]> Git Repo - qemu.git/blob - arch_init.c
vga: pass owner to vga_init_vbe
[qemu.git] / arch_init.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "hw/acpi/acpi.h"
52
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58     do { } while (0)
59 #endif
60
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 32;
69 #endif
70
71
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105
106 const uint32_t arch_type = QEMU_ARCH;
107
108 /***********************************************************/
109 /* ram save/restore */
110
111 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
112 #define RAM_SAVE_FLAG_COMPRESS 0x02
113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
114 #define RAM_SAVE_FLAG_PAGE     0x08
115 #define RAM_SAVE_FLAG_EOS      0x10
116 #define RAM_SAVE_FLAG_CONTINUE 0x20
117 #define RAM_SAVE_FLAG_XBZRLE   0x40
118
119
120 static struct defconfig_file {
121     const char *filename;
122     /* Indicates it is an user config file (disabled by -no-user-config) */
123     bool userconfig;
124 } default_config_files[] = {
125     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
126     { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
127     { NULL }, /* end of list */
128 };
129
130
131 int qemu_read_default_config_files(bool userconfig)
132 {
133     int ret;
134     struct defconfig_file *f;
135
136     for (f = default_config_files; f->filename; f++) {
137         if (!userconfig && f->userconfig) {
138             continue;
139         }
140         ret = qemu_read_config_file(f->filename);
141         if (ret < 0 && ret != -ENOENT) {
142             return ret;
143         }
144     }
145
146     return 0;
147 }
148
149 static inline bool is_zero_page(uint8_t *p)
150 {
151     return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
152         TARGET_PAGE_SIZE;
153 }
154
155 /* struct contains XBZRLE cache and a static page
156    used by the compression */
157 static struct {
158     /* buffer used for XBZRLE encoding */
159     uint8_t *encoded_buf;
160     /* buffer for storing page content */
161     uint8_t *current_buf;
162     /* buffer used for XBZRLE decoding */
163     uint8_t *decoded_buf;
164     /* Cache for XBZRLE */
165     PageCache *cache;
166 } XBZRLE = {
167     .encoded_buf = NULL,
168     .current_buf = NULL,
169     .decoded_buf = NULL,
170     .cache = NULL,
171 };
172
173
174 int64_t xbzrle_cache_resize(int64_t new_size)
175 {
176     if (XBZRLE.cache != NULL) {
177         return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
178             TARGET_PAGE_SIZE;
179     }
180     return pow2floor(new_size);
181 }
182
183 /* accounting for migration statistics */
184 typedef struct AccountingInfo {
185     uint64_t dup_pages;
186     uint64_t skipped_pages;
187     uint64_t norm_pages;
188     uint64_t iterations;
189     uint64_t xbzrle_bytes;
190     uint64_t xbzrle_pages;
191     uint64_t xbzrle_cache_miss;
192     uint64_t xbzrle_overflows;
193 } AccountingInfo;
194
195 static AccountingInfo acct_info;
196
197 static void acct_clear(void)
198 {
199     memset(&acct_info, 0, sizeof(acct_info));
200 }
201
202 uint64_t dup_mig_bytes_transferred(void)
203 {
204     return acct_info.dup_pages * TARGET_PAGE_SIZE;
205 }
206
207 uint64_t dup_mig_pages_transferred(void)
208 {
209     return acct_info.dup_pages;
210 }
211
212 uint64_t skipped_mig_bytes_transferred(void)
213 {
214     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
215 }
216
217 uint64_t skipped_mig_pages_transferred(void)
218 {
219     return acct_info.skipped_pages;
220 }
221
222 uint64_t norm_mig_bytes_transferred(void)
223 {
224     return acct_info.norm_pages * TARGET_PAGE_SIZE;
225 }
226
227 uint64_t norm_mig_pages_transferred(void)
228 {
229     return acct_info.norm_pages;
230 }
231
232 uint64_t xbzrle_mig_bytes_transferred(void)
233 {
234     return acct_info.xbzrle_bytes;
235 }
236
237 uint64_t xbzrle_mig_pages_transferred(void)
238 {
239     return acct_info.xbzrle_pages;
240 }
241
242 uint64_t xbzrle_mig_pages_cache_miss(void)
243 {
244     return acct_info.xbzrle_cache_miss;
245 }
246
247 uint64_t xbzrle_mig_pages_overflow(void)
248 {
249     return acct_info.xbzrle_overflows;
250 }
251
252 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
253                              int cont, int flag)
254 {
255     size_t size;
256
257     qemu_put_be64(f, offset | cont | flag);
258     size = 8;
259
260     if (!cont) {
261         qemu_put_byte(f, strlen(block->idstr));
262         qemu_put_buffer(f, (uint8_t *)block->idstr,
263                         strlen(block->idstr));
264         size += 1 + strlen(block->idstr);
265     }
266     return size;
267 }
268
269 #define ENCODING_FLAG_XBZRLE 0x1
270
271 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
272                             ram_addr_t current_addr, RAMBlock *block,
273                             ram_addr_t offset, int cont, bool last_stage)
274 {
275     int encoded_len = 0, bytes_sent = -1;
