 rs->last_seen_block = pss.block;
1399 rs->last_page = pss.page;
1404 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1406 uint64_t pages = size / TARGET_PAGE_SIZE;
1407 RAMState *rs = &ram_state;
1410 rs->zero_pages += pages;
1412 rs->norm_pages += pages;
1413 rs->bytes_transferred += size;
1414 qemu_update_position(f, size);
1418 uint64_t ram_bytes_total(void)
1424 RAMBLOCK_FOREACH(block) {
1425 total += block->used_length;
1431 void free_xbzrle_decoded_buf(void)
1433 g_free(xbzrle_decoded_buf);
1434 xbzrle_decoded_buf = NULL;
1437 static void ram_migration_cleanup(void *opaque)
1439 RAMState *rs = opaque;
1442 /* caller have hold iothread lock or is in a bh, so there is
1443 * no writing race against this migration_bitmap
1445 memory_global_dirty_log_stop();
1447 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1448 g_free(block->bmap);
1450 g_free(block->unsentmap);
1451 block->unsentmap = NULL;
1454 XBZRLE_cache_lock();
1456 cache_fini(XBZRLE.cache);
1457 g_free(XBZRLE.encoded_buf);
1458 g_free(XBZRLE.current_buf);
1459 g_free(ZERO_TARGET_PAGE);
1460 XBZRLE.cache = NULL;
1461 XBZRLE.encoded_buf = NULL;
1462 XBZRLE.current_buf = NULL;
1464 XBZRLE_cache_unlock();
1465 migration_page_queue_free(rs);
1468 static void ram_state_reset(RAMState *rs)
1470 rs->last_seen_block = NULL;
1471 rs->last_sent_block = NULL;
1473 rs->last_version = ram_list.version;
1474 rs->ram_bulk_stage = true;
1477 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1480 * 'expected' is the value you expect the bitmap mostly to be full
1481 * of; it won't bother printing lines that are all this value.
1482 * If 'todump' is null the migration bitmap is dumped.
1484 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1485 unsigned long pages)
1488 int64_t linelen = 128;
1491 for (cur = 0; cur < pages; cur += linelen) {
1495 * Last line; catch the case where the line length
1496 * is longer than remaining ram
1498 if (cur + linelen > pages) {
1499 linelen = pages - cur;
1501 for (curb = 0; curb < linelen; curb++) {
1502 bool thisbit = test_bit(cur + curb, todump);
1503 linebuf[curb] = thisbit ? '1' : '.';
1504 found = found || (thisbit != expected);
1507 linebuf[curb] = '\0';
1508 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1513 /* **** functions for postcopy ***** */
1515 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1517 struct RAMBlock *block;
1519 RAMBLOCK_FOREACH(block) {
1520 unsigned long *bitmap = block->bmap;
1521 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1522 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
1524 while (run_start < range) {
1525 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1526 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
1527 (run_end - run_start) << TARGET_PAGE_BITS);
1528 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1534 * postcopy_send_discard_bm_ram: discard a RAMBlock
1536 * Returns zero on success
1538 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1539 * Note: At this point the 'unsentmap' is the processed bitmap combined
1540 * with the dirtymap; so a '1' means it's either dirty or unsent.
1542 * @ms: current migration state
1543 * @pds: state for postcopy
1544 * @start: RAMBlock starting page
1545 * @length: RAMBlock size
1547 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1548 PostcopyDiscardState *pds,
1551 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
1552 unsigned long current;
1553 unsigned long *unsentmap = block->unsentmap;
1555 for (current = 0; current < end; ) {
1556 unsigned long one = find_next_bit(unsentmap, end, current);
1559 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1560 unsigned long discard_length;
1563 discard_length = end - one;
1565 discard_length = zero - one;
1567 if (discard_length) {
1568 postcopy_discard_send_range(ms, pds, one, discard_length);
1570 current = one + discard_length;
1580 * postcopy_each_ram_send_discard: discard all RAMBlocks
1582 * Returns 0 for success or negative for error
1584 * Utility for the outgoing postcopy code.
1585 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1586 * passing it bitmap indexes and name.
