2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
23 /* Maximum number of possible interrupts, determined by the GIC architecture */
24 #define GIC_MAXIRQ 1020
25 /* First 32 are private to each CPU (SGIs and PPIs). */
26 #define GIC_INTERNAL 32
27 /* Maximum number of possible CPU interfaces, determined by GIC architecture */
37 #define DPRINTF(fmt, ...) \
38 do { printf("arm_gic: " fmt , ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) do {} while(0)
44 static const uint8_t gic_id[] =
45 { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 };
46 /* The NVIC has 16 internal vectors. However these are not exposed
47 through the normal GIC interface. */
48 #define GIC_BASE_IRQ 32
50 static const uint8_t gic_id[] =
51 { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
52 #define GIC_BASE_IRQ 0
55 #define FROM_SYSBUSGIC(type, dev) \
56 DO_UPCAST(type, gic, FROM_SYSBUS(gic_state, dev))
58 typedef struct gic_irq_state
60 /* The enable bits are only banked for per-cpu interrupts. */
61 unsigned enabled:NCPU;
62 unsigned pending:NCPU;
65 unsigned model:1; /* 0 = N:N, 1 = 1:N */
66 unsigned trigger:1; /* nonzero = edge triggered. */
69 #define ALL_CPU_MASK ((unsigned)(((1 << NCPU) - 1)))
71 #define NUM_CPU(s) ((s)->num_cpu)
76 #define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm)
77 #define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm)
78 #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
79 #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm)
80 #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm)
81 #define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0)
82 #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm)
83 #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm)
84 #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
85 #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1
86 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0
87 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model
88 #define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level = (cm)
89 #define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm)
90 #define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
91 #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1
92 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0
93 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger
94 #define GIC_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \
95 s->priority1[irq][cpu] : \
96 s->priority2[(irq) - GIC_INTERNAL])
98 #define GIC_TARGET(irq) 1
100 #define GIC_TARGET(irq) s->irq_target[irq]
103 typedef struct gic_state
106 qemu_irq parent_irq[NCPU];
108 int cpu_enabled[NCPU];
110 gic_irq_state irq_state[GIC_MAXIRQ];
112 int irq_target[GIC_MAXIRQ];
114 int priority1[GIC_INTERNAL][NCPU];
115 int priority2[GIC_MAXIRQ - GIC_INTERNAL];
116 int last_active[GIC_MAXIRQ][NCPU];
118 int priority_mask[NCPU];
119 int running_irq[NCPU];
120 int running_priority[NCPU];
121 int current_pending[NCPU];
127 MemoryRegion iomem; /* Distributor */
129 /* This is just so we can have an opaque pointer which identifies
130 * both this GIC and which CPU interface we should be accessing.
132 struct gic_state *backref[NCPU];
133 MemoryRegion cpuiomem[NCPU+1]; /* CPU interfaces */
138 static inline int gic_get_current_cpu(gic_state *s)
141 if (s->num_cpu > 1) {
142 return cpu_single_env->cpu_index;
148 /* TODO: Many places that call this routine could be optimized. */
149 /* Update interrupt status after enabled or pending bits have been changed. */
150 static void gic_update(gic_state *s)
159 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
161 s->current_pending[cpu] = 1023;
162 if (!s->enabled || !s->cpu_enabled[cpu]) {
163 qemu_irq_lower(s->parent_irq[cpu]);
168 for (irq = 0; irq < s->num_irq; irq++) {
169 if (GIC_TEST_ENABLED(irq, cm) && GIC_TEST_PENDING(irq, cm)) {
170 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
171 best_prio = GIC_GET_PRIORITY(irq, cpu);
177 if (best_prio <= s->priority_mask[cpu]) {
178 s->current_pending[cpu] = best_irq;
179 if (best_prio < s->running_priority[cpu]) {
180 DPRINTF("Raised pending IRQ %d\n", best_irq);
184 qemu_set_irq(s->parent_irq[cpu], level);
189 static void gic_set_pending_private(gic_state *s, int cpu, int irq)
193 if (GIC_TEST_PENDING(irq, cm))
196 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
197 GIC_SET_PENDING(irq, cm);
202 /* Process a change in an external IRQ input. */
203 static void gic_set_irq(void *opaque, int irq, int level)
205 /* Meaning of the 'irq' parameter:
206 * [0..N-1] : external interrupts
207 * [N..N+31] : PPI (internal) interrupts for CPU 0
208 * [N+32..N+63] : PPI (internal interrupts for CPU 1
211 gic_state *s = (gic_state *)opaque;
213 if (irq < (s->num_irq - GIC_INTERNAL)) {
214 /* The first external input line is internal interrupt 32. */
217 target = GIC_TARGET(irq);
220 irq -= (s->num_irq - GIC_INTERNAL);
221 cpu = irq / GIC_INTERNAL;
227 if (level == GIC_TEST_LEVEL(irq, cm)) {
232 GIC_SET_LEVEL(irq, cm);
233 if (GIC_TEST_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
234 DPRINTF("Set %d pending mask %x\n", irq, target);
235 GIC_SET_PENDING(irq, target);
238 GIC_CLEAR_LEVEL(irq, cm);
243 static void gic_set_running_irq(gic_state *s, int cpu, int irq)
245 s->running_irq[cpu] = irq;
247 s->running_priority[cpu] = 0x100;
249 s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
254 static uint32_t gic_acknowledge_irq(gic_state *s, int cpu)
258 new_irq = s->current_pending[cpu];
260 || GIC_GET_PRIORITY(new_irq, cpu) >= s->running_priority[cpu]) {
261 DPRINTF("ACK no pending IRQ\n");
264 s->last_active[new_irq][cpu] = s->running_irq[cpu];
265 /* Clear pending flags for both level and edge triggered interrupts.
