2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
27 #include "exec-memory.h"
29 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
33 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
42 target_phys_addr_t base;
45 BlockDriverState *bdrv;
46 BlockDriverState *bdrv_cur;
51 MemoryRegion mapped_ram;
55 MemoryRegion container;
81 ONEN_BUF_DEST_BLOCK = 2,
82 ONEN_BUF_DEST_PAGE = 3,
87 ONEN_ERR_CMD = 1 << 10,
88 ONEN_ERR_ERASE = 1 << 11,
89 ONEN_ERR_PROG = 1 << 12,
90 ONEN_ERR_LOAD = 1 << 13,
94 ONEN_INT_RESET = 1 << 4,
95 ONEN_INT_ERASE = 1 << 5,
96 ONEN_INT_PROG = 1 << 6,
97 ONEN_INT_LOAD = 1 << 7,
102 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
103 ONEN_LOCK_LOCKED = 1 << 1,
104 ONEN_LOCK_UNLOCKED = 1 << 2,
107 static void onenand_mem_setup(OneNANDState *s)
109 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
110 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
111 * write boot commands. Also take note of the BWPS bit. */
112 memory_region_init(&s->container, "onenand", 0x10000 << s->shift);
113 memory_region_add_subregion(&s->container, 0, &s->iomem);
114 memory_region_init_alias(&s->mapped_ram, "onenand-mapped-ram",
115 &s->ram, 0x0200 << s->shift,
117 memory_region_add_subregion_overlap(&s->container,
123 void onenand_base_update(void *opaque, target_phys_addr_t new)
125 OneNANDState *s = (OneNANDState *) opaque;
129 memory_region_add_subregion(get_system_memory(), s->base, &s->container);
132 void onenand_base_unmap(void *opaque)
134 OneNANDState *s = (OneNANDState *) opaque;
136 memory_region_del_subregion(get_system_memory(), &s->container);
139 static void onenand_intr_update(OneNANDState *s)
141 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
144 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
145 static void onenand_reset(OneNANDState *s, int cold)
147 memset(&s->addr, 0, sizeof(s->addr));
151 s->config[0] = 0x40c0;
152 s->config[1] = 0x0000;
153 onenand_intr_update(s);
154 qemu_irq_raise(s->rdy);
156 s->intstatus = cold ? 0x8080 : 0x8010;
159 s->wpstatus = 0x0002;
162 s->bdrv_cur = s->bdrv;
163 s->current = s->image;
164 s->secs_cur = s->secs;
167 /* Lock the whole flash */
168 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
170 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
171 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
175 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
179 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
180 else if (sec + secn > s->secs_cur)
183 memcpy(dest, s->current + (sec << 9), secn << 9);
188 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
194 uint32_t size = (uint32_t) secn * 512;
195 const uint8_t *sp = (const uint8_t *) src;
199 if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
203 if (sec + secn > s->secs_cur) {
206 dp = (uint8_t *) s->current + (sec << 9);
211 for (i = 0; i < size; i++) {
215 result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
218 if (dp && s->bdrv_cur) {
226 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
232 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
234 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
235 } else if (sec + secn > s->secs_cur)
238 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
243 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
248 const uint8_t *sp = (const uint8_t *) src;
249 uint8_t *dp = 0, *dpp = 0;
252 if (!dp || bdrv_read(s->bdrv_cur,
253 s->secs_cur + (sec >> 5),
257 dpp = dp + ((sec & 31) << 4);
260 if (sec + secn > s->secs_cur) {
263 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
268 for (i = 0; i < (secn << 4); i++) {
272 result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
283 static inline int onenand_erase(OneNANDState *s, int sec, int num)
285 uint8_t *blankbuf, *tmpbuf;
286 blankbuf = g_malloc(512);
290 tmpbuf = g_malloc(512);
295 memset(blankbuf, 0xff, 512);
296 for (; num > 0; num--, sec++) {
298 int erasesec = s->secs_cur + (sec >> 5);
299 if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
302 if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
305 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
306 if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
310 if (sec + 1 > s->secs_cur) {
313 memcpy(s->current + (sec << 9), blankbuf, 512);
314 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
329 static void onenand_command(OneNANDState *s)
334 #define SETADDR(block, page) \
335 sec = (s->addr[page] & 3) + \
336 ((((s->addr[page] >> 2) & 0x3f) + \
337 (((s->addr[block] & 0xfff) | \
338 (s->addr[block] >> 15 ? \
339 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
341 buf = (s->bufaddr & 8) ? \
342 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
343 buf += (s->bufaddr & 3) << 9;
345 buf = (s->bufaddr & 8) ? \
346 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
347 buf += (s->bufaddr & 3) << 4;
349 switch (s->command) {
350 case 0x00: /* Load single/multiple sector data unit into buffer */
351 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
354 if (onenand_load_main(s, sec, s->count, buf))
355 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
359 if (onenand_load_spare(s, sec, s->count, buf))
360 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
363 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
364 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
365 * then we need two split the read/write into two chunks.
