]> Git Repo - qemu.git/blob - block/io.c
block: Guarantee that *file is set on bdrv_get_block_status()
[qemu.git] / block / io.c
1 /*
2  * Block layer I/O functions
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38     int64_t offset, int bytes, BdrvRequestFlags flags);
39
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
41 {
42     BdrvChild *c;
43
44     QLIST_FOREACH(c, &bs->parents, next_parent) {
45         if (c->role->drained_begin) {
46             c->role->drained_begin(c);
47         }
48     }
49 }
50
51 void bdrv_parent_drained_end(BlockDriverState *bs)
52 {
53     BdrvChild *c;
54
55     QLIST_FOREACH(c, &bs->parents, next_parent) {
56         if (c->role->drained_end) {
57             c->role->drained_end(c);
58         }
59     }
60 }
61
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
63 {
64     dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65     dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66     dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67                                  src->opt_mem_alignment);
68     dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69                                  src->min_mem_alignment);
70     dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
71 }
72
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
74 {
75     BlockDriver *drv = bs->drv;
76     Error *local_err = NULL;
77
78     memset(&bs->bl, 0, sizeof(bs->bl));
79
80     if (!drv) {
81         return;
82     }
83
84     /* Default alignment based on whether driver has byte interface */
85     bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
86
87     /* Take some limits from the children as a default */
88     if (bs->file) {
89         bdrv_refresh_limits(bs->file->bs, &local_err);
90         if (local_err) {
91             error_propagate(errp, local_err);
92             return;
93         }
94         bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
95     } else {
96         bs->bl.min_mem_alignment = 512;
97         bs->bl.opt_mem_alignment = getpagesize();
98
99         /* Safe default since most protocols use readv()/writev()/etc */
100         bs->bl.max_iov = IOV_MAX;
101     }
102
103     if (bs->backing) {
104         bdrv_refresh_limits(bs->backing->bs, &local_err);
105         if (local_err) {
106             error_propagate(errp, local_err);
107             return;
108         }
109         bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
110     }
111
112     /* Then let the driver override it */
113     if (drv->bdrv_refresh_limits) {
114         drv->bdrv_refresh_limits(bs, errp);
115     }
116 }
117
118 /**
119  * The copy-on-read flag is actually a reference count so multiple users may
120  * use the feature without worrying about clobbering its previous state.
121  * Copy-on-read stays enabled until all users have called to disable it.
122  */
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
124 {
125     atomic_inc(&bs->copy_on_read);
126 }
127
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
129 {
130     int old = atomic_fetch_dec(&bs->copy_on_read);
131     assert(old >= 1);
132 }
133
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
136 {
137     BdrvChild *child;
138
139     if (atomic_read(&bs->in_flight)) {
140         return true;
141     }
142
143     QLIST_FOREACH(child, &bs->children, next) {
144         if (bdrv_requests_pending(child->bs)) {
145             return true;
146         }
147     }
148
149     return false;
150 }
151
152 static bool bdrv_drain_recurse(BlockDriverState *bs)
153 {
154     BdrvChild *child, *tmp;
155     bool waited;
156
157     waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
158
159     if (bs->drv && bs->drv->bdrv_drain) {
160         bs->drv->bdrv_drain(bs);
161     }
162
163     QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
164         BlockDriverState *bs = child->bs;
165         bool in_main_loop =
166             qemu_get_current_aio_context() == qemu_get_aio_context();
167         assert(bs->refcnt > 0);
168         if (in_main_loop) {
169             /* In case the recursive bdrv_drain_recurse processes a
170              * block_job_defer_to_main_loop BH and modifies the graph,
171              * let's hold a reference to bs until we are done.
172              *
173              * IOThread doesn't have such a BH, and it is not safe to call
174              * bdrv_unref without BQL, so skip doing it there.
175              */
176             bdrv_ref(bs);
177         }
178         waited |= bdrv_drain_recurse(bs);
179         if (in_main_loop) {
180             bdrv_unref(bs);
181         }
182     }
183
184     return waited;
185 }
186
187 typedef struct {
188     Coroutine *co;
189     BlockDriverState *bs;
190     bool done;
191 } BdrvCoDrainData;
192
193 static void bdrv_co_drain_bh_cb(void *opaque)
194 {
195     BdrvCoDrainData *data = opaque;
196     Coroutine *co = data->co;
197     BlockDriverState *bs = data->bs;
198
199     bdrv_dec_in_flight(bs);
200     bdrv_drained_begin(bs);
201     data->done = true;
202     aio_co_wake(co);
203 }
204
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
206 {
207     BdrvCoDrainData data;
208
209     /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210      * other coroutines run if they were queued from
211      * qemu_co_queue_run_restart(). */
212
213     assert(qemu_in_coroutine());
214     data = (BdrvCoDrainData) {
215         .co = qemu_coroutine_self(),
216         .bs = bs,
217         .done = false,
218     };
219     bdrv_inc_in_flight(bs);
220     aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
221                             bdrv_co_drain_bh_cb, &data);
222
223     qemu_coroutine_yield();
224     /* If we are resumed from some other event (such as an aio completion or a
225      * timer callback), it is a bug in the caller that should be fixed. */
226     assert(data.done);
227 }
228
229 void bdrv_drained_begin(BlockDriverState *bs)
230 {
231     if (qemu_in_coroutine()) {
232         bdrv_co_yield_to_drain(bs);
233         return;
234     }
235
236     if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
237         aio_disable_external(bdrv_get_aio_context(bs));
238         bdrv_parent_drained_begin(bs);
239     }
240
241     bdrv_drain_recurse(bs);
242 }
243
244 void bdrv_drained_end(BlockDriverState *bs)
245 {
246     assert(bs->quiesce_counter > 0);
247     if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
248         return;
249     }
250
251     bdrv_parent_drained_end(bs);
252     aio_enable_external(bdrv_get_aio_context(bs));
253 }
254
255 /*
256  * Wait for pending requests to complete on a single BlockDriverState subtree,
257  * and suspend block driver's internal I/O until next request arrives.
258  *
259  * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
260  * AioContext.
261  *
262  * Only this BlockDriverState's AioContext is run, so in-flight requests must
263  * not depend on events in other AioContexts.  In that case, use
264  * bdrv_drain_all() instead.
265  */
266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
267 {
268     assert(qemu_in_coroutine());
269     bdrv_drained_begin(bs);
270     bdrv_drained_end(bs);
271 }
272
273 void bdrv_drain(BlockDriverState *bs)
274 {
275     bdrv_drained_begin(bs);
276     bdrv_drained_end(bs);
277 }
278
279 /*
280  * Wait for pending requests to complete across all BlockDriverStates
281  *
282  * This function does not flush data to disk, use bdrv_flush_all() for that
283  * after calling this function.
284  *
285  * This pauses all block jobs and disables external clients. It must
286  * be paired with bdrv_drain_all_end().
287  *
288  * NOTE: no new block jobs or BlockDriverStates can be created between
289  * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
290  */
291 void bdrv_drain_all_begin(void)
292 {
293     /* Always run first iteration so any pending completion BHs run */
294     bool waited = true;
295     BlockDriverState *bs;
296     BdrvNextIterator it;
297     GSList *aio_ctxs = NULL, *ctx;
298
299     block_job_pause_all();
300
301     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
302         AioContext *aio_context = bdrv_get_aio_context(bs);
303
304         aio_context_acquire(aio_context);
305         bdrv_parent_drained_begin(bs);
306         aio_disable_external(aio_context);
307         aio_context_release(aio_context);
308
309         if (!g_slist_find(aio_ctxs, aio_context)) {
310             aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311         }
312     }
313
314     /* Note that completion of an asynchronous I/O operation can trigger any
315      * number of other I/O operations on other devices---for example a
316      * coroutine can submit an I/O request to another device in response to
317      * request completion.  Therefore we must keep looping until there was no
318      * more activity rather than simply draining each device independently.
319      */
320     while (waited) {
321         waited = false;
322
323         for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324             AioContext *aio_context = ctx->data;
325
326             aio_context_acquire(aio_context);
327             for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328                 if (aio_context == bdrv_get_aio_context(bs)) {
329                     waited |= bdrv_drain_recurse(bs);
330                 }
331             }
332             aio_context_release(aio_context);
333         }
334     }
335
336     g_slist_free(aio_ctxs);
337 }
338
339 void bdrv_drain_all_end(void)
340 {
341     BlockDriverState *bs;
342     BdrvNextIterator it;
343
344     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
345         AioContext *aio_context = bdrv_get_aio_context(bs);
346
347         aio_context_acquire(aio_context);
348         aio_enable_external(aio_context);
349         bdrv_parent_drained_end(bs);
350         aio_context_release(aio_context);
351     }
352
353     block_job_resume_all();
354 }
355
356 void bdrv_drain_all(void)
357 {
358     bdrv_drain_all_begin();
359     bdrv_drain_all_end();
360 }
361
362 /**
363  * Remove an active request from the tracked requests list
364  *
365  * This function should be called when a tracked request is completing.