1587 * (qemu_ram_foreach_block ends up passing unscaled lengths
1588 * which would mean postcopy code would have to deal with target page)
1590 * @ms: current migration state
1592 static int postcopy_each_ram_send_discard(MigrationState *ms)
1594 struct RAMBlock *block;
1597 RAMBLOCK_FOREACH(block) {
1598 PostcopyDiscardState *pds =
1599 postcopy_discard_send_init(ms, block->idstr);
1602 * Postcopy sends chunks of bitmap over the wire, but it
1603 * just needs indexes at this point, avoids it having
1604 * target page specific code.
1606 ret = postcopy_send_discard_bm_ram(ms, pds, block);
1607 postcopy_discard_send_finish(ms, pds);
1617 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1619 * Helper for postcopy_chunk_hostpages; it's called twice to
1620 * canonicalize the two bitmaps, that are similar, but one is
1623 * Postcopy requires that all target pages in a hostpage are dirty or
1624 * clean, not a mix. This function canonicalizes the bitmaps.
1626 * @ms: current migration state
1627 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1628 * otherwise we need to canonicalize partially dirty host pages
1629 * @block: block that contains the page we want to canonicalize
1630 * @pds: state for postcopy
1632 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1634 PostcopyDiscardState *pds)
1636 RAMState *rs = &ram_state;
1637 unsigned long *bitmap = block->bmap;
1638 unsigned long *unsentmap = block->unsentmap;
1639 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
1640 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1641 unsigned long run_start;
1643 if (block->page_size == TARGET_PAGE_SIZE) {
1644 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1649 /* Find a sent page */
1650 run_start = find_next_zero_bit(unsentmap, pages, 0);
1652 /* Find a dirty page */
1653 run_start = find_next_bit(bitmap, pages, 0);
1656 while (run_start < pages) {
1657 bool do_fixup = false;
1658 unsigned long fixup_start_addr;
1659 unsigned long host_offset;
1662 * If the start of this run of pages is in the middle of a host
1663 * page, then we need to fixup this host page.
1665 host_offset = run_start % host_ratio;
1668 run_start -= host_offset;
1669 fixup_start_addr = run_start;
1670 /* For the next pass */
1671 run_start = run_start + host_ratio;
1673 /* Find the end of this run */
1674 unsigned long run_end;
1676 run_end = find_next_bit(unsentmap, pages, run_start + 1);
1678 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
1681 * If the end isn't at the start of a host page, then the
1682 * run doesn't finish at the end of a host page
1683 * and we need to discard.
1685 host_offset = run_end % host_ratio;
1688 fixup_start_addr = run_end - host_offset;
1690 * This host page has gone, the next loop iteration starts
1691 * from after the fixup
1693 run_start = fixup_start_addr + host_ratio;
1696 * No discards on this iteration, next loop starts from
1697 * next sent/dirty page
1699 run_start = run_end + 1;
1706 /* Tell the destination to discard this page */
1707 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1708 /* For the unsent_pass we:
1709 * discard partially sent pages
1710 * For the !unsent_pass (dirty) we:
1711 * discard partially dirty pages that were sent
1712 * (any partially sent pages were already discarded
1713 * by the previous unsent_pass)
1715 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1719 /* Clean up the bitmap */
1720 for (page = fixup_start_addr;
1721 page < fixup_start_addr + host_ratio; page++) {
1722 /* All pages in this host page are now not sent */
1723 set_bit(page, unsentmap);
1726 * Remark them as dirty, updating the count for any pages
1727 * that weren't previously dirty.
1729 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
1734 /* Find the next sent page for the next iteration */
1735 run_start = find_next_zero_bit(unsentmap, pages, run_start);
1737 /* Find the next dirty page for the next iteration */
1738 run_start = find_next_bit(bitmap, pages, run_start);
1744 * postcopy_chuck_hostpages: discrad any partially sent host page
1746 * Utility for the outgoing postcopy code.