367 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
369 case 0x13: /* Load single/multiple spare sector into buffer */
370 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
373 if (onenand_load_spare(s, sec, s->count, buf))
374 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
376 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
377 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
378 * then we need two split the read/write into two chunks.
380 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
382 case 0x80: /* Program single/multiple sector data unit from buffer */
383 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
386 if (onenand_prog_main(s, sec, s->count, buf))
387 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
391 if (onenand_prog_spare(s, sec, s->count, buf))
392 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
395 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
396 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
397 * then we need two split the read/write into two chunks.
399 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
401 case 0x1a: /* Program single/multiple spare area sector from buffer */
402 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
405 if (onenand_prog_spare(s, sec, s->count, buf))
406 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
408 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
409 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
410 * then we need two split the read/write into two chunks.
412 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
414 case 0x1b: /* Copy-back program */
417 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
418 if (onenand_load_main(s, sec, s->count, buf))
419 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
421 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
422 if (onenand_prog_main(s, sec, s->count, buf))
423 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
425 /* TODO: spare areas */
427 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
430 case 0x23: /* Unlock NAND array block(s) */
431 s->intstatus |= ONEN_INT;
433 /* XXX the previous (?) area should be locked automatically */
434 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
435 if (b >= s->blocks) {
436 s->status |= ONEN_ERR_CMD;
439 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
442 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
445 case 0x27: /* Unlock All NAND array blocks */
446 s->intstatus |= ONEN_INT;
448 for (b = 0; b < s->blocks; b ++) {
449 if (b >= s->blocks) {
450 s->status |= ONEN_ERR_CMD;
453 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
456 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
460 case 0x2a: /* Lock NAND array block(s) */
461 s->intstatus |= ONEN_INT;
463 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
464 if (b >= s->blocks) {
465 s->status |= ONEN_ERR_CMD;
468 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
471 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
474 case 0x2c: /* Lock-tight NAND array block(s) */
475 s->intstatus |= ONEN_INT;
477 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
478 if (b >= s->blocks) {
479 s->status |= ONEN_ERR_CMD;
482 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
485 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
489 case 0x71: /* Erase-Verify-Read */
490 s->intstatus |= ONEN_INT;
492 case 0x95: /* Multi-block erase */
493 qemu_irq_pulse(s->intr);
495 case 0x94: /* Block erase */
496 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
497 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
498 << (BLOCK_SHIFT - 9);
499 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
500 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
502 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
504 case 0xb0: /* Erase suspend */
506 case 0x30: /* Erase resume */
507 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
510 case 0xf0: /* Reset NAND Flash core */
513 case 0xf3: /* Reset OneNAND */
517 case 0x65: /* OTP Access */
518 s->intstatus |= ONEN_INT;
521 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
522 s->addr[ONEN_BUF_BLOCK] = 0;
527 s->status |= ONEN_ERR_CMD;
528 s->intstatus |= ONEN_INT;
529 fprintf(stderr, "%s: unknown OneNAND command %x\n",
530 __func__, s->command);
533 onenand_intr_update(s);
536 static uint64_t onenand_read(void *opaque, target_phys_addr_t addr,
539 OneNANDState *s = (OneNANDState *) opaque;
540 int offset = addr >> s->shift;
543 case 0x0000 ... 0xc000:
544 return lduw_le_p(s->boot[0] + addr);
546 case 0xf000: /* Manufacturer ID */
548 case 0xf001: /* Device ID */
550 case 0xf002: /* Version ID */