366  */
367 static void tracked_request_end(BdrvTrackedRequest *req)
368 {
369     if (req->serialising) {
370         atomic_dec(&req->bs->serialising_in_flight);
371     }
372
373     qemu_co_mutex_lock(&req->bs->reqs_lock);
374     QLIST_REMOVE(req, list);
375     qemu_co_queue_restart_all(&req->wait_queue);
376     qemu_co_mutex_unlock(&req->bs->reqs_lock);
377 }
378
379 /**
380  * Add an active request to the tracked requests list
381  */
382 static void tracked_request_begin(BdrvTrackedRequest *req,
383                                   BlockDriverState *bs,
384                                   int64_t offset,
385                                   unsigned int bytes,
386                                   enum BdrvTrackedRequestType type)
387 {
388     *req = (BdrvTrackedRequest){
389         .bs = bs,
390         .offset         = offset,
391         .bytes          = bytes,
392         .type           = type,
393         .co             = qemu_coroutine_self(),
394         .serialising    = false,
395         .overlap_offset = offset,
396         .overlap_bytes  = bytes,
397     };
398
399     qemu_co_queue_init(&req->wait_queue);
400
401     qemu_co_mutex_lock(&bs->reqs_lock);
402     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
403     qemu_co_mutex_unlock(&bs->reqs_lock);
404 }
405
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
407 {
408     int64_t overlap_offset = req->offset & ~(align - 1);
409     unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410                                - overlap_offset;
411
412     if (!req->serialising) {
413         atomic_inc(&req->bs->serialising_in_flight);
414         req->serialising = true;
415     }
416
417     req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418     req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
419 }
420
421 /**
422  * Round a region to cluster boundaries (sector-based)
423  */
424 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
425                                     int64_t sector_num, int nb_sectors,
426                                     int64_t *cluster_sector_num,
427                                     int *cluster_nb_sectors)
428 {
429     BlockDriverInfo bdi;
430
431     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432         *cluster_sector_num = sector_num;
433         *cluster_nb_sectors = nb_sectors;
434     } else {
435         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
436         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
437         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
438                                             nb_sectors, c);
439     }
440 }
441
442 /**
443  * Round a region to cluster boundaries
444  */
445 void bdrv_round_to_clusters(BlockDriverState *bs,
446                             int64_t offset, unsigned int bytes,
447                             int64_t *cluster_offset,
448                             unsigned int *cluster_bytes)
449 {
450     BlockDriverInfo bdi;
451
452     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
453         *cluster_offset = offset;
454         *cluster_bytes = bytes;
455     } else {
456         int64_t c = bdi.cluster_size;
457         *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
458         *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
459     }
460 }
461
462 static int bdrv_get_cluster_size(BlockDriverState *bs)
463 {
464     BlockDriverInfo bdi;
465     int ret;
466
467     ret = bdrv_get_info(bs, &bdi);
468     if (ret < 0 || bdi.cluster_size == 0) {
469         return bs->bl.request_alignment;
470     } else {
471         return bdi.cluster_size;
472     }
473 }
474
475 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
476                                      int64_t offset, unsigned int bytes)
477 {
478     /*        aaaa   bbbb */
479     if (offset >= req->overlap_offset + req->overlap_bytes) {
480         return false;
481     }
482     /* bbbb   aaaa        */
483     if (req->overlap_offset >= offset + bytes) {
484         return false;
485     }
486     return true;
487 }
488
489 void bdrv_inc_in_flight(BlockDriverState *bs)
490 {
491     atomic_inc(&bs->in_flight);
492 }
493
494 static void dummy_bh_cb(void *opaque)
495 {
496 }
497
498 void bdrv_wakeup(BlockDriverState *bs)
499 {
500     /* The barrier (or an atomic op) is in the caller.  */
501     if (atomic_read(&bs->wakeup)) {
502         aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
503     }
504 }
505
506 void bdrv_dec_in_flight(BlockDriverState *bs)
507 {
508     atomic_dec(&bs->in_flight);
509     bdrv_wakeup(bs);
510 }
511
512 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
513 {
514     BlockDriverState *bs = self->bs;
515     BdrvTrackedRequest *req;
516     bool retry;
517     bool waited = false;
518
519     if (!atomic_read(&bs->serialising_in_flight)) {
520         return false;
521     }
522
523     do {
524         retry = false;
525         qemu_co_mutex_lock(&bs->reqs_lock);
526         QLIST_FOREACH(req, &bs->tracked_requests, list) {
527             if (req == self || (!req->serialising && !self->serialising)) {
528                 continue;
529             }
530             if (tracked_request_overlaps(req, self->overlap_offset,
531                                          self->overlap_bytes))
532             {
533                 /* Hitting this means there was a reentrant request, for
534                  * example, a block driver issuing nested requests.  This must
535                  * never happen since it means deadlock.
536                  */
537                 assert(qemu_coroutine_self() != req->co);
538
539                 /* If the request is already (indirectly) waiting for us, or
540                  * will wait for us as soon as it wakes up, then just go on
541                  * (instead of producing a deadlock in the former case). */
542                 if (!req->waiting_for) {
543                     self->waiting_for = req;
544                     qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
545                     self->waiting_for = NULL;
546                     retry = true;
547                     waited = true;
548                     break;
549                 }
550             }
551         }
552         qemu_co_mutex_unlock(&bs->reqs_lock);
553     } while (retry);
554
555     return waited;
556 }
557
558 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
559                                    size_t size)
560 {
561     if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
562         return -EIO;
563     }
564
565     if (!bdrv_is_inserted(bs)) {
566         return -ENOMEDIUM;
567     }
568
569     if (offset < 0) {
570         return -EIO;
571     }
572
573     return 0;
574 }
575
576 typedef struct RwCo {
577     BdrvChild *child;
578     int64_t offset;
579     QEMUIOVector *qiov;
580     bool is_write;
581     int ret;
582     BdrvRequestFlags flags;
583 } RwCo;
584
585 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
586 {
587     RwCo *rwco = opaque;
588
589     if (!rwco->is_write) {
590         rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
591                                    rwco->qiov->size, rwco->qiov,
592                                    rwco->flags);
593     } else {
594         rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
595                                     rwco->qiov->size, rwco->qiov,
596                                     rwco->flags);
597     }
598 }
599
600 /*
601  * Process a vectored synchronous request using coroutines
602  */
603 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
604                         QEMUIOVector *qiov, bool is_write,
605                         BdrvRequestFlags flags)
606 {
607     Coroutine *co;
608     RwCo rwco = {
609         .child = child,
610         .offset = offset,
611         .qiov = qiov,
612         .is_write = is_write,
613         .ret = NOT_DONE,
614         .flags = flags,
615     };
616
617     if (qemu_in_coroutine()) {
618         /* Fast-path if already in coroutine context */
619         bdrv_rw_co_entry(&rwco);
620     } else {
621         co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
622         bdrv_coroutine_enter(child->bs, co);
623         BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
624     }
625     return rwco.ret;
626 }
627
628 /*
629  * Process a synchronous request using coroutines
630  */
631 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
632                       int nb_sectors, bool is_write, BdrvRequestFlags flags)
633 {
634     QEMUIOVector qiov;
635     struct iovec iov = {
636         .iov_base = (void *)buf,
637         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
638     };
639
640     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
641         return -EINVAL;
642     }
643
644     qemu_iovec_init_external(&qiov, &iov, 1);
645     return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
646                         &qiov, is_write, flags);
647 }
648
649 /* return < 0 if error. See bdrv_write() for the return codes */
650 int bdrv_read(BdrvChild *child, int64_t sector_num,
651               uint8_t *buf, int nb_sectors)
652 {
653     return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
654 }
655
656 /* Return < 0 if error. Important errors are:
657   -EIO         generic I/O error (may happen for all errors)
658   -ENOMEDIUM   No media inserted.
659   -EINVAL      Invalid sector number or nb_sectors
660   -EACCES      Trying to write a read-only device
661 */
662 int bdrv_write(BdrvChild *child, int64_t sector_num,
663                const uint8_t *buf, int nb_sectors)
664 {
665     return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
666 }
667
668 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
669                        int bytes, BdrvRequestFlags flags)
670 {
671     QEMUIOVector qiov;
672     struct iovec iov = {
673         .iov_base = NULL,
674         .iov_len = bytes,
675     };
676
677     qemu_iovec_init_external(&qiov, &iov, 1);
678     return bdrv_prwv_co(child, offset, &qiov, true,
679                         BDRV_REQ_ZERO_WRITE | flags);
680 }
681
682 /*
683  * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
684  * The operation is sped up by checking the block status and only writing
685  * zeroes to the device if they currently do not return zeroes. Optional
686  * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
687  * BDRV_REQ_FUA).