266 Level triggered IRQs will be reasserted once they become inactive. */
267 GIC_CLEAR_PENDING(new_irq, GIC_TEST_MODEL(new_irq) ? ALL_CPU_MASK : cm);
268 gic_set_running_irq(s, cpu, new_irq);
269 DPRINTF("ACK %d\n", new_irq);
273 static void gic_complete_irq(gic_state * s, int cpu, int irq)
277 DPRINTF("EOI %d\n", irq);
278 if (irq >= s->num_irq) {
279 /* This handles two cases:
280 * 1. If software writes the ID of a spurious interrupt [ie 1023]
281 * to the GICC_EOIR, the GIC ignores that write.
282 * 2. If software writes the number of a non-existent interrupt
283 * this must be a subcase of "value written does not match the last
284 * valid interrupt value read from the Interrupt Acknowledge
285 * register" and so this is UNPREDICTABLE. We choose to ignore it.
289 if (s->running_irq[cpu] == 1023)
290 return; /* No active IRQ. */
291 /* Mark level triggered interrupts as pending if they are still
293 if (!GIC_TEST_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
294 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
295 DPRINTF("Set %d pending mask %x\n", irq, cm);
296 GIC_SET_PENDING(irq, cm);
299 if (irq != s->running_irq[cpu]) {
300 /* Complete an IRQ that is not currently running. */
301 int tmp = s->running_irq[cpu];
302 while (s->last_active[tmp][cpu] != 1023) {
303 if (s->last_active[tmp][cpu] == irq) {
304 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
307 tmp = s->last_active[tmp][cpu];
313 /* Complete the current running IRQ. */
314 gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
318 static uint32_t gic_dist_readb(void *opaque, target_phys_addr_t offset)
320 gic_state *s = (gic_state *)opaque;
328 cpu = gic_get_current_cpu(s);
330 if (offset < 0x100) {
335 return ((s->num_irq / 32) - 1) | ((NUM_CPU(s) - 1) << 5);
338 if (offset >= 0x80) {
339 /* Interrupt Security , RAZ/WI */
344 } else if (offset < 0x200) {
345 /* Interrupt Set/Clear Enable. */
347 irq = (offset - 0x100) * 8;
349 irq = (offset - 0x180) * 8;
351 if (irq >= s->num_irq)
354 for (i = 0; i < 8; i++) {
355 if (GIC_TEST_ENABLED(irq + i, cm)) {
359 } else if (offset < 0x300) {
360 /* Interrupt Set/Clear Pending. */
362 irq = (offset - 0x200) * 8;
364 irq = (offset - 0x280) * 8;
366 if (irq >= s->num_irq)
369 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
370 for (i = 0; i < 8; i++) {
371 if (GIC_TEST_PENDING(irq + i, mask)) {
375 } else if (offset < 0x400) {
376 /* Interrupt Active. */
377 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
378 if (irq >= s->num_irq)
381 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
382 for (i = 0; i < 8; i++) {
383 if (GIC_TEST_ACTIVE(irq + i, mask)) {
387 } else if (offset < 0x800) {
388 /* Interrupt Priority. */
389 irq = (offset - 0x400) + GIC_BASE_IRQ;
390 if (irq >= s->num_irq)
392 res = GIC_GET_PRIORITY(irq, cpu);
394 } else if (offset < 0xc00) {
395 /* Interrupt CPU Target. */
396 irq = (offset - 0x800) + GIC_BASE_IRQ;
397 if (irq >= s->num_irq)
399 if (irq >= 29 && irq <= 31) {
402 res = GIC_TARGET(irq);
404 } else if (offset < 0xf00) {
405 /* Interrupt Configuration. */
406 irq = (offset - 0xc00) * 2 + GIC_BASE_IRQ;
407 if (irq >= s->num_irq)
410 for (i = 0; i < 4; i++) {
411 if (GIC_TEST_MODEL(irq + i))
412 res |= (1 << (i * 2));
413 if (GIC_TEST_TRIGGER(irq + i))
414 res |= (2 << (i * 2));
417 } else if (offset < 0xfe0) {
419 } else /* offset >= 0xfe0 */ {
423 res = gic_id[(offset - 0xfe0) >> 2];
428 hw_error("gic_dist_readb: Bad offset %x\n", (int)offset);
432 static uint32_t gic_dist_readw(void *opaque, target_phys_addr_t offset)
435 val = gic_dist_readb(opaque, offset);
436 val |= gic_dist_readb(opaque, offset + 1) << 8;
440 static uint32_t gic_dist_readl(void *opaque, target_phys_addr_t offset)
444 gic_state *s = (gic_state *)opaque;
447 if (addr < 0x100 || addr > 0xd00)
448 return nvic_readl(s, addr);
450 val = gic_dist_readw(opaque, offset);