552 /* TODO: get the following values from a real chip! */
553 case 0xf003: /* Data Buffer size */
554 return 1 << PAGE_SHIFT;
555 case 0xf004: /* Boot Buffer size */
557 case 0xf005: /* Amount of buffers */
559 case 0xf006: /* Technology */
562 case 0xf100 ... 0xf107: /* Start addresses */
563 return s->addr[offset - 0xf100];
565 case 0xf200: /* Start buffer */
566 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
568 case 0xf220: /* Command */
570 case 0xf221: /* System Configuration 1 */
571 return s->config[0] & 0xffe0;
572 case 0xf222: /* System Configuration 2 */
575 case 0xf240: /* Controller Status */
577 case 0xf241: /* Interrupt */
579 case 0xf24c: /* Unlock Start Block Address */
580 return s->unladdr[0];
581 case 0xf24d: /* Unlock End Block Address */
582 return s->unladdr[1];
583 case 0xf24e: /* Write Protection Status */
586 case 0xff00: /* ECC Status */
588 case 0xff01: /* ECC Result of main area data */
589 case 0xff02: /* ECC Result of spare area data */
590 case 0xff03: /* ECC Result of main area data */
591 case 0xff04: /* ECC Result of spare area data */
592 hw_error("%s: imeplement ECC\n", __FUNCTION__);
596 fprintf(stderr, "%s: unknown OneNAND register %x\n",
597 __FUNCTION__, offset);
601 static void onenand_write(void *opaque, target_phys_addr_t addr,
602 uint64_t value, unsigned size)
604 OneNANDState *s = (OneNANDState *) opaque;
605 int offset = addr >> s->shift;
609 case 0x0000 ... 0x01ff:
610 case 0x8000 ... 0x800f:
614 if (value == 0x0000) {
615 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
616 onenand_load_main(s, sec,
617 1 << (PAGE_SHIFT - 9), s->data[0][0]);
618 s->addr[ONEN_BUF_PAGE] += 4;
619 s->addr[ONEN_BUF_PAGE] &= 0xff;
625 case 0x00f0: /* Reset OneNAND */
629 case 0x00e0: /* Load Data into Buffer */
633 case 0x0090: /* Read Identification Data */
634 memset(s->boot[0], 0, 3 << s->shift);
635 s->boot[0][0 << s->shift] = s->id.man & 0xff;
636 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
637 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
641 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
642 __FUNCTION__, value);
646 case 0xf100 ... 0xf107: /* Start addresses */
647 s->addr[offset - 0xf100] = value;
650 case 0xf200: /* Start buffer */
651 s->bufaddr = (value >> 8) & 0xf;
652 if (PAGE_SHIFT == 11)
653 s->count = (value & 3) ?: 4;
654 else if (PAGE_SHIFT == 10)
655 s->count = (value & 1) ?: 2;
658 case 0xf220: /* Command */
659 if (s->intstatus & (1 << 15))
664 case 0xf221: /* System Configuration 1 */
665 s->config[0] = value;
666 onenand_intr_update(s);
667 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
669 case 0xf222: /* System Configuration 2 */
670 s->config[1] = value;
673 case 0xf241: /* Interrupt */
674 s->intstatus &= value;
675 if ((1 << 15) & ~s->intstatus)
676 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
677 ONEN_ERR_PROG | ONEN_ERR_LOAD);
678 onenand_intr_update(s);
680 case 0xf24c: /* Unlock Start Block Address */
681 s->unladdr[0] = value & (s->blocks - 1);
682 /* For some reason we have to set the end address to by default
683 * be same as start because the software forgets to write anything
685 s->unladdr[1] = value & (s->blocks - 1);
687 case 0xf24d: /* Unlock End Block Address */
688 s->unladdr[1] = value & (s->blocks - 1);
692 fprintf(stderr, "%s: unknown OneNAND register %x\n",
693 __FUNCTION__, offset);
697 static const MemoryRegionOps onenand_ops = {
698 .read = onenand_read,
699 .write = onenand_write,
700 .endianness = DEVICE_NATIVE_ENDIAN,
703 void *onenand_init(BlockDriverState *bdrv,
704 uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
705 int regshift, qemu_irq irq)
707 OneNANDState *s = (OneNANDState *) g_malloc0(sizeof(*s));
708 uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
717 s->blocks = size >> BLOCK_SHIFT;
719 s->blockwp = g_malloc(s->blocks);
720 s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
721 memory_region_init_io(&s->iomem, &onenand_ops, s, "onenand",
722 0x10000 << s->shift);
725 s->image = memset(g_malloc(size + (size >> 5)),
726 0xff, size + (size >> 5));
728 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
729 0xff, (64 + 2) << PAGE_SHIFT);
730 memory_region_init_ram(&s->ram, NULL, "onenand.ram", 0xc000 << s->shift);
731 ram = memory_region_get_ram_ptr(&s->ram);
732 s->boot[0] = ram + (0x0000 << s->shift);
733 s->boot[1] = ram + (0x8000 << s->shift);
734 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
735 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
736 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
737 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
738 onenand_mem_setup(s);
745 void *onenand_raw_otp(void *opaque)
747 OneNANDState *s = (OneNANDState *) opaque;