688  *
689  * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
690  */
691 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
692 {
693     int64_t target_sectors, ret, nb_sectors, sector_num = 0;
694     BlockDriverState *bs = child->bs;
695     BlockDriverState *file;
696     int n;
697
698     target_sectors = bdrv_nb_sectors(bs);
699     if (target_sectors < 0) {
700         return target_sectors;
701     }
702
703     for (;;) {
704         nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
705         if (nb_sectors <= 0) {
706             return 0;
707         }
708         ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
709         if (ret < 0) {
710             error_report("error getting block status at sector %" PRId64 ": %s",
711                          sector_num, strerror(-ret));
712             return ret;
713         }
714         if (ret & BDRV_BLOCK_ZERO) {
715             sector_num += n;
716             continue;
717         }
718         ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
719                                  n << BDRV_SECTOR_BITS, flags);
720         if (ret < 0) {
721             error_report("error writing zeroes at sector %" PRId64 ": %s",
722                          sector_num, strerror(-ret));
723             return ret;
724         }
725         sector_num += n;
726     }
727 }
728
729 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
730 {
731     int ret;
732
733     ret = bdrv_prwv_co(child, offset, qiov, false, 0);
734     if (ret < 0) {
735         return ret;
736     }
737
738     return qiov->size;
739 }
740
741 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
742 {
743     QEMUIOVector qiov;
744     struct iovec iov = {
745         .iov_base = (void *)buf,
746         .iov_len = bytes,
747     };
748
749     if (bytes < 0) {
750         return -EINVAL;
751     }
752
753     qemu_iovec_init_external(&qiov, &iov, 1);
754     return bdrv_preadv(child, offset, &qiov);
755 }
756
757 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
758 {
759     int ret;
760
761     ret = bdrv_prwv_co(child, offset, qiov, true, 0);
762     if (ret < 0) {
763         return ret;
764     }
765
766     return qiov->size;
767 }
768
769 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
770 {
771     QEMUIOVector qiov;
772     struct iovec iov = {
773         .iov_base   = (void *) buf,
774         .iov_len    = bytes,
775     };
776
777     if (bytes < 0) {
778         return -EINVAL;
779     }
780
781     qemu_iovec_init_external(&qiov, &iov, 1);
782     return bdrv_pwritev(child, offset, &qiov);
783 }
784
785 /*
786  * Writes to the file and ensures that no writes are reordered across this
787  * request (acts as a barrier)
788  *
789  * Returns 0 on success, -errno in error cases.
790  */
791 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
792                      const void *buf, int count)
793 {
794     int ret;
795
796     ret = bdrv_pwrite(child, offset, buf, count);
797     if (ret < 0) {
798         return ret;
799     }
800
801     ret = bdrv_flush(child->bs);
802     if (ret < 0) {
803         return ret;
804     }
805
806     return 0;
807 }
808
809 typedef struct CoroutineIOCompletion {
810     Coroutine *coroutine;
811     int ret;
812 } CoroutineIOCompletion;
813
814 static void bdrv_co_io_em_complete(void *opaque, int ret)
815 {
816     CoroutineIOCompletion *co = opaque;
817
818     co->ret = ret;
819     aio_co_wake(co->coroutine);
820 }
821
822 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
823                                            uint64_t offset, uint64_t bytes,
824                                            QEMUIOVector *qiov, int flags)
825 {
826     BlockDriver *drv = bs->drv;
827     int64_t sector_num;
828     unsigned int nb_sectors;
829
830     assert(!(flags & ~BDRV_REQ_MASK));
831
832     if (drv->bdrv_co_preadv) {
833         return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
834     }
835
836     sector_num = offset >> BDRV_SECTOR_BITS;
837     nb_sectors = bytes >> BDRV_SECTOR_BITS;
838
839     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
840     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
841     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
842
843     if (drv->bdrv_co_readv) {
844         return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
845     } else {
846         BlockAIOCB *acb;
847         CoroutineIOCompletion co = {
848             .coroutine = qemu_coroutine_self(),
849         };
850
851         acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
852                                       bdrv_co_io_em_complete, &co);
853         if (acb == NULL) {
854             return -EIO;
855         } else {
856             qemu_coroutine_yield();
857             return co.ret;
858         }
859     }
860 }
861
862 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
863                                             uint64_t offset, uint64_t bytes,
864                                             QEMUIOVector *qiov, int flags)
865 {
866     BlockDriver *drv = bs->drv;
867     int64_t sector_num;
868     unsigned int nb_sectors;
869     int ret;
870
871     assert(!(flags & ~BDRV_REQ_MASK));
872
873     if (drv->bdrv_co_pwritev) {
874         ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
875                                    flags & bs->supported_write_flags);
876         flags &= ~bs->supported_write_flags;
877         goto emulate_flags;
878     }
879
880     sector_num = offset >> BDRV_SECTOR_BITS;
881     nb_sectors = bytes >> BDRV_SECTOR_BITS;
882
883     assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
884     assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
885     assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
886
887     if (drv->bdrv_co_writev_flags) {
888         ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
889                                         flags & bs->supported_write_flags);
890         flags &= ~bs->supported_write_flags;
891     } else if (drv->bdrv_co_writev) {
892         assert(!bs->supported_write_flags);
893         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
894     } else {
895         BlockAIOCB *acb;
896         CoroutineIOCompletion co = {
897             .coroutine = qemu_coroutine_self(),
898         };
899
900         acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
901                                        bdrv_co_io_em_complete, &co);
902         if (acb == NULL) {
903             ret = -EIO;
904         } else {
905             qemu_coroutine_yield();
906             ret = co.ret;
907         }
908     }
909
910 emulate_flags:
911     if (ret == 0 && (flags & BDRV_REQ_FUA)) {
912         ret = bdrv_co_flush(bs);
913     }
914
915     return ret;
916 }
917
918 static int coroutine_fn
919 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
920                                uint64_t bytes, QEMUIOVector *qiov)
921 {
922     BlockDriver *drv = bs->drv;
923
924     if (!drv->bdrv_co_pwritev_compressed) {
925         return -ENOTSUP;
926     }
927
928     return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
929 }
930
931 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
932         int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
933 {
934     BlockDriverState *bs = child->bs;
935
936     /* Perform I/O through a temporary buffer so that users who scribble over
937      * their read buffer while the operation is in progress do not end up
938      * modifying the image file.  This is critical for zero-copy guest I/O
939      * where anything might happen inside guest memory.
940      */
941     void *bounce_buffer;
942
943     BlockDriver *drv = bs->drv;
944     struct iovec iov;
945     QEMUIOVector bounce_qiov;
946     int64_t cluster_offset;
947     unsigned int cluster_bytes;
948     size_t skip_bytes;
949     int ret;
950
951     /* FIXME We cannot require callers to have write permissions when all they
952      * are doing is a read request. If we did things right, write permissions
953      * would be obtained anyway, but internally by the copy-on-read code. As
954      * long as it is implemented here rather than in a separat filter driver,
955      * the copy-on-read code doesn't have its own BdrvChild, however, for which
956      * it could request permissions. Therefore we have to bypass the permission
957      * system for the moment. */
958     // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
959
960     /* Cover entire cluster so no additional backing file I/O is required when
961      * allocating cluster in the image file.
962      */
963     bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
964
965     trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
966                                    cluster_offset, cluster_bytes);
967
968     iov.iov_len = cluster_bytes;
969     iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
970     if (bounce_buffer == NULL) {
971         ret = -ENOMEM;
972         goto err;
973     }
974
975     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
976
977     ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
978                              &bounce_qiov, 0);
979     if (ret < 0) {
980         goto err;
981     }
982
983     if (drv->bdrv_co_pwrite_zeroes &&
984         buffer_is_zero(bounce_buffer, iov.iov_len)) {
985         /* FIXME: Should we (perhaps conditionally) be setting
986          * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
987          * that still correctly reads as zero? */
988         ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
989     } else {
990         /* This does not change the data on the disk, it is not necessary
991          * to flush even in cache=writethrough mode.
992          */
993         ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
994                                   &bounce_qiov, 0);
995     }
996
997     if (ret < 0) {
998         /* It might be okay to ignore write errors for guest requests.  If this
999          * is a deliberate copy-on-read then we don't want to ignore the error.
1000          * Simply report it in all cases.