276     uint8_t *prev_cached_page;
277
278     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
279         if (!last_stage) {
280             cache_insert(XBZRLE.cache, current_addr, current_data);
281         }
282         acct_info.xbzrle_cache_miss++;
283         return -1;
284     }
285
286     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
287
288     /* save current buffer into memory */
289     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
290
291     /* XBZRLE encoding (if there is no overflow) */
292     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
293                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
294                                        TARGET_PAGE_SIZE);
295     if (encoded_len == 0) {
296         DPRINTF("Skipping unmodified page\n");
297         return 0;
298     } else if (encoded_len == -1) {
299         DPRINTF("Overflow\n");
300         acct_info.xbzrle_overflows++;
301         /* update data in the cache */
302         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
303         return -1;
304     }
305
306     /* we need to update the data in the cache, in order to get the same data */
307     if (!last_stage) {
308         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
309     }
310
311     /* Send XBZRLE based compressed page */
312     bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
313     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
314     qemu_put_be16(f, encoded_len);
315     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
316     bytes_sent += encoded_len + 1 + 2;
317     acct_info.xbzrle_pages++;
318     acct_info.xbzrle_bytes += bytes_sent;
319
320     return bytes_sent;
321 }
322
323
324 /* This is the last block that we have visited serching for dirty pages
325  */
326 static RAMBlock *last_seen_block;
327 /* This is the last block from where we have sent data */
328 static RAMBlock *last_sent_block;
329 static ram_addr_t last_offset;
330 static unsigned long *migration_bitmap;
331 static uint64_t migration_dirty_pages;
332 static uint32_t last_version;
333 static bool ram_bulk_stage;
334
335 static inline
336 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
337                                                  ram_addr_t start)
338 {
339     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
340     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
341     unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS);
342
343     unsigned long next;
344
345     if (ram_bulk_stage && nr > base) {
346         next = nr + 1;
347     } else {
348         next = find_next_bit(migration_bitmap, size, nr);
349     }
350
351     if (next < size) {
352         clear_bit(next, migration_bitmap);
353         migration_dirty_pages--;
354     }
355     return (next - base) << TARGET_PAGE_BITS;
356 }
357
358 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
359                                               ram_addr_t offset)
360 {
361     bool ret;
362     int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
363
364     ret = test_and_set_bit(nr, migration_bitmap);
365
366     if (!ret) {
367         migration_dirty_pages++;
368     }
369     return ret;
370 }
371
372 /* Needs iothread lock! */
373
374 static void migration_bitmap_sync(void)
375 {
376     RAMBlock *block;
377     ram_addr_t addr;
378     uint64_t num_dirty_pages_init = migration_dirty_pages;
379     MigrationState *s = migrate_get_current();
380     static int64_t start_time;
381     static int64_t num_dirty_pages_period;
382     int64_t end_time;
383
384     if (!start_time) {
385         start_time = qemu_get_clock_ms(rt_clock);
386     }
387
388     trace_migration_bitmap_sync_start();
389     address_space_sync_dirty_bitmap(&address_space_memory);
390
391     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
392         for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
393             if (memory_region_test_and_clear_dirty(block->mr,
394                                                    addr, TARGET_PAGE_SIZE,
395                                                    DIRTY_MEMORY_MIGRATION)) {
396                 migration_bitmap_set_dirty(block->mr, addr);
397             }
398         }
399     }
400     trace_migration_bitmap_sync_end(migration_dirty_pages
401                                     - num_dirty_pages_init);
402     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
403     end_time = qemu_get_clock_ms(rt_clock);
404
405     /* more than 1 second = 1000 millisecons */
406     if (end_time > start_time + 1000) {
407         s->dirty_pages_rate = num_dirty_pages_period * 1000
408             / (end_time - start_time);
409         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
410         start_time = end_time;
411         num_dirty_pages_period = 0;
412     }
413 }
414
415 /*
416  * ram_save_block: Writes a page of memory to the stream f
417  *
418  * Returns:  The number of bytes written.