1748 * Discard any partially sent host-page size chunks, mark any partially
1749 * dirty host-page size chunks as all dirty. In this case the host-page
1750 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
1752 * Returns zero on success
1754 * @ms: current migration state
1755 * @block: block we want to work with
1757 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
1759 PostcopyDiscardState *pds =
1760 postcopy_discard_send_init(ms, block->idstr);
1762 /* First pass: Discard all partially sent host pages */
1763 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1765 * Second pass: Ensure that all partially dirty host pages are made
1768 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1770 postcopy_discard_send_finish(ms, pds);
1775 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1777 * Returns zero on success
1779 * Transmit the set of pages to be discarded after precopy to the target
1780 * these are pages that:
1781 * a) Have been previously transmitted but are now dirty again
1782 * b) Pages that have never been transmitted, this ensures that
1783 * any pages on the destination that have been mapped by background
1784 * tasks get discarded (transparent huge pages is the specific concern)
1785 * Hopefully this is pretty sparse
1787 * @ms: current migration state
1789 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1791 RAMState *rs = &ram_state;
1797 /* This should be our last sync, the src is now paused */
1798 migration_bitmap_sync(rs);
1800 /* Easiest way to make sure we don't resume in the middle of a host-page */
1801 rs->last_seen_block = NULL;
1802 rs->last_sent_block = NULL;
1805 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1806 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1807 unsigned long *bitmap = block->bmap;
1808 unsigned long *unsentmap = block->unsentmap;
1811 /* We don't have a safe way to resize the sentmap, so
1812 * if the bitmap was resized it will be NULL at this
1815 error_report("migration ram resized during precopy phase");
1819 /* Deal with TPS != HPS and huge pages */
1820 ret = postcopy_chunk_hostpages(ms, block);
1827 * Update the unsentmap to be unsentmap = unsentmap | dirty
1829 bitmap_or(unsentmap, unsentmap, bitmap, pages);
1830 #ifdef DEBUG_POSTCOPY
1831 ram_debug_dump_bitmap(unsentmap, true, pages);
1834 trace_ram_postcopy_send_discard_bitmap();
1836 ret = postcopy_each_ram_send_discard(ms);
1843 * ram_discard_range: discard dirtied pages at the beginning of postcopy
1845 * Returns zero on success
1847 * @rbname: name of the RAMBlock of the request. NULL means the
1848 * same that last one.
1849 * @start: RAMBlock starting page
1850 * @length: RAMBlock size
1852 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
1856 trace_ram_discard_range(rbname, start, length);
1859 RAMBlock *rb = qemu_ram_block_by_name(rbname);
1862 error_report("ram_discard_range: Failed to find block '%s'", rbname);
1866 ret = ram_block_discard_range(rb, start, length);
1874 static int ram_state_init(RAMState *rs)
1876 memset(rs, 0, sizeof(*rs));
1877 qemu_mutex_init(&rs->bitmap_mutex);
1878 qemu_mutex_init(&rs->src_page_req_mutex);
1879 QSIMPLEQ_INIT(&rs->src_page_requests);
1881 if (migrate_use_xbzrle()) {
1882 XBZRLE_cache_lock();
1883 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
1884 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1887 if (!XBZRLE.cache) {
1888 XBZRLE_cache_unlock();
1889 error_report("Error creating cache");
1892 XBZRLE_cache_unlock();
1894 /* We prefer not to abort if there is no memory */
1895 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1896 if (!XBZRLE.encoded_buf) {
1897 error_report("Error allocating encoded_buf");
1901 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1902 if (!XBZRLE.current_buf) {
1903 error_report("Error allocating current_buf");
1904 g_free(XBZRLE.encoded_buf);
1905 XBZRLE.encoded_buf = NULL;
1910 /* For memory_global_dirty_log_start below. */
1911 qemu_mutex_lock_iothread();
1913 qemu_mutex_lock_ramlist();
1915 ram_state_reset(rs);
1917 /* Skip setting bitmap if there is no RAM */
1918 if (ram_bytes_total()) {
1921 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1922 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
1924 block->bmap = bitmap_new(pages);
1925 bitmap_set(block->bmap, 0, pages);
1926 if (migrate_postcopy_ram()) {
1927 block->unsentmap = bitmap_new(pages);
1928 bitmap_set(block->unsentmap, 0, pages);
1934 * Count the total number of pages used by ram blocks not including any
1935 * gaps due to alignment or unplugs.