1001          */
1002         goto err;
1003     }
1004
1005     skip_bytes = offset - cluster_offset;
1006     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1007
1008 err:
1009     qemu_vfree(bounce_buffer);
1010     return ret;
1011 }
1012
1013 /*
1014  * Forwards an already correctly aligned request to the BlockDriver. This
1015  * handles copy on read, zeroing after EOF, and fragmentation of large
1016  * reads; any other features must be implemented by the caller.
1017  */
1018 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1019     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1020     int64_t align, QEMUIOVector *qiov, int flags)
1021 {
1022     BlockDriverState *bs = child->bs;
1023     int64_t total_bytes, max_bytes;
1024     int ret = 0;
1025     uint64_t bytes_remaining = bytes;
1026     int max_transfer;
1027
1028     assert(is_power_of_2(align));
1029     assert((offset & (align - 1)) == 0);
1030     assert((bytes & (align - 1)) == 0);
1031     assert(!qiov || bytes == qiov->size);
1032     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1033     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1034                                    align);
1035
1036     /* TODO: We would need a per-BDS .supported_read_flags and
1037      * potential fallback support, if we ever implement any read flags
1038      * to pass through to drivers.  For now, there aren't any
1039      * passthrough flags.  */
1040     assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1041
1042     /* Handle Copy on Read and associated serialisation */
1043     if (flags & BDRV_REQ_COPY_ON_READ) {
1044         /* If we touch the same cluster it counts as an overlap.  This
1045          * guarantees that allocating writes will be serialized and not race
1046          * with each other for the same cluster.  For example, in copy-on-read
1047          * it ensures that the CoR read and write operations are atomic and
1048          * guest writes cannot interleave between them. */
1049         mark_request_serialising(req, bdrv_get_cluster_size(bs));
1050     }
1051
1052     if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1053         wait_serialising_requests(req);
1054     }
1055
1056     if (flags & BDRV_REQ_COPY_ON_READ) {
1057         int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1058         int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1059         unsigned int nb_sectors = end_sector - start_sector;
1060         int pnum;
1061
1062         ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1063         if (ret < 0) {
1064             goto out;
1065         }
1066
1067         if (!ret || pnum != nb_sectors) {
1068             ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1069             goto out;
1070         }
1071     }
1072
1073     /* Forward the request to the BlockDriver, possibly fragmenting it */
1074     total_bytes = bdrv_getlength(bs);
1075     if (total_bytes < 0) {
1076         ret = total_bytes;
1077         goto out;
1078     }
1079
1080     max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1081     if (bytes <= max_bytes && bytes <= max_transfer) {
1082         ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1083         goto out;
1084     }
1085
1086     while (bytes_remaining) {
1087         int num;
1088
1089         if (max_bytes) {
1090             QEMUIOVector local_qiov;
1091
1092             num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1093             assert(num);
1094             qemu_iovec_init(&local_qiov, qiov->niov);
1095             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1096
1097             ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1098                                      num, &local_qiov, 0);
1099             max_bytes -= num;
1100             qemu_iovec_destroy(&local_qiov);
1101         } else {
1102             num = bytes_remaining;
1103             ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1104                                     bytes_remaining);
1105         }
1106         if (ret < 0) {
1107             goto out;
1108         }
1109         bytes_remaining -= num;
1110     }
1111
1112 out:
1113     return ret < 0 ? ret : 0;
1114 }
1115
1116 /*
1117  * Handle a read request in coroutine context
1118  */
1119 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1120     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1121     BdrvRequestFlags flags)
1122 {
1123     BlockDriverState *bs = child->bs;
1124     BlockDriver *drv = bs->drv;
1125     BdrvTrackedRequest req;
1126
1127     uint64_t align = bs->bl.request_alignment;
1128     uint8_t *head_buf = NULL;
1129     uint8_t *tail_buf = NULL;
1130     QEMUIOVector local_qiov;
1131     bool use_local_qiov = false;
1132     int ret;
1133
1134     if (!drv) {
1135         return -ENOMEDIUM;
1136     }
1137
1138     ret = bdrv_check_byte_request(bs, offset, bytes);
1139     if (ret < 0) {
1140         return ret;
1141     }
1142
1143     bdrv_inc_in_flight(bs);
1144
1145     /* Don't do copy-on-read if we read data before write operation */
1146     if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1147         flags |= BDRV_REQ_COPY_ON_READ;
1148     }
1149
1150     /* Align read if necessary by padding qiov */
1151     if (offset & (align - 1)) {
1152         head_buf = qemu_blockalign(bs, align);
1153         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1154         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1155         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1156         use_local_qiov = true;
1157
1158         bytes += offset & (align - 1);
1159         offset = offset & ~(align - 1);
1160     }
1161
1162     if ((offset + bytes) & (align - 1)) {
1163         if (!use_local_qiov) {
1164             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1165             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1166             use_local_qiov = true;
1167         }
1168         tail_buf = qemu_blockalign(bs, align);
1169         qemu_iovec_add(&local_qiov, tail_buf,
1170                        align - ((offset + bytes) & (align - 1)));
1171
1172         bytes = ROUND_UP(bytes, align);
1173     }
1174
1175     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1176     ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1177                               use_local_qiov ? &local_qiov : qiov,
1178                               flags);
1179     tracked_request_end(&req);
1180     bdrv_dec_in_flight(bs);
1181
1182     if (use_local_qiov) {
1183         qemu_iovec_destroy(&local_qiov);
1184         qemu_vfree(head_buf);
1185         qemu_vfree(tail_buf);
1186     }
1187
1188     return ret;
1189 }
1190
1191 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1192     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1193     BdrvRequestFlags flags)
1194 {
1195     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1196         return -EINVAL;
1197     }
1198
1199     return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1200                           nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1201 }
1202
1203 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1204                                int nb_sectors, QEMUIOVector *qiov)
1205 {
1206     trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1207
1208     return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1209 }
1210
1211 /* Maximum buffer for write zeroes fallback, in bytes */
1212 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1213
1214 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1215     int64_t offset, int bytes, BdrvRequestFlags flags)
1216 {
1217     BlockDriver *drv = bs->drv;
1218     QEMUIOVector qiov;
1219     struct iovec iov = {0};
1220     int ret = 0;
1221     bool need_flush = false;
1222     int head = 0;
1223     int tail = 0;
1224
1225     int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1226     int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1227                         bs->bl.request_alignment);
1228     int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1229                                     MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1230
1231     assert(alignment % bs->bl.request_alignment == 0);
1232     head = offset % alignment;
1233     tail = (offset + bytes) % alignment;
1234     max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1235     assert(max_write_zeroes >= bs->bl.request_alignment);
1236
1237     while (bytes > 0 && !ret) {
1238         int num = bytes;
1239
1240         /* Align request.  Block drivers can expect the "bulk" of the request
1241          * to be aligned, and that unaligned requests do not cross cluster
1242          * boundaries.
1243          */
1244         if (head) {
1245             /* Make a small request up to the first aligned sector. For
1246              * convenience, limit this request to max_transfer even if
1247              * we don't need to fall back to writes.  */
1248             num = MIN(MIN(bytes, max_transfer), alignment - head);
1249             head = (head + num) % alignment;
1250             assert(num < max_write_zeroes);
1251         } else if (tail && num > alignment) {
1252             /* Shorten the request to the last aligned sector.  */
1253             num -= tail;
1254         }
1255
1256         /* limit request size */
1257         if (num > max_write_zeroes) {
1258             num = max_write_zeroes;
1259         }
1260
1261         ret = -ENOTSUP;
1262         /* First try the efficient write zeroes operation */
1263         if (drv->bdrv_co_pwrite_zeroes) {
1264             ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1265                                              flags & bs->supported_zero_flags);
1266             if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1267                 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1268                 need_flush = true;
1269             }
1270         } else {
1271             assert(!bs->supported_zero_flags);
1272         }
1273
1274         if (ret == -ENOTSUP) {
1275             /* Fall back to bounce buffer if write zeroes is unsupported */
1276             BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1277
1278             if ((flags & BDRV_REQ_FUA) &&
1279                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1280                 /* No need for bdrv_driver_pwrite() to do a fallback
1281                  * flush on each chunk; use just one at the end */
1282                 write_flags &= ~BDRV_REQ_FUA;
1283                 need_flush = true;
1284             }
1285             num = MIN(num, max_transfer);
1286             iov.iov_len = num;
1287             if (iov.iov_base == NULL) {
1288                 iov.iov_base = qemu_try_blockalign(bs, num);
1289                 if (iov.iov_base == NULL) {
1290                     ret = -ENOMEM;
1291                     goto fail;
1292                 }
1293                 memset(iov.iov_base, 0, num);
1294             }
1295             qemu_iovec_init_external(&qiov, &iov, 1);
1296
1297             ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1298
1299             /* Keep bounce buffer around if it is big enough for all
1300              * all future requests.