419  *           0 means no dirty pages
420  */
421
422 static int ram_save_block(QEMUFile *f, bool last_stage)
423 {
424     RAMBlock *block = last_seen_block;
425     ram_addr_t offset = last_offset;
426     bool complete_round = false;
427     int bytes_sent = 0;
428     MemoryRegion *mr;
429     ram_addr_t current_addr;
430
431     if (!block)
432         block = QTAILQ_FIRST(&ram_list.blocks);
433
434     while (true) {
435         mr = block->mr;
436         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
437         if (complete_round && block == last_seen_block &&
438             offset >= last_offset) {
439             break;
440         }
441         if (offset >= block->length) {
442             offset = 0;
443             block = QTAILQ_NEXT(block, next);
444             if (!block) {
445                 block = QTAILQ_FIRST(&ram_list.blocks);
446                 complete_round = true;
447                 ram_bulk_stage = false;
448             }
449         } else {
450             uint8_t *p;
451             int cont = (block == last_sent_block) ?
452                 RAM_SAVE_FLAG_CONTINUE : 0;
453
454             p = memory_region_get_ram_ptr(mr) + offset;
455
456             /* In doubt sent page as normal */
457             bytes_sent = -1;
458             if (is_zero_page(p)) {
459                 acct_info.dup_pages++;
460                 bytes_sent = save_block_hdr(f, block, offset, cont,
461                                             RAM_SAVE_FLAG_COMPRESS);
462                 qemu_put_byte(f, 0);
463                 bytes_sent++;
464             } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
465                 current_addr = block->offset + offset;
466                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
467                                               offset, cont, last_stage);
468                 if (!last_stage) {
469                     p = get_cached_data(XBZRLE.cache, current_addr);
470                 }
471             }
472
473             /* XBZRLE overflow or normal page */
474             if (bytes_sent == -1) {
475                 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
476                 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
477                 bytes_sent += TARGET_PAGE_SIZE;
478                 acct_info.norm_pages++;
479             }
480
481             /* if page is unmodified, continue to the next */
482             if (bytes_sent > 0) {
483                 last_sent_block = block;
484                 break;
485             }
486         }
487     }
488     last_seen_block = block;
489     last_offset = offset;
490
491     return bytes_sent;
492 }
493
494 static uint64_t bytes_transferred;
495
496 void acct_update_position(QEMUFile *f, size_t size, bool zero)
497 {
498     uint64_t pages = size / TARGET_PAGE_SIZE;
499     if (zero) {
500         acct_info.dup_pages += pages;
501     } else {
502         acct_info.norm_pages += pages;
503         bytes_transferred += size;
504         qemu_update_position(f, size);
505     }
506 }
507
508 static ram_addr_t ram_save_remaining(void)
509 {
510     return migration_dirty_pages;
511 }
512
513 uint64_t ram_bytes_remaining(void)
514 {
515     return ram_save_remaining() * TARGET_PAGE_SIZE;
516 }
517
518 uint64_t ram_bytes_transferred(void)
519 {
520     return bytes_transferred;
