2 * QEMU Sun4m System Emulator
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #define KERNEL_LOAD_ADDR 0x00004000
27 #define CMDLINE_ADDR 0x007ff000
28 #define INITRD_LOAD_ADDR 0x00800000
29 #define PROM_SIZE_MAX (256 * 1024)
30 #define PROM_ADDR 0xffd00000
31 #define PROM_FILENAME "openbios-sparc32"
32 #define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */
33 #define PHYS_JJ_IDPROM_OFF 0x1FD8
34 #define PHYS_JJ_EEPROM_SIZE 0x2000
35 // IRQs are not PIL ones, but master interrupt controller register
37 #define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
38 #define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */
39 #define PHYS_JJ_SLAVIO 0x70000000 /* Slavio base */
40 #define PHYS_JJ_ESPDMA 0x78400000 /* ESP DMA controller */
41 #define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */
42 #define PHYS_JJ_ESP_IRQ 18
43 #define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
44 #define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
45 #define PHYS_JJ_LE_IRQ 16
46 #define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
47 #define PHYS_JJ_CLOCK_IRQ 7
48 #define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */
49 #define PHYS_JJ_CLOCK1_IRQ 19
50 #define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */
51 #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
52 #define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */
53 #define PHYS_JJ_MS_KBD_IRQ 14
54 #define PHYS_JJ_SER 0x71100000 /* Serial */
55 #define PHYS_JJ_SER_IRQ 15
56 #define PHYS_JJ_FDC 0x71400000 /* Floppy */
57 #define PHYS_JJ_FLOPPY_IRQ 22
58 #define PHYS_JJ_ME_IRQ 30 /* Module error, power fail */
63 uint64_t cpu_get_tsc()
65 return qemu_get_clock(vm_clock);
68 int DMA_get_channel_mode (int nchan)
72 int DMA_read_memory (int nchan, void *buf, int pos, int size)
76 int DMA_write_memory (int nchan, void *buf, int pos, int size)
80 void DMA_hold_DREQ (int nchan) {}
81 void DMA_release_DREQ (int nchan) {}
82 void DMA_schedule(int nchan) {}
83 void DMA_run (void) {}
84 void DMA_init (int high_page_enable) {}
85 void DMA_register_channel (int nchan,
86 DMA_transfer_handler transfer_handler,
91 static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
93 m48t59_write(nvram, addr++, (value >> 8) & 0xff);
94 m48t59_write(nvram, addr++, value & 0xff);
97 static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
99 m48t59_write(nvram, addr++, value >> 24);
100 m48t59_write(nvram, addr++, (value >> 16) & 0xff);
101 m48t59_write(nvram, addr++, (value >> 8) & 0xff);
102 m48t59_write(nvram, addr++, value & 0xff);
105 static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
106 const unsigned char *str, uint32_t max)
110 for (i = 0; i < max && str[i] != '\0'; i++) {
111 m48t59_write(nvram, addr + i, str[i]);
113 m48t59_write(nvram, addr + max - 1, '\0');
116 static m48t59_t *nvram;
118 extern int nographic;
120 static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
121 int boot_device, uint32_t RAM_size,
122 uint32_t kernel_size,
123 int width, int height, int depth)
125 unsigned char tmp = 0;
128 // Try to match PPC NVRAM
129 nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
130 nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */
131 // NVRAM_size, arch not applicable
132 m48t59_write(nvram, 0x2D, smp_cpus & 0xff);
133 m48t59_write(nvram, 0x2E, 0);
134 m48t59_write(nvram, 0x2F, nographic & 0xff);
135 nvram_set_lword(nvram, 0x30, RAM_size);
136 m48t59_write(nvram, 0x34, boot_device & 0xff);
137 nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR);
138 nvram_set_lword(nvram, 0x3C, kernel_size);
140 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
141 nvram_set_lword(nvram, 0x40, CMDLINE_ADDR);
142 nvram_set_lword(nvram, 0x44, strlen(cmdline));
144 // initrd_image, initrd_size passed differently
145 nvram_set_word(nvram, 0x54, width);
146 nvram_set_word(nvram, 0x56, height);
147 nvram_set_word(nvram, 0x58, depth);
149 // Sun4m specific use
151 m48t59_write(nvram, i++, 0x01);
152 m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */
154 m48t59_write(nvram, i++, macaddr[j++]);
155 m48t59_write(nvram, i++, macaddr[j++]);
156 m48t59_write(nvram, i++, macaddr[j++]);
157 m48t59_write(nvram, i++, macaddr[j++]);
158 m48t59_write(nvram, i++, macaddr[j++]);
159 m48t59_write(nvram, i, macaddr[j]);
161 /* Calculate checksum */
162 for (i = 0x1fd8; i < 0x1fe7; i++) {
163 tmp ^= m48t59_read(nvram, i);
165 m48t59_write(nvram, 0x1fe7, tmp);
168 static void *slavio_intctl;
172 slavio_pic_info(slavio_intctl);
177 slavio_irq_info(slavio_intctl);
180 void pic_set_irq(int irq, int level)
182 slavio_pic_set_irq(slavio_intctl, irq, level);
185 void pic_set_irq_new(void *opaque, int irq, int level)
187 pic_set_irq(irq, level);
190 void pic_set_irq_cpu(int irq, int level, unsigned int cpu)
192 slavio_pic_set_irq_cpu(slavio_intctl, irq, level, cpu);
197 uint32_t iommu_translate(uint32_t addr)
199 return iommu_translate_local(iommu, addr);
202 static void *slavio_misc;
204 void qemu_system_powerdown(void)
206 slavio_set_power_fail(slavio_misc, 1);
209 static void main_cpu_reset(void *opaque)
211 CPUState *env = opaque;
215 /* Sun4m hardware initialisation */
216 static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
217 DisplayState *ds, const char **fd_filename, int snapshot,
218 const char *kernel_filename, const char *kernel_cmdline,
219 const char *initrd_filename)
221 CPUState *env, *envs[MAX_CPUS];
225 long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
227 linux_boot = (kernel_filename != NULL);
230 for(i = 0; i < smp_cpus; i++) {
235 register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
236 qemu_register_reset(main_cpu_reset, env);
239 cpu_register_physical_memory(0, ram_size, 0);
241 iommu = iommu_init(PHYS_JJ_IOMMU);
242 slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
243 for(i = 0; i < smp_cpus; i++) {
244 slavio_intctl_set_cpu(slavio_intctl, i, envs[i]);
247 tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
248 if (nd_table[0].vlan) {
249 if (nd_table[0].model == NULL
250 || strcmp(nd_table[0].model, "lance") == 0) {
251 lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
253 fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
257 nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8);
258 for (i = 0; i < MAX_CPUS; i++) {
259 slavio_timer_init(PHYS_JJ_CLOCK + i * TARGET_PAGE_SIZE, PHYS_JJ_CLOCK_IRQ, 0, i);
261 slavio_timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ, 2, (unsigned int)-1);
262 slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
263 // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
264 // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
265 slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
266 fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
267 esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
268 slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
270 prom_offset = ram_size + vram_size;
271 cpu_register_physical_memory(PROM_ADDR,
272 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK,
273 prom_offset | IO_MEM_ROM);
275 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
276 ret = load_elf(buf, 0, NULL);
278 fprintf(stderr, "qemu: could not load prom '%s'\n",
285 kernel_size = load_elf(kernel_filename, -0xf0000000, NULL);
287 kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
289 kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
290 if (kernel_size < 0) {
291 fprintf(stderr, "qemu: could not load kernel '%s'\n",
298 if (initrd_filename) {
299 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
300 if (initrd_size < 0) {
301 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
306 if (initrd_size > 0) {
307 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
308 if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
309 == 0x48647253) { // HdrS
310 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
311 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
317 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
320 QEMUMachine sun4m_machine = {