1301              */
1302             if (num < max_transfer) {
1303                 qemu_vfree(iov.iov_base);
1304                 iov.iov_base = NULL;
1305             }
1306         }
1307
1308         offset += num;
1309         bytes -= num;
1310     }
1311
1312 fail:
1313     if (ret == 0 && need_flush) {
1314         ret = bdrv_co_flush(bs);
1315     }
1316     qemu_vfree(iov.iov_base);
1317     return ret;
1318 }
1319
1320 /*
1321  * Forwards an already correctly aligned write request to the BlockDriver,
1322  * after possibly fragmenting it.
1323  */
1324 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1325     BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1326     int64_t align, QEMUIOVector *qiov, int flags)
1327 {
1328     BlockDriverState *bs = child->bs;
1329     BlockDriver *drv = bs->drv;
1330     bool waited;
1331     int ret;
1332
1333     int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1334     int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1335     uint64_t bytes_remaining = bytes;
1336     int max_transfer;
1337
1338     assert(is_power_of_2(align));
1339     assert((offset & (align - 1)) == 0);
1340     assert((bytes & (align - 1)) == 0);
1341     assert(!qiov || bytes == qiov->size);
1342     assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1343     assert(!(flags & ~BDRV_REQ_MASK));
1344     max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1345                                    align);
1346
1347     waited = wait_serialising_requests(req);
1348     assert(!waited || !req->serialising);
1349     assert(req->overlap_offset <= offset);
1350     assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1351     assert(child->perm & BLK_PERM_WRITE);
1352     assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1353
1354     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1355
1356     if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1357         !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1358         qemu_iovec_is_zero(qiov)) {
1359         flags |= BDRV_REQ_ZERO_WRITE;
1360         if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1361             flags |= BDRV_REQ_MAY_UNMAP;
1362         }
1363     }
1364
1365     if (ret < 0) {
1366         /* Do nothing, write notifier decided to fail this request */
1367     } else if (flags & BDRV_REQ_ZERO_WRITE) {
1368         bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1369         ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1370     } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1371         ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1372     } else if (bytes <= max_transfer) {
1373         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1374         ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1375     } else {
1376         bdrv_debug_event(bs, BLKDBG_PWRITEV);
1377         while (bytes_remaining) {
1378             int num = MIN(bytes_remaining, max_transfer);
1379             QEMUIOVector local_qiov;
1380             int local_flags = flags;
1381
1382             assert(num);
1383             if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1384                 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1385                 /* If FUA is going to be emulated by flush, we only
1386                  * need to flush on the last iteration */
1387                 local_flags &= ~BDRV_REQ_FUA;
1388             }
1389             qemu_iovec_init(&local_qiov, qiov->niov);
1390             qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1391
1392             ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1393                                       num, &local_qiov, local_flags);
1394             qemu_iovec_destroy(&local_qiov);
1395             if (ret < 0) {
1396                 break;
1397             }
1398             bytes_remaining -= num;
1399         }
1400     }
1401     bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1402
1403     atomic_inc(&bs->write_gen);
1404     bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1405
1406     stat64_max(&bs->wr_highest_offset, offset + bytes);
1407
1408     if (ret >= 0) {
1409         bs->total_sectors = MAX(bs->total_sectors, end_sector);
1410         ret = 0;
1411     }
1412
1413     return ret;
1414 }
1415
1416 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1417                                                 int64_t offset,
1418                                                 unsigned int bytes,
1419                                                 BdrvRequestFlags flags,
1420                                                 BdrvTrackedRequest *req)
1421 {
1422     BlockDriverState *bs = child->bs;
1423     uint8_t *buf = NULL;
1424     QEMUIOVector local_qiov;
1425     struct iovec iov;
1426     uint64_t align = bs->bl.request_alignment;
1427     unsigned int head_padding_bytes, tail_padding_bytes;
1428     int ret = 0;
1429
1430     head_padding_bytes = offset & (align - 1);
1431     tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1432
1433
1434     assert(flags & BDRV_REQ_ZERO_WRITE);
1435     if (head_padding_bytes || tail_padding_bytes) {
1436         buf = qemu_blockalign(bs, align);
1437         iov = (struct iovec) {
1438             .iov_base   = buf,
1439             .iov_len    = align,
1440         };
1441         qemu_iovec_init_external(&local_qiov, &iov, 1);
1442     }
1443     if (head_padding_bytes) {
1444         uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1445
1446         /* RMW the unaligned part before head. */
1447         mark_request_serialising(req, align);
1448         wait_serialising_requests(req);
1449         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1450         ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1451                                   align, &local_qiov, 0);
1452         if (ret < 0) {
1453             goto fail;
1454         }
1455         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1456
1457         memset(buf + head_padding_bytes, 0, zero_bytes);
1458         ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1459                                    align, &local_qiov,
1460                                    flags & ~BDRV_REQ_ZERO_WRITE);
1461         if (ret < 0) {
1462             goto fail;
1463         }
1464         offset += zero_bytes;
1465         bytes -= zero_bytes;
1466     }
1467
1468     assert(!bytes || (offset & (align - 1)) == 0);
1469     if (bytes >= align) {
1470         /* Write the aligned part in the middle. */
1471         uint64_t aligned_bytes = bytes & ~(align - 1);
1472         ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1473                                    NULL, flags);
1474         if (ret < 0) {
1475             goto fail;
1476         }
1477         bytes -= aligned_bytes;
1478         offset += aligned_bytes;
1479     }
1480
1481     assert(!bytes || (offset & (align - 1)) == 0);
1482     if (bytes) {
1483         assert(align == tail_padding_bytes + bytes);
1484         /* RMW the unaligned part after tail. */
1485         mark_request_serialising(req, align);
1486         wait_serialising_requests(req);
1487         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1488         ret = bdrv_aligned_preadv(child, req, offset, align,
1489                                   align, &local_qiov, 0);
1490         if (ret < 0) {
1491             goto fail;
1492         }
1493         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1494
1495         memset(buf, 0, bytes);
1496         ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1497                                    &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1498     }
1499 fail:
1500     qemu_vfree(buf);
1501     return ret;
1502
1503 }
1504
1505 /*
1506  * Handle a write request in coroutine context
1507  */
1508 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1509     int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1510     BdrvRequestFlags flags)
1511 {
1512     BlockDriverState *bs = child->bs;
1513     BdrvTrackedRequest req;
1514     uint64_t align = bs->bl.request_alignment;
1515     uint8_t *head_buf = NULL;
1516     uint8_t *tail_buf = NULL;
1517     QEMUIOVector local_qiov;
1518     bool use_local_qiov = false;
1519     int ret;
1520
1521     if (!bs->drv) {
1522         return -ENOMEDIUM;
1523     }
1524     if (bs->read_only) {
1525         return -EPERM;
1526     }
1527     assert(!(bs->open_flags & BDRV_O_INACTIVE));
1528
1529     ret = bdrv_check_byte_request(bs, offset, bytes);
1530     if (ret < 0) {
1531         return ret;
1532     }
1533
1534     bdrv_inc_in_flight(bs);
1535     /*
1536      * Align write if necessary by performing a read-modify-write cycle.
1537      * Pad qiov with the read parts and be sure to have a tracked request not
1538      * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1539      */
1540     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1541
1542     if (!qiov) {
1543         ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1544         goto out;
1545     }
1546
1547     if (offset & (align - 1)) {
1548         QEMUIOVector head_qiov;
1549         struct iovec head_iov;
1550
1551         mark_request_serialising(&req, align);
1552         wait_serialising_requests(&req);
1553
1554         head_buf = qemu_blockalign(bs, align);
1555         head_iov = (struct iovec) {
1556             .iov_base   = head_buf,
1557             .iov_len    = align,
1558         };
1559         qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1560
1561         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1562         ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1563                                   align, &head_qiov, 0);
1564         if (ret < 0) {
1565             goto fail;
1566         }
1567         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1568
1569         qemu_iovec_init(&local_qiov, qiov->niov + 2);
1570         qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1571         qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1572         use_local_qiov = true;
1573
1574         bytes += offset & (align - 1);
1575         offset = offset & ~(align - 1);
1576
1577         /* We have read the tail already if the request is smaller
1578          * than one aligned block.