521 }
522
523 uint64_t ram_bytes_total(void)
524 {
525     RAMBlock *block;
526     uint64_t total = 0;
527
528     QTAILQ_FOREACH(block, &ram_list.blocks, next)
529         total += block->length;
530
531     return total;
532 }
533
534 static void migration_end(void)
535 {
536     if (migration_bitmap) {
537         memory_global_dirty_log_stop();
538         g_free(migration_bitmap);
539         migration_bitmap = NULL;
540     }
541
542     if (XBZRLE.cache) {
543         cache_fini(XBZRLE.cache);
544         g_free(XBZRLE.cache);
545         g_free(XBZRLE.encoded_buf);
546         g_free(XBZRLE.current_buf);
547         g_free(XBZRLE.decoded_buf);
548         XBZRLE.cache = NULL;
549     }
550 }
551
552 static void ram_migration_cancel(void *opaque)
553 {
554     migration_end();
555 }
556
557 static void reset_ram_globals(void)
558 {
559     last_seen_block = NULL;
560     last_sent_block = NULL;
561     last_offset = 0;
562     last_version = ram_list.version;
563     ram_bulk_stage = true;
564 }
565
566 #define MAX_WAIT 50 /* ms, half buffered_file limit */
567
568 static int ram_save_setup(QEMUFile *f, void *opaque)
569 {
570     RAMBlock *block;
571     int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
572
573     migration_bitmap = bitmap_new(ram_pages);
574     bitmap_set(migration_bitmap, 0, ram_pages);
575     migration_dirty_pages = ram_pages;
576
577     if (migrate_use_xbzrle()) {
578         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
579                                   TARGET_PAGE_SIZE,
580                                   TARGET_PAGE_SIZE);
581         if (!XBZRLE.cache) {
582             DPRINTF("Error creating cache\n");
583             return -1;
584         }
585         XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
586         XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
587         acct_clear();
588     }
589
590     qemu_mutex_lock_iothread();
591     qemu_mutex_lock_ramlist();
592     bytes_transferred = 0;
593     reset_ram_globals();
594
595     memory_global_dirty_log_start();
596     migration_bitmap_sync();
597     qemu_mutex_unlock_iothread();
598
599     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
600
601     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
602         qemu_put_byte(f, strlen(block->idstr));
603         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
604         qemu_put_be64(f, block->length);
605     }
606
607     qemu_mutex_unlock_ramlist();
608     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
609
610     return 0;
611 }
612
613 static int ram_save_iterate(QEMUFile *f, void *opaque)
614 {
615     int ret;
616     int i;
617     int64_t t0;
618     int total_sent = 0;
619
620     qemu_mutex_lock_ramlist();
621
622     if (ram_list.version != last_version) {
623         reset_ram_globals();
624     }
625
626     t0 = qemu_get_clock_ns(rt_clock);
627     i = 0;
628     while ((ret = qemu_file_rate_limit(f)) == 0) {
629         int bytes_sent;
630
631         bytes_sent = ram_save_block(f, false);
632         /* no more blocks to sent */
633         if (bytes_sent == 0) {
634             break;
635         }
636         total_sent += bytes_sent;
637         acct_info.iterations++;
638         /* we want to check in the 1st loop, just in case it was the 1st time
639            and we had to sync the dirty bitmap.