1937 rs->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1939 memory_global_dirty_log_start();
1940 migration_bitmap_sync(rs);
1941 qemu_mutex_unlock_ramlist();
1942 qemu_mutex_unlock_iothread();
1949 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1950 * long-running RCU critical section. When rcu-reclaims in the code
1951 * start to become numerous it will be necessary to reduce the
1952 * granularity of these critical sections.
1956 * ram_save_setup: Setup RAM for migration
1958 * Returns zero to indicate success and negative for error
1960 * @f: QEMUFile where to send the data
1961 * @opaque: RAMState pointer
1963 static int ram_save_setup(QEMUFile *f, void *opaque)
1965 RAMState *rs = opaque;
1968 /* migration has already setup the bitmap, reuse it. */
1969 if (!migration_in_colo_state()) {
1970 if (ram_state_init(rs) < 0) {
1978 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1980 RAMBLOCK_FOREACH(block) {
1981 qemu_put_byte(f, strlen(block->idstr));
1982 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1983 qemu_put_be64(f, block->used_length);
1984 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
1985 qemu_put_be64(f, block->page_size);
1991 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1992 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1994 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2000 * ram_save_iterate: iterative stage for migration
2002 * Returns zero to indicate success and negative for error
2004 * @f: QEMUFile where to send the data
2005 * @opaque: RAMState pointer
2007 static int ram_save_iterate(QEMUFile *f, void *opaque)
2009 RAMState *rs = opaque;
2016 if (ram_list.version != rs->last_version) {
2017 ram_state_reset(rs);
2020 /* Read version before ram_list.blocks */
2023 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2025 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2027 while ((ret = qemu_file_rate_limit(f)) == 0) {
2030 pages = ram_find_and_save_block(rs, false);
2031 /* no more pages to sent */
2038 /* we want to check in the 1st loop, just in case it was the 1st time
2039 and we had to sync the dirty bitmap.
2040 qemu_get_clock_ns() is a bit expensive, so we only check each some
2043 if ((i & 63) == 0) {
2044 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2045 if (t1 > MAX_WAIT) {
2046 trace_ram_save_iterate_big_wait(t1, i);
2052 flush_compressed_data(rs);
2056 * Must occur before EOS (or any QEMUFile operation)
2057 * because of RDMA protocol.
2059 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2061 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2062 rs->bytes_transferred += 8;
2064 ret = qemu_file_get_error(f);
2073 * ram_save_complete: function called to send the remaining amount of ram
2075 * Returns zero to indicate success
2077 * Called with iothread lock
2079 * @f: QEMUFile where to send the data
2080 * @opaque: RAMState pointer
2082 static int ram_save_complete(QEMUFile *f, void *opaque)
2084 RAMState *rs = opaque;
2088 if (!migration_in_postcopy()) {
2089 migration_bitmap_sync(rs);
2092 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2094 /* try transferring iterative blocks of memory */
2096 /* flush all remaining blocks regardless of rate limiting */
2100 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2101 /* no more blocks to sent */
2107 flush_compressed_data(rs);
2108 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2112 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2117 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2118 uint64_t *non_postcopiable_pending,
2119 uint64_t *postcopiable_pending)
2121 RAMState *rs = opaque;
2122 uint64_t remaining_size;
2124 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2126 if (!migration_in_postcopy() &&
2127 remaining_size < max_size) {
2128 qemu_mutex_lock_iothread();
2130 migration_bitmap_sync(rs);
2132 qemu_mutex_unlock_iothread();
2133 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2136 /* We can do postcopy, and all the data is postcopiable */
2137 *postcopiable_pending += remaining_size;
2140 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2142 unsigned int xh_len;
2144 uint8_t *loaded_data;
2146 if (!xbzrle_decoded_buf) {
2147 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2149 loaded_data = xbzrle_decoded_buf;
2151 /* extract RLE header */
2152 xh_flags = qemu_get_byte(f);
2153 xh_len = qemu_get_be16(f);
2155 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2156 error_report("Failed to load XBZRLE page - wrong compression!");
2160 if (xh_len > TARGET_PAGE_SIZE) {
2161 error_report("Failed to load XBZRLE page - len overflow!");
2164 /* load data and decode */
2165 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2168 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2169 TARGET_PAGE_SIZE) == -1) {
2170 error_report("Failed to load XBZRLE page - decode error!");
2178 * ram_block_from_stream: read a RAMBlock id from the migration stream
2180 * Must be called from within a rcu critical section.