1579          */
1580         if (bytes < align) {
1581             qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1582             bytes = align;
1583         }
1584     }
1585
1586     if ((offset + bytes) & (align - 1)) {
1587         QEMUIOVector tail_qiov;
1588         struct iovec tail_iov;
1589         size_t tail_bytes;
1590         bool waited;
1591
1592         mark_request_serialising(&req, align);
1593         waited = wait_serialising_requests(&req);
1594         assert(!waited || !use_local_qiov);
1595
1596         tail_buf = qemu_blockalign(bs, align);
1597         tail_iov = (struct iovec) {
1598             .iov_base   = tail_buf,
1599             .iov_len    = align,
1600         };
1601         qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1602
1603         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1604         ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1605                                   align, align, &tail_qiov, 0);
1606         if (ret < 0) {
1607             goto fail;
1608         }
1609         bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1610
1611         if (!use_local_qiov) {
1612             qemu_iovec_init(&local_qiov, qiov->niov + 1);
1613             qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1614             use_local_qiov = true;
1615         }
1616
1617         tail_bytes = (offset + bytes) & (align - 1);
1618         qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1619
1620         bytes = ROUND_UP(bytes, align);
1621     }
1622
1623     ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1624                                use_local_qiov ? &local_qiov : qiov,
1625                                flags);
1626
1627 fail:
1628
1629     if (use_local_qiov) {
1630         qemu_iovec_destroy(&local_qiov);
1631     }
1632     qemu_vfree(head_buf);
1633     qemu_vfree(tail_buf);
1634 out:
1635     tracked_request_end(&req);
1636     bdrv_dec_in_flight(bs);
1637     return ret;
1638 }
1639
1640 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1641     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1642     BdrvRequestFlags flags)
1643 {
1644     if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1645         return -EINVAL;
1646     }
1647
1648     return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1649                            nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1650 }
1651
1652 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1653     int nb_sectors, QEMUIOVector *qiov)
1654 {
1655     trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1656
1657     return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1658 }
1659
1660 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1661                                        int bytes, BdrvRequestFlags flags)
1662 {
1663     trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1664
1665     if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1666         flags &= ~BDRV_REQ_MAY_UNMAP;
1667     }
1668
1669     return bdrv_co_pwritev(child, offset, bytes, NULL,
1670                            BDRV_REQ_ZERO_WRITE | flags);
1671 }
1672
1673 /*
1674  * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1675  */
1676 int bdrv_flush_all(void)
1677 {
1678     BdrvNextIterator it;
1679     BlockDriverState *bs = NULL;
1680     int result = 0;
1681
1682     for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1683         AioContext *aio_context = bdrv_get_aio_context(bs);
1684         int ret;
1685
1686         aio_context_acquire(aio_context);
1687         ret = bdrv_flush(bs);
1688         if (ret < 0 && !result) {
1689             result = ret;
1690         }
1691         aio_context_release(aio_context);
1692     }
1693
1694     return result;
1695 }
1696
1697
1698 typedef struct BdrvCoGetBlockStatusData {
1699     BlockDriverState *bs;
1700     BlockDriverState *base;
1701     BlockDriverState **file;
1702     int64_t sector_num;
1703     int nb_sectors;
1704     int *pnum;
1705     int64_t ret;
1706     bool done;
1707 } BdrvCoGetBlockStatusData;
1708
1709 /*
1710  * Returns the allocation status of the specified sectors.
1711  * Drivers not implementing the functionality are assumed to not support
1712  * backing files, hence all their sectors are reported as allocated.
1713  *
1714  * If 'sector_num' is beyond the end of the disk image the return value is
1715  * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1716  *
1717  * 'pnum' is set to the number of sectors (including and immediately following
1718  * the specified sector) that are known to be in the same
1719  * allocated/unallocated state.
1720  *
1721  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
1722  * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1723  * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1724  *
1725  * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1726  * points to the BDS which the sector range is allocated in.
1727  */
1728 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1729                                                      int64_t sector_num,
1730                                                      int nb_sectors, int *pnum,
1731                                                      BlockDriverState **file)
1732 {
1733     int64_t total_sectors;
1734     int64_t n;
1735     int64_t ret, ret2;
1736
1737     *file = NULL;
1738     total_sectors = bdrv_nb_sectors(bs);
1739     if (total_sectors < 0) {
1740         return total_sectors;
1741     }
1742
1743     if (sector_num >= total_sectors) {
1744         *pnum = 0;
1745         return BDRV_BLOCK_EOF;
1746     }
1747
1748     n = total_sectors - sector_num;
1749     if (n < nb_sectors) {
1750         nb_sectors = n;
1751     }
1752
1753     if (!bs->drv->bdrv_co_get_block_status) {
1754         *pnum = nb_sectors;
1755         ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1756         if (sector_num + nb_sectors == total_sectors) {
1757             ret |= BDRV_BLOCK_EOF;
1758         }
1759         if (bs->drv->protocol_name) {
1760             ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1761             *file = bs;
1762         }
1763         return ret;
1764     }
1765
1766     bdrv_inc_in_flight(bs);
1767     ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1768                                             file);
1769     if (ret < 0) {
1770         *pnum = 0;
1771         goto out;
1772     }
1773
1774     if (ret & BDRV_BLOCK_RAW) {
1775         assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1776         ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1777                                        *pnum, pnum, file);
1778         goto out;
1779     }
1780
1781     if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1782         ret |= BDRV_BLOCK_ALLOCATED;
1783     } else {
1784         if (bdrv_unallocated_blocks_are_zero(bs)) {
1785             ret |= BDRV_BLOCK_ZERO;
1786         } else if (bs->backing) {
1787             BlockDriverState *bs2 = bs->backing->bs;
1788             int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1789             if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1790                 ret |= BDRV_BLOCK_ZERO;
1791             }
1792         }
1793     }
1794
1795     if (*file && *file != bs &&
1796         (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1797         (ret & BDRV_BLOCK_OFFSET_VALID)) {
1798         BlockDriverState *file2;
1799         int file_pnum;
1800
1801         ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1802                                         *pnum, &file_pnum, &file2);
1803         if (ret2 >= 0) {
1804             /* Ignore errors.  This is just providing extra information, it
1805              * is useful but not necessary.
1806              */
1807             if (ret2 & BDRV_BLOCK_EOF &&
1808                 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1809                 /*
1810                  * It is valid for the format block driver to read
1811                  * beyond the end of the underlying file's current
1812                  * size; such areas read as zero.
1813                  */
1814                 ret |= BDRV_BLOCK_ZERO;
1815             } else {
1816                 /* Limit request to the range reported by the protocol driver */
1817                 *pnum = file_pnum;
1818                 ret |= (ret2 & BDRV_BLOCK_ZERO);
1819             }
1820         }
1821     }
1822
1823 out:
1824     bdrv_dec_in_flight(bs);
1825     if (ret >= 0 && sector_num + *pnum == total_sectors) {
1826         ret |= BDRV_BLOCK_EOF;
1827     }
1828     return ret;
1829 }
1830
1831 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1832         BlockDriverState *base,
1833         int64_t sector_num,
1834         int nb_sectors,
1835         int *pnum,
1836         BlockDriverState **file)
1837 {
1838     BlockDriverState *p;
1839     int64_t ret = 0;
1840     bool first = true;
1841
1842     assert(bs != base);
1843     for (p = bs; p != base; p = backing_bs(p)) {
1844         ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1845         if (ret < 0) {
1846             break;
1847         }
1848         if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1849             /*
1850              * Reading beyond the end of the file continues to read
1851              * zeroes, but we can only widen the result to the
1852              * unallocated length we learned from an earlier
1853              * iteration.
1854              */
1855             *pnum = nb_sectors;
1856         }
1857         if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1858             break;
1859         }
1860         /* [sector_num, pnum] unallocated on this layer, which could be only
1861          * the first part of [sector_num, nb_sectors].  */
1862         nb_sectors = MIN(nb_sectors, *pnum);
1863         first = false;
1864     }
1865     return ret;
1866 }
1867
1868 /* Coroutine wrapper for bdrv_get_block_status_above() */
1869 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1870 {
1871     BdrvCoGetBlockStatusData *data = opaque;
1872
1873     data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1874                                                data->sector_num,
1875                                                data->nb_sectors,
1876                                                data->pnum,
1877                                                data->file);
1878     data->done = true;
1879 }
1880
1881 /*
1882  * Synchronous wrapper around bdrv_co_get_block_status_above().
1883  *
1884  * See bdrv_co_get_block_status_above() for details.