640            qemu_get_clock_ns() is a bit expensive, so we only check each some
641            iterations
642         */
643         if ((i & 63) == 0) {
644             uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
645             if (t1 > MAX_WAIT) {
646                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
647                         t1, i);
648                 break;
649             }
650         }
651         i++;
652     }
653
654     qemu_mutex_unlock_ramlist();
655
656     if (ret < 0) {
657         bytes_transferred += total_sent;
658         return ret;
659     }
660
661     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
662     total_sent += 8;
663     bytes_transferred += total_sent;
664
665     return total_sent;
666 }
667
668 static int ram_save_complete(QEMUFile *f, void *opaque)
669 {
670     qemu_mutex_lock_ramlist();
671     migration_bitmap_sync();
672
673     /* try transferring iterative blocks of memory */
674
675     /* flush all remaining blocks regardless of rate limiting */
676     while (true) {
677         int bytes_sent;
678
679         bytes_sent = ram_save_block(f, true);
680         /* no more blocks to sent */
681         if (bytes_sent == 0) {
682             break;
683         }
684         bytes_transferred += bytes_sent;
685     }
686     migration_end();
687
688     qemu_mutex_unlock_ramlist();
689     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
690
691     return 0;
692 }
693
694 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
695 {
696     uint64_t remaining_size;
697
698     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
699
700     if (remaining_size < max_size) {
701         qemu_mutex_lock_iothread();
702         migration_bitmap_sync();
703         qemu_mutex_unlock_iothread();
704         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
705     }
706     return remaining_size;
707 }
708
709 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
710 {
711     int ret, rc = 0;
712     unsigned int xh_len;
713     int xh_flags;
714
715     if (!XBZRLE.decoded_buf) {
716         XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
717     }
718
719     /* extract RLE header */
720     xh_flags = qemu_get_byte(f);
721     xh_len = qemu_get_be16(f);
722
723     if (xh_flags != ENCODING_FLAG_XBZRLE) {
724         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
725         return -1;
726     }
727
728     if (xh_len > TARGET_PAGE_SIZE) {
729         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
730         return -1;
731     }
732     /* load data and decode */
733     qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
734
735     /* decode RLE */
736     ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
737                                TARGET_PAGE_SIZE);
738     if (ret == -1) {
739         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
740         rc = -1;
741     } else  if (ret > TARGET_PAGE_SIZE) {
742         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
743                 ret, TARGET_PAGE_SIZE);
744         abort();
745     }
746
747     return rc;
748 }
749
750 static inline void *host_from_stream_offset(QEMUFile *f,
751                                             ram_addr_t offset,
752                                             int flags)
753 {
754     static RAMBlock *block = NULL;
755     char id[256];
756     uint8_t len;
757
758     if (flags & RAM_SAVE_FLAG_CONTINUE) {
759         if (!block) {
760             fprintf(stderr, "Ack, bad migration stream!\n");
761             return NULL;
762         }
763
764         return memory_region_get_ram_ptr(block->mr) + offset;
765     }
766
767     len = qemu_get_byte(f);
768     qemu_get_buffer(f, (uint8_t *)id, len);
769     id[len] = 0;
770
771     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
772         if (!strncmp(id, block->idstr, sizeof(id)))
773             return memory_region_get_ram_ptr(block->mr) + offset;
774     }
775
776     fprintf(stderr, "Can't find block %s!\n", id);
777     return NULL;
778 }
779
780 static int ram_load(QEMUFile *f, void *opaque, int version_id)
781 {
782     ram_addr_t addr;
783     int flags, ret = 0;
784     int error;
785     static uint64_t seq_iter;
786
787     seq_iter++;
788
789     if (version_id < 4 || version_id > 4) {
790         return -EINVAL;
791     }
792
793     do {
794         addr = qemu_get_be64(f);
795
796         flags = addr & ~TARGET_PAGE_MASK;
797         addr &= TARGET_PAGE_MASK;
798
799         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
800             if (version_id == 4) {
801                 /* Synchronize RAM block list */
802                 char id[256];