2182 * Returns a pointer from within the RCU-protected ram_list.
2184 * @f: QEMUFile where to read the data from
2185 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2187 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2189 static RAMBlock *block = NULL;
2193 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2195 error_report("Ack, bad migration stream!");
2201 len = qemu_get_byte(f);
2202 qemu_get_buffer(f, (uint8_t *)id, len);
2205 block = qemu_ram_block_by_name(id);
2207 error_report("Can't find block %s", id);
2214 static inline void *host_from_ram_block_offset(RAMBlock *block,
2217 if (!offset_in_ramblock(block, offset)) {
2221 return block->host + offset;
2225 * ram_handle_compressed: handle the zero page case
2227 * If a page (or a whole RDMA chunk) has been
2228 * determined to be zero, then zap it.
2230 * @host: host address for the zero page
2231 * @ch: what the page is filled from. We only support zero
2232 * @size: size of the zero page
2234 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2236 if (ch != 0 || !is_zero_range(host, size)) {
2237 memset(host, ch, size);
2241 static void *do_data_decompress(void *opaque)
2243 DecompressParam *param = opaque;
2244 unsigned long pagesize;
2248 qemu_mutex_lock(¶m->mutex);
2249 while (!param->quit) {
2254 qemu_mutex_unlock(¶m->mutex);
2256 pagesize = TARGET_PAGE_SIZE;
2257 /* uncompress() will return failed in some case, especially
2258 * when the page is dirted when doing the compression, it's
2259 * not a problem because the dirty page will be retransferred
2260 * and uncompress() won't break the data in other pages.
2262 uncompress((Bytef *)des, &pagesize,
2263 (const Bytef *)param->compbuf, len);
2265 qemu_mutex_lock(&decomp_done_lock);
2267 qemu_cond_signal(&decomp_done_cond);
2268 qemu_mutex_unlock(&decomp_done_lock);
2270 qemu_mutex_lock(¶m->mutex);
2272 qemu_cond_wait(¶m->cond, ¶m->mutex);
2275 qemu_mutex_unlock(¶m->mutex);
2280 static void wait_for_decompress_done(void)
2282 int idx, thread_count;
2284 if (!migrate_use_compression()) {
2288 thread_count = migrate_decompress_threads();
2289 qemu_mutex_lock(&decomp_done_lock);
2290 for (idx = 0; idx < thread_count; idx++) {
2291 while (!decomp_param[idx].done) {
2292 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2295 qemu_mutex_unlock(&decomp_done_lock);
2298 void migrate_decompress_threads_create(void)
2300 int i, thread_count;
2302 thread_count = migrate_decompress_threads();
2303 decompress_threads = g_new0(QemuThread, thread_count);
2304 decomp_param = g_new0(DecompressParam, thread_count);
2305 qemu_mutex_init(&decomp_done_lock);
2306 qemu_cond_init(&decomp_done_cond);
2307 for (i = 0; i < thread_count; i++) {
2308 qemu_mutex_init(&decomp_param[i].mutex);
2309 qemu_cond_init(&decomp_param[i].cond);
2310 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2311 decomp_param[i].done = true;
2312 decomp_param[i].quit = false;
2313 qemu_thread_create(decompress_threads + i, "decompress",
2314 do_data_decompress, decomp_param + i,
2315 QEMU_THREAD_JOINABLE);
2319 void migrate_decompress_threads_join(void)
2321 int i, thread_count;
2323 thread_count = migrate_decompress_threads();
2324 for (i = 0; i < thread_count; i++) {
2325 qemu_mutex_lock(&decomp_param[i].mutex);
2326 decomp_param[i].quit = true;