1885  */
1886 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1887                                     BlockDriverState *base,
1888                                     int64_t sector_num,
1889                                     int nb_sectors, int *pnum,
1890                                     BlockDriverState **file)
1891 {
1892     Coroutine *co;
1893     BdrvCoGetBlockStatusData data = {
1894         .bs = bs,
1895         .base = base,
1896         .file = file,
1897         .sector_num = sector_num,
1898         .nb_sectors = nb_sectors,
1899         .pnum = pnum,
1900         .done = false,
1901     };
1902
1903     if (qemu_in_coroutine()) {
1904         /* Fast-path if already in coroutine context */
1905         bdrv_get_block_status_above_co_entry(&data);
1906     } else {
1907         co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1908                                    &data);
1909         bdrv_coroutine_enter(bs, co);
1910         BDRV_POLL_WHILE(bs, !data.done);
1911     }
1912     return data.ret;
1913 }
1914
1915 int64_t bdrv_get_block_status(BlockDriverState *bs,
1916                               int64_t sector_num,
1917                               int nb_sectors, int *pnum,
1918                               BlockDriverState **file)
1919 {
1920     return bdrv_get_block_status_above(bs, backing_bs(bs),
1921                                        sector_num, nb_sectors, pnum, file);
1922 }
1923
1924 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1925                                    int nb_sectors, int *pnum)
1926 {
1927     BlockDriverState *file;
1928     int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1929                                         &file);
1930     if (ret < 0) {
1931         return ret;
1932     }
1933     return !!(ret & BDRV_BLOCK_ALLOCATED);
1934 }
1935
1936 /*
1937  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1938  *
1939  * Return true if the given sector is allocated in any image between
1940  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
1941  * sector is allocated in any image of the chain.  Return false otherwise.
1942  *
1943  * 'pnum' is set to the number of sectors (including and immediately following
1944  *  the specified sector) that are known to be in the same
1945  *  allocated/unallocated state.
1946  *
1947  */
1948 int bdrv_is_allocated_above(BlockDriverState *top,
1949                             BlockDriverState *base,
1950                             int64_t sector_num,
1951                             int nb_sectors, int *pnum)
1952 {
1953     BlockDriverState *intermediate;
1954     int ret, n = nb_sectors;
1955
1956     intermediate = top;
1957     while (intermediate && intermediate != base) {
1958         int pnum_inter;
1959         ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1960                                 &pnum_inter);
1961         if (ret < 0) {
1962             return ret;
1963         } else if (ret) {
1964             *pnum = pnum_inter;
1965             return 1;
1966         }
1967
1968         /*
1969          * [sector_num, nb_sectors] is unallocated on top but intermediate
1970          * might have
1971          *
1972          * [sector_num+x, nr_sectors] allocated.
1973          */
1974         if (n > pnum_inter &&
1975             (intermediate == top ||
1976              sector_num + pnum_inter < intermediate->total_sectors)) {
1977             n = pnum_inter;
1978         }
1979
1980         intermediate = backing_bs(intermediate);
1981     }
1982
1983     *pnum = n;
1984     return 0;
1985 }
1986
1987 typedef struct BdrvVmstateCo {
1988     BlockDriverState    *bs;
1989     QEMUIOVector        *qiov;
1990     int64_t             pos;
1991     bool                is_read;
1992     int                 ret;
1993 } BdrvVmstateCo;
1994
1995 static int coroutine_fn
1996 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1997                    bool is_read)
1998 {
1999     BlockDriver *drv = bs->drv;
2000     int ret = -ENOTSUP;
2001
2002     bdrv_inc_in_flight(bs);
2003
2004     if (!drv) {
2005         ret = -ENOMEDIUM;
2006     } else if (drv->bdrv_load_vmstate) {
2007         if (is_read) {
2008             ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2009         } else {
2010             ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2011         }
2012     } else if (bs->file) {
2013         ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2014     }
2015
2016     bdrv_dec_in_flight(bs);
2017     return ret;
2018 }
2019
2020 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2021 {
2022     BdrvVmstateCo *co = opaque;
2023     co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2024 }
2025
2026 static inline int
2027 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2028                 bool is_read)
2029 {
2030     if (qemu_in_coroutine()) {
2031         return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2032     } else {
2033         BdrvVmstateCo data = {
2034             .bs         = bs,
2035             .qiov       = qiov,
2036             .pos        = pos,
2037             .is_read    = is_read,
2038             .ret        = -EINPROGRESS,
2039         };
2040         Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2041
2042         bdrv_coroutine_enter(bs, co);
2043         BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2044         return data.ret;
2045     }
2046 }
2047
2048 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2049                       int64_t pos, int size)
2050 {
2051     QEMUIOVector qiov;
2052     struct iovec iov = {
2053         .iov_base   = (void *) buf,
2054         .iov_len    = size,
2055     };
2056     int ret;
2057
2058     qemu_iovec_init_external(&qiov, &iov, 1);
2059
2060     ret = bdrv_writev_vmstate(bs, &qiov, pos);
2061     if (ret < 0) {
2062         return ret;
2063     }
2064
2065     return size;
2066 }
2067
2068 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2069 {
2070     return bdrv_rw_vmstate(bs, qiov, pos, false);
2071 }
2072
2073 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2074                       int64_t pos, int size)
2075 {
2076     QEMUIOVector qiov;
2077     struct iovec iov = {
2078         .iov_base   = buf,
2079         .iov_len    = size,
2080     };
2081     int ret;
2082
2083     qemu_iovec_init_external(&qiov, &iov, 1);
2084     ret = bdrv_readv_vmstate(bs, &qiov, pos);
2085     if (ret < 0) {
2086         return ret;
2087     }
2088
2089     return size;
2090 }
2091
2092 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2093 {
2094     return bdrv_rw_vmstate(bs, qiov, pos, true);
2095 }
2096
2097 /**************************************************************/
2098 /* async I/Os */
2099
2100 void bdrv_aio_cancel(BlockAIOCB *acb)
2101 {
2102     qemu_aio_ref(acb);
2103     bdrv_aio_cancel_async(acb);
2104     while (acb->refcnt > 1) {
2105         if (acb->aiocb_info->get_aio_context) {
2106             aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2107         } else if (acb->bs) {
2108             /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2109              * assert that we're not using an I/O thread.  Thread-safe
2110              * code should use bdrv_aio_cancel_async exclusively.
2111              */
2112             assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2113             aio_poll(bdrv_get_aio_context(acb->bs), true);
2114         } else {
2115             abort();
2116         }
2117     }
2118     qemu_aio_unref(acb);
2119 }
2120
2121 /* Async version of aio cancel. The caller is not blocked if the acb implements
2122  * cancel_async, otherwise we do nothing and let the request normally complete.
2123  * In either case the completion callback must be called. */
2124 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2125 {
2126     if (acb->aiocb_info->cancel_async) {
2127         acb->aiocb_info->cancel_async(acb);
2128     }
2129 }
2130
2131 /**************************************************************/
2132 /* Coroutine block device emulation */
2133
2134 typedef struct FlushCo {
2135     BlockDriverState *bs;
2136     int ret;
2137 } FlushCo;
2138
2139
2140 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2141 {
2142     FlushCo *rwco = opaque;
2143
2144     rwco->ret = bdrv_co_flush(rwco->bs);
2145 }
2146
2147 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2148 {
2149     int current_gen;
2150     int ret = 0;
2151
2152     bdrv_inc_in_flight(bs);
2153
2154     if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2155         bdrv_is_sg(bs)) {
2156         goto early_exit;
2157     }
2158
2159     qemu_co_mutex_lock(&bs->reqs_lock);
2160     current_gen = atomic_read(&bs->write_gen);
2161
2162     /* Wait until any previous flushes are completed */
2163     while (bs->active_flush_req) {
2164         qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2165     }
2166
2167     /* Flushes reach this point in nondecreasing current_gen order.  */
2168     bs->active_flush_req = true;
2169     qemu_co_mutex_unlock(&bs->reqs_lock);
2170
2171     /* Write back all layers by calling one driver function */
2172     if (bs->drv->bdrv_co_flush) {
2173         ret = bs->drv->bdrv_co_flush(bs);
2174         goto out;
2175     }
2176
2177     /* Write back cached data to the OS even with cache=unsafe */
2178     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2179     if (bs->drv->bdrv_co_flush_to_os) {
2180         ret = bs->drv->bdrv_co_flush_to_os(bs);
2181         if (ret < 0) {
2182             goto out;
2183         }
2184     }
2185
2186     /* But don't actually force it to the disk with cache=unsafe */
2187     if (bs->open_flags & BDRV_O_NO_FLUSH) {
2188         goto flush_parent;
2189     }
2190
2191     /* Check if we really need to flush anything */
2192     if (bs->flushed_gen == current_gen) {
2193         goto flush_parent;
2194     }
2195
2196     BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2197     if (bs->drv->bdrv_co_flush_to_disk) {
2198         ret = bs->drv->bdrv_co_flush_to_disk(bs);
2199     } else if (bs->drv->bdrv_aio_flush) {
2200         BlockAIOCB *acb;
2201         CoroutineIOCompletion co = {
2202             .coroutine = qemu_coroutine_self(),
2203         };
2204
2205         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2206         if (acb == NULL) {
2207             ret = -EIO;
2208         } else {
2209             qemu_coroutine_yield();
2210             ret = co.ret;
2211         }
2212     } else {
2213         /*
2214          * Some block drivers always operate in either writethrough or unsafe
2215          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2216          * know how the server works (because the behaviour is hardcoded or
2217          * depends on server-side configuration), so we can't ensure that
2218          * everything is safe on disk. Returning an error doesn't work because
2219          * that would break guests even if the server operates in writethrough
2220          * mode.