803                 ram_addr_t length;
804                 ram_addr_t total_ram_bytes = addr;
805
806                 while (total_ram_bytes) {
807                     RAMBlock *block;
808                     uint8_t len;
809
810                     len = qemu_get_byte(f);
811                     qemu_get_buffer(f, (uint8_t *)id, len);
812                     id[len] = 0;
813                     length = qemu_get_be64(f);
814
815                     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
816                         if (!strncmp(id, block->idstr, sizeof(id))) {
817                             if (block->length != length) {
818                                 fprintf(stderr,
819                                         "Length mismatch: %s: " RAM_ADDR_FMT
820                                         " in != " RAM_ADDR_FMT "\n", id, length,
821                                         block->length);
822                                 ret =  -EINVAL;
823                                 goto done;
824                             }
825                             break;
826                         }
827                     }
828
829                     if (!block) {
830                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
831                                 "accept migration\n", id);
832                         ret = -EINVAL;
833                         goto done;
834                     }
835
836                     total_ram_bytes -= length;
837                 }
838             }
839         }
840
841         if (flags & RAM_SAVE_FLAG_COMPRESS) {
842             void *host;
843             uint8_t ch;
844
845             host = host_from_stream_offset(f, addr, flags);
846             if (!host) {
847                 return -EINVAL;
848             }
849
850             ch = qemu_get_byte(f);
851             if (ch != 0 || !is_zero_page(host)) {
852                 memset(host, ch, TARGET_PAGE_SIZE);
853 #ifndef _WIN32
854                 if (ch == 0 &&
855                     (!kvm_enabled() || kvm_has_sync_mmu()) &&
856                     getpagesize() <= TARGET_PAGE_SIZE) {
857                     qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
858                 }
859 #endif
860             }
861         } else if (flags & RAM_SAVE_FLAG_PAGE) {
862             void *host;
863
864             host = host_from_stream_offset(f, addr, flags);
865             if (!host) {
866                 return -EINVAL;
867             }
868
869             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
870         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
871             void *host = host_from_stream_offset(f, addr, flags);
872             if (!host) {
873                 return -EINVAL;
874             }
875
876             if (load_xbzrle(f, addr, host) < 0) {
877                 ret = -EINVAL;
878                 goto done;
879             }
880         }
881         error = qemu_file_get_error(f);
882         if (error) {
883             ret = error;
884             goto done;
885         }
886     } while (!(flags & RAM_SAVE_FLAG_EOS));
887
888 done:
889     DPRINTF("Completed load of VM with exit code %d seq iteration "
890             "%" PRIu64 "\n", ret, seq_iter);
891     return ret;
892 }
893
894 SaveVMHandlers savevm_ram_handlers = {
895     .save_live_setup = ram_save_setup,
896     .save_live_iterate = ram_save_iterate,
897     .save_live_complete = ram_save_complete,
898     .save_live_pending = ram_save_pending,
899     .load_state = ram_load,
900     .cancel = ram_migration_cancel,
901 };
902
903 struct soundhw {
904     const char *name;
905     const char *descr;
906     int enabled;
907     int isa;
908     union {
909         int (*init_isa) (ISABus *bus);
910         int (*init_pci) (PCIBus *bus);
911     } init;
912 };
913
914 static struct soundhw soundhw[9];
915 static int soundhw_count;
916
917 void isa_register_soundhw(const char *name, const char *descr,
918                           int (*init_isa)(ISABus *bus))
919 {
920     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
921     soundhw[soundhw_count].name = name;
922     soundhw[soundhw_count].descr = descr;
923     soundhw[soundhw_count].isa = 1;
924     soundhw[soundhw_count].init.init_isa = init_isa;
925     soundhw_count++;
926 }
927
928 void pci_register_soundhw(const char *name, const char *descr,
929                           int (*init_pci)(PCIBus *bus))
930 {
931     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
932     soundhw[soundhw_count].name = name;
933     soundhw[soundhw_count].descr = descr;
934     soundhw[soundhw_count].isa = 0;
935     soundhw[soundhw_count].init.init_pci = init_pci;
936     soundhw_count++;