2327 qemu_cond_signal(&decomp_param[i].cond);
2328 qemu_mutex_unlock(&decomp_param[i].mutex);
2330 for (i = 0; i < thread_count; i++) {
2331 qemu_thread_join(decompress_threads + i);
2332 qemu_mutex_destroy(&decomp_param[i].mutex);
2333 qemu_cond_destroy(&decomp_param[i].cond);
2334 g_free(decomp_param[i].compbuf);
2336 g_free(decompress_threads);
2337 g_free(decomp_param);
2338 decompress_threads = NULL;
2339 decomp_param = NULL;
2342 static void decompress_data_with_multi_threads(QEMUFile *f,
2343 void *host, int len)
2345 int idx, thread_count;
2347 thread_count = migrate_decompress_threads();
2348 qemu_mutex_lock(&decomp_done_lock);
2350 for (idx = 0; idx < thread_count; idx++) {
2351 if (decomp_param[idx].done) {
2352 decomp_param[idx].done = false;
2353 qemu_mutex_lock(&decomp_param[idx].mutex);
2354 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2355 decomp_param[idx].des = host;
2356 decomp_param[idx].len = len;
2357 qemu_cond_signal(&decomp_param[idx].cond);
2358 qemu_mutex_unlock(&decomp_param[idx].mutex);
2362 if (idx < thread_count) {
2365 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2368 qemu_mutex_unlock(&decomp_done_lock);
2372 * ram_postcopy_incoming_init: allocate postcopy data structures
2374 * Returns 0 for success and negative if there was one error
2376 * @mis: current migration incoming state
2378 * Allocate data structures etc needed by incoming migration with
2379 * postcopy-ram. postcopy-ram's similarly names
2380 * postcopy_ram_incoming_init does the work.
2382 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2384 unsigned long ram_pages = last_ram_page();
2386 return postcopy_ram_incoming_init(mis, ram_pages);
2390 * ram_load_postcopy: load a page in postcopy case
2392 * Returns 0 for success or -errno in case of error
2394 * Called in postcopy mode by ram_load().
2395 * rcu_read_lock is taken prior to this being called.
2397 * @f: QEMUFile where to send the data
2399 static int ram_load_postcopy(QEMUFile *f)
2401 int flags = 0, ret = 0;
2402 bool place_needed = false;
2403 bool matching_page_sizes = false;
2404 MigrationIncomingState *mis = migration_incoming_get_current();
2405 /* Temporary page that is later 'placed' */
2406 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2407 void *last_host = NULL;
2408 bool all_zero = false;
2410 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2413 void *page_buffer = NULL;
2414 void *place_source = NULL;
2415 RAMBlock *block = NULL;
2418 addr = qemu_get_be64(f);
2419 flags = addr & ~TARGET_PAGE_MASK;
2420 addr &= TARGET_PAGE_MASK;
2422 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2423 place_needed = false;
2424 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
2425 block = ram_block_from_stream(f, flags);
2427 host = host_from_ram_block_offset(block, addr);
2429 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2433 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
2435 * Postcopy requires that we place whole host pages atomically;
2436 * these may be huge pages for RAMBlocks that are backed by
2438 * To make it atomic, the data is read into a temporary page
2439 * that's moved into place later.
2440 * The migration protocol uses, possibly smaller, target-pages
2441 * however the source ensures it always sends all the components
2442 * of a host page in order.