2221          *
2222          * Let's hope the user knows what he's doing.
2223          */
2224         ret = 0;
2225     }
2226
2227     if (ret < 0) {
2228         goto out;
2229     }
2230
2231     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
2232      * in the case of cache=unsafe, so there are no useless flushes.
2233      */
2234 flush_parent:
2235     ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2236 out:
2237     /* Notify any pending flushes that we have completed */
2238     if (ret == 0) {
2239         bs->flushed_gen = current_gen;
2240     }
2241
2242     qemu_co_mutex_lock(&bs->reqs_lock);
2243     bs->active_flush_req = false;
2244     /* Return value is ignored - it's ok if wait queue is empty */
2245     qemu_co_queue_next(&bs->flush_queue);
2246     qemu_co_mutex_unlock(&bs->reqs_lock);
2247
2248 early_exit:
2249     bdrv_dec_in_flight(bs);
2250     return ret;
2251 }
2252
2253 int bdrv_flush(BlockDriverState *bs)
2254 {
2255     Coroutine *co;
2256     FlushCo flush_co = {
2257         .bs = bs,
2258         .ret = NOT_DONE,
2259     };
2260
2261     if (qemu_in_coroutine()) {
2262         /* Fast-path if already in coroutine context */
2263         bdrv_flush_co_entry(&flush_co);
2264     } else {
2265         co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2266         bdrv_coroutine_enter(bs, co);
2267         BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2268     }
2269
2270     return flush_co.ret;
2271 }
2272
2273 typedef struct DiscardCo {
2274     BlockDriverState *bs;
2275     int64_t offset;
2276     int bytes;
2277     int ret;
2278 } DiscardCo;
2279 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2280 {
2281     DiscardCo *rwco = opaque;
2282
2283     rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2284 }
2285
2286 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2287                                   int bytes)
2288 {
2289     BdrvTrackedRequest req;
2290     int max_pdiscard, ret;
2291     int head, tail, align;
2292
2293     if (!bs->drv) {
2294         return -ENOMEDIUM;
2295     }
2296
2297     ret = bdrv_check_byte_request(bs, offset, bytes);
2298     if (ret < 0) {
2299         return ret;
2300     } else if (bs->read_only) {
2301         return -EPERM;
2302     }
2303     assert(!(bs->open_flags & BDRV_O_INACTIVE));
2304
2305     /* Do nothing if disabled.  */
2306     if (!(bs->open_flags & BDRV_O_UNMAP)) {
2307         return 0;
2308     }
2309
2310     if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2311         return 0;
2312     }
2313
2314     /* Discard is advisory, but some devices track and coalesce
2315      * unaligned requests, so we must pass everything down rather than
2316      * round here.  Still, most devices will just silently ignore
2317      * unaligned requests (by returning -ENOTSUP), so we must fragment
2318      * the request accordingly.  */
2319     align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2320     assert(align % bs->bl.request_alignment == 0);
2321     head = offset % align;
2322     tail = (offset + bytes) % align;
2323
2324     bdrv_inc_in_flight(bs);
2325     tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2326
2327     ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2328     if (ret < 0) {
2329         goto out;
2330     }
2331
2332     max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2333                                    align);
2334     assert(max_pdiscard >= bs->bl.request_alignment);
2335
2336     while (bytes > 0) {
2337         int ret;
2338         int num = bytes;
2339
2340         if (head) {
2341             /* Make small requests to get to alignment boundaries. */
2342             num = MIN(bytes, align - head);
2343             if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2344                 num %= bs->bl.request_alignment;
2345             }
2346             head = (head + num) % align;
2347             assert(num < max_pdiscard);
2348         } else if (tail) {
2349             if (num > align) {
2350                 /* Shorten the request to the last aligned cluster.  */
2351                 num -= tail;
2352             } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2353                        tail > bs->bl.request_alignment) {
2354                 tail %= bs->bl.request_alignment;
2355                 num -= tail;
2356             }
2357         }
2358         /* limit request size */
2359         if (num > max_pdiscard) {
2360             num = max_pdiscard;
2361         }
2362
2363         if (bs->drv->bdrv_co_pdiscard) {
2364             ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2365         } else {
2366             BlockAIOCB *acb;
2367             CoroutineIOCompletion co = {
2368                 .coroutine = qemu_coroutine_self(),
2369             };
2370
2371             acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2372                                              bdrv_co_io_em_complete, &co);
2373             if (acb == NULL) {
2374                 ret = -EIO;
2375                 goto out;
2376             } else {
2377                 qemu_coroutine_yield();
2378                 ret = co.ret;
2379             }
2380         }
2381         if (ret && ret != -ENOTSUP) {
2382             goto out;
2383         }
2384
2385         offset += num;
2386         bytes -= num;
2387     }
2388     ret = 0;
2389 out:
2390     atomic_inc(&bs->write_gen);
2391     bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2392                    req.bytes >> BDRV_SECTOR_BITS);
2393     tracked_request_end(&req);
2394     bdrv_dec_in_flight(bs);
2395     return ret;
2396 }
2397
2398 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2399 {
2400     Coroutine *co;
2401     DiscardCo rwco = {
2402         .bs = bs,
2403         .offset = offset,
2404         .bytes = bytes,
2405         .ret = NOT_DONE,
2406     };
2407
2408     if (qemu_in_coroutine()) {
2409         /* Fast-path if already in coroutine context */
2410         bdrv_pdiscard_co_entry(&rwco);
2411     } else {
2412         co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2413         bdrv_coroutine_enter(bs, co);
2414         BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2415     }
2416
2417     return rwco.ret;
2418 }
2419
2420 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2421 {
2422     BlockDriver *drv = bs->drv;
2423     CoroutineIOCompletion co = {
2424         .coroutine = qemu_coroutine_self(),
2425     };
2426     BlockAIOCB *acb;
2427
2428     bdrv_inc_in_flight(bs);
2429     if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2430         co.ret = -ENOTSUP;
2431         goto out;
2432     }
2433
2434     if (drv->bdrv_co_ioctl) {
2435         co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2436     } else {
2437         acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2438         if (!acb) {
2439             co.ret = -ENOTSUP;
2440             goto out;
2441         }
2442         qemu_coroutine_yield();
2443     }
2444 out:
2445     bdrv_dec_in_flight(bs);
2446     return co.ret;
2447 }
2448
2449 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2450 {
2451     return qemu_memalign(bdrv_opt_mem_align(bs), size);
2452 }
2453
2454 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2455 {
2456     return memset(qemu_blockalign(bs, size), 0, size);
2457 }
2458
2459 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2460 {
2461     size_t align = bdrv_opt_mem_align(bs);
2462
2463     /* Ensure that NULL is never returned on success */
2464     assert(align > 0);
2465     if (size == 0) {
2466         size = align;
2467     }
2468
2469     return qemu_try_memalign(align, size);
2470 }
2471
2472 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2473 {
2474     void *mem = qemu_try_blockalign(bs, size);
2475
2476     if (mem) {
2477         memset(mem, 0, size);
2478     }
2479
2480     return mem;
2481 }
2482
2483 /*
2484  * Check if all memory in this vector is sector aligned.
2485  */
2486 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2487 {
2488     int i;
2489     size_t alignment = bdrv_min_mem_align(bs);
2490
2491     for (i = 0; i < qiov->niov; i++) {
2492         if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2493             return false;
2494         }
2495         if (qiov->iov[i].iov_len % alignment) {
2496             return false;
2497         }
2498     }
2499
2500     return true;
2501 }
2502
2503 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2504                                     NotifierWithReturn *notifier)
2505 {
2506     notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2507 }
2508
2509 void bdrv_io_plug(BlockDriverState *bs)
2510 {
2511     BdrvChild *child;
2512
2513     QLIST_FOREACH(child, &bs->children, next) {
2514         bdrv_io_plug(child->bs);
2515     }
2516
2517     if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2518         BlockDriver *drv = bs->drv;
2519         if (drv && drv->bdrv_io_plug) {
2520             drv->bdrv_io_plug(bs);
2521         }
2522     }
2523 }
2524
2525 void bdrv_io_unplug(BlockDriverState *bs)
2526 {
2527     BdrvChild *child;
2528
2529     assert(bs->io_plugged);
2530     if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2531         BlockDriver *drv = bs->drv;
2532         if (drv && drv->bdrv_io_unplug) {
2533             drv->bdrv_io_unplug(bs);
2534         }
2535     }
2536
2537     QLIST_FOREACH(child, &bs->children, next) {
2538         bdrv_io_unplug(child->bs);
2539     }
2540 }
This page took 0.166937 seconds and 4 git commands to generate.