451 val |= gic_dist_readw(opaque, offset + 2) << 16;
455 static void gic_dist_writeb(void *opaque, target_phys_addr_t offset,
458 gic_state *s = (gic_state *)opaque;
463 cpu = gic_get_current_cpu(s);
464 if (offset < 0x100) {
469 s->enabled = (value & 1);
470 DPRINTF("Distribution %sabled\n", s->enabled ? "En" : "Dis");
471 } else if (offset < 4) {
473 } else if (offset >= 0x80) {
474 /* Interrupt Security Registers, RAZ/WI */
479 } else if (offset < 0x180) {
480 /* Interrupt Set Enable. */
481 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
482 if (irq >= s->num_irq)
486 for (i = 0; i < 8; i++) {
487 if (value & (1 << i)) {
488 int mask = (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq);
489 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
491 if (!GIC_TEST_ENABLED(irq + i, cm)) {
492 DPRINTF("Enabled IRQ %d\n", irq + i);
494 GIC_SET_ENABLED(irq + i, cm);
495 /* If a raised level triggered IRQ enabled then mark
497 if (GIC_TEST_LEVEL(irq + i, mask)
498 && !GIC_TEST_TRIGGER(irq + i)) {
499 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
500 GIC_SET_PENDING(irq + i, mask);
504 } else if (offset < 0x200) {
505 /* Interrupt Clear Enable. */
506 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
507 if (irq >= s->num_irq)
511 for (i = 0; i < 8; i++) {
512 if (value & (1 << i)) {
513 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
515 if (GIC_TEST_ENABLED(irq + i, cm)) {
516 DPRINTF("Disabled IRQ %d\n", irq + i);
518 GIC_CLEAR_ENABLED(irq + i, cm);
521 } else if (offset < 0x280) {
522 /* Interrupt Set Pending. */
523 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
524 if (irq >= s->num_irq)
529 for (i = 0; i < 8; i++) {
530 if (value & (1 << i)) {
531 GIC_SET_PENDING(irq + i, GIC_TARGET(irq));
534 } else if (offset < 0x300) {
535 /* Interrupt Clear Pending. */
536 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
537 if (irq >= s->num_irq)
539 for (i = 0; i < 8; i++) {
540 /* ??? This currently clears the pending bit for all CPUs, even
541 for per-CPU interrupts. It's unclear whether this is the
543 if (value & (1 << i)) {
544 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
547 } else if (offset < 0x400) {
548 /* Interrupt Active. */
550 } else if (offset < 0x800) {
551 /* Interrupt Priority. */
552 irq = (offset - 0x400) + GIC_BASE_IRQ;
553 if (irq >= s->num_irq)
555 if (irq < GIC_INTERNAL) {
556 s->priority1[irq][cpu] = value;
558 s->priority2[irq - GIC_INTERNAL] = value;
561 } else if (offset < 0xc00) {
562 /* Interrupt CPU Target. */
563 irq = (offset - 0x800) + GIC_BASE_IRQ;
564 if (irq >= s->num_irq)
568 else if (irq < GIC_INTERNAL)
569 value = ALL_CPU_MASK;
570 s->irq_target[irq] = value & ALL_CPU_MASK;
571 } else if (offset < 0xf00) {
572 /* Interrupt Configuration. */
573 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
574 if (irq >= s->num_irq)
576 if (irq < GIC_INTERNAL)
578 for (i = 0; i < 4; i++) {
579 if (value & (1 << (i * 2))) {
580 GIC_SET_MODEL(irq + i);
582 GIC_CLEAR_MODEL(irq + i);
584 if (value & (2 << (i * 2))) {
585 GIC_SET_TRIGGER(irq + i);
587 GIC_CLEAR_TRIGGER(irq + i);
592 /* 0xf00 is only handled for 32-bit writes. */
598 hw_error("gic_dist_writeb: Bad offset %x\n", (int)offset);
601 static void gic_dist_writew(void *opaque, target_phys_addr_t offset,
604 gic_dist_writeb(opaque, offset, value & 0xff);
605 gic_dist_writeb(opaque, offset + 1, value >> 8);
608 static void gic_dist_writel(void *opaque, target_phys_addr_t offset,
611 gic_state *s = (gic_state *)opaque;
615 if (addr < 0x100 || (addr > 0xd00 && addr != 0xf00)) {
616 nvic_writel(s, addr, value);
620 if (offset == 0xf00) {
625 cpu = gic_get_current_cpu(s);
627 switch ((value >> 24) & 3) {
629 mask = (value >> 16) & ALL_CPU_MASK;
632 mask = ALL_CPU_MASK ^ (1 << cpu);
638 DPRINTF("Bad Soft Int target filter\n");
642 GIC_SET_PENDING(irq, mask);
646 gic_dist_writew(opaque, offset, value & 0xffff);
647 