937 }
938
939 void select_soundhw(const char *optarg)
940 {
941     struct soundhw *c;
942
943     if (is_help_option(optarg)) {
944     show_valid_cards:
945
946         if (soundhw_count) {
947              printf("Valid sound card names (comma separated):\n");
948              for (c = soundhw; c->name; ++c) {
949                  printf ("%-11s %s\n", c->name, c->descr);
950              }
951              printf("\n-soundhw all will enable all of the above\n");
952         } else {
953              printf("Machine has no user-selectable audio hardware "
954                     "(it may or may not have always-present audio hardware).\n");
955         }
956         exit(!is_help_option(optarg));
957     }
958     else {
959         size_t l;
960         const char *p;
961         char *e;
962         int bad_card = 0;
963
964         if (!strcmp(optarg, "all")) {
965             for (c = soundhw; c->name; ++c) {
966                 c->enabled = 1;
967             }
968             return;
969         }
970
971         p = optarg;
972         while (*p) {
973             e = strchr(p, ',');
974             l = !e ? strlen(p) : (size_t) (e - p);
975
976             for (c = soundhw; c->name; ++c) {
977                 if (!strncmp(c->name, p, l) && !c->name[l]) {
978                     c->enabled = 1;
979                     break;
980                 }
981             }
982
983             if (!c->name) {
984                 if (l > 80) {
985                     fprintf(stderr,
986                             "Unknown sound card name (too big to show)\n");
987                 }
988                 else {
989                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
990                             (int) l, p);
991                 }
992                 bad_card = 1;
993             }
994             p += l + (e != NULL);
995         }
996
997         if (bad_card) {
998             goto show_valid_cards;
999         }
1000     }
1001 }
1002
1003 void audio_init(void)
1004 {
1005     struct soundhw *c;
1006     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1007     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1008
1009     for (c = soundhw; c->name; ++c) {
1010         if (c->enabled) {
1011             if (c->isa) {
1012                 if (!isa_bus) {
1013                     fprintf(stderr, "ISA bus not available for %s\n", c->name);
1014                     exit(1);
1015                 }
1016                 c->init.init_isa(isa_bus);
1017             } else {
1018                 if (!pci_bus) {
1019                     fprintf(stderr, "PCI bus not available for %s\n", c->name);
1020                     exit(1);
1021                 }
1022                 c->init.init_pci(pci_bus);
1023             }
1024         }
1025     }
1026 }
1027
1028 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1029 {
1030     int ret;
1031
1032     if (strlen(str) != 36) {
1033         return -1;
1034     }
1035
1036     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1037                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1038                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1039                  &uuid[15]);
1040
1041     if (ret != 16) {
1042         return -1;
1043     }
1044 #ifdef TARGET_I386
1045     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16);
1046 #endif
1047     return 0;
1048 }
1049
1050 void do_acpitable_option(const QemuOpts *opts)
1051 {
1052 #ifdef TARGET_I386
1053     Error *err = NULL;
1054
1055     acpi_table_add(opts, &err);
1056     if (err) {
1057         fprintf(stderr, "Wrong acpi table provided: %s\n",
1058                 error_get_pretty(err));
1059         error_free(err);
1060         exit(1);
1061     }
1062 #endif
1063 }
1064
1065 void do_smbios_option(const char *optarg)
1066 {
1067 #ifdef TARGET_I386
1068     if (smbios_entry_add(optarg) < 0) {
1069         exit(1);
1070     }
1071 #endif
1072 }
1073
1074 void cpudef_init(void)
1075 {
1076 #if defined(cpudef_setup)
1077     cpudef_setup(); /* parse cpu definitions in target config file */
1078 #endif
1079 }
1080
1081 int tcg_available(void)
1082 {
1083     return 1;
1084 }
1085
1086 int kvm_available(void)
1087 {
1088 #ifdef CONFIG_KVM
1089     return 1;
1090 #else
1091     return 0;
1092 #endif
1093 }
1094
1095 int xen_available(void)
1096 {
1097 #ifdef CONFIG_XEN
1098     return 1;
1099 #else
1100     return 0;
1101 #endif
1102 }
1103
1104
1105 TargetInfo *qmp_query_target(Error **errp)
1106 {
1107     TargetInfo *info = g_malloc0(sizeof(*info));
1108
1109     info->arch = g_strdup(TARGET_NAME);
1110
1111     return info;
1112 }
This page took 0.087649 seconds and 4 git commands to generate.