2444 page_buffer = postcopy_host_page +
2445 ((uintptr_t)host & (block->page_size - 1));
2446 /* If all TP are zero then we can optimise the place */
2447 if (!((uintptr_t)host & (block->page_size - 1))) {
2450 /* not the 1st TP within the HP */
2451 if (host != (last_host + TARGET_PAGE_SIZE)) {
2452 error_report("Non-sequential target page %p/%p",
2461 * If it's the last part of a host page then we place the host
2464 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2465 (block->page_size - 1)) == 0;
2466 place_source = postcopy_host_page;
2470 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2471 case RAM_SAVE_FLAG_ZERO:
2472 ch = qemu_get_byte(f);
2473 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2479 case RAM_SAVE_FLAG_PAGE:
2481 if (!place_needed || !matching_page_sizes) {
2482 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2484 /* Avoids the qemu_file copy during postcopy, which is
2485 * going to do a copy later; can only do it when we
2486 * do this read in one go (matching page sizes)
2488 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2492 case RAM_SAVE_FLAG_EOS:
2496 error_report("Unknown combination of migration flags: %#x"
2497 " (postcopy mode)", flags);
2502 /* This gets called at the last target page in the host page */
2503 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2506 ret = postcopy_place_page_zero(mis, place_dest,
2509 ret = postcopy_place_page(mis, place_dest,
2510 place_source, block->page_size);
2514 ret = qemu_file_get_error(f);
2521 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2523 int flags = 0, ret = 0;
2524 static uint64_t seq_iter;
2527 * If system is running in postcopy mode, page inserts to host memory must
2530 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2531 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2532 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
2536 if (version_id != 4) {
2540 /* This RCU critical section can be very long running.
2541 * When RCU reclaims in the code start to become numerous,
2542 * it will be necessary to reduce the granularity of this
2547 if (postcopy_running) {
2548 ret = ram_load_postcopy(f);
2551 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2552 ram_addr_t addr, total_ram_bytes;
2556 addr = qemu_get_be64(f);
2557 flags = addr & ~TARGET_PAGE_MASK;
2558 addr &= TARGET_PAGE_MASK;
2560 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
2561 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2562 RAMBlock *block = ram_block_from_stream(f, flags);
2564 host = host_from_ram_block_offset(block, addr);
2566 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2570 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
2573 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2574 case RAM_SAVE_FLAG_MEM_SIZE:
2575 /* Synchronize RAM block list */
2576 total_ram_bytes = addr;
2577 while (!ret && total_ram_bytes) {
2582 len = qemu_get_byte(f);
2583 qemu_get_buffer(f, (uint8_t *)id, len);
2585 length = qemu_get_be64(f);
2587 block = qemu_ram_block_by_name(id);
2589 if (length != block->used_length) {
2590 Error *local_err = NULL;
2592 ret = qemu_ram_resize(block, length,
2595 error_report_err(local_err);
2598 /* For postcopy we need to check hugepage sizes match */
2599 if (postcopy_advised &&
2600 block->page_size != qemu_host_page_size) {
2601 uint64_t remote_page_size = qemu_get_be64(f);
2602 if (remote_page_size != block->page_size) {
2603 error_report("Mismatched RAM page size %s "
2604 "(local) %zd != %" PRId64,
2605 id, block->page_size,
2610 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2613 error_report("Unknown ramblock \"%s\", cannot "
2614 "accept migration", id);
2618 total_ram_bytes -= length;
2622 case RAM_SAVE_FLAG_ZERO:
2623 ch = qemu_get_byte(f);
2624 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2627 case RAM_SAVE_FLAG_PAGE:
2628 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2631 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2632 len = qemu_get_be32(f);
2633 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2634 error_report("Invalid compressed data length: %d", len);
2638 decompress_data_with_multi_threads(f, host, len);
2641 case RAM_SAVE_FLAG_XBZRLE:
2642 if (load_xbzrle(f, addr, host) < 0) {
2643 error_report("Failed to decompress XBZRLE page at "
2644 RAM_ADDR_FMT, addr);
2649 case RAM_SAVE_FLAG_EOS:
2653 if (flags & RAM_SAVE_FLAG_HOOK) {
2654 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2656 error_report("Unknown combination of migration flags: %#x",
2662 ret = qemu_file_get_error(f);
2666 wait_for_decompress_done();
2668 trace_ram_load_complete(ret, seq_iter);
2672 static SaveVMHandlers savevm_ram_handlers = {
2673 .save_live_setup = ram_save_setup,
2674 .save_live_iterate = ram_save_iterate,
2675 .save_live_complete_postcopy = ram_save_complete,
2676 .save_live_complete_precopy = ram_save_complete,
2677 .save_live_pending = ram_save_pending,
2678 .load_state = ram_load,
2679 .cleanup = ram_migration_cleanup,
2682 void ram_mig_init(void)
2684 qemu_mutex_init(&XBZRLE.lock);
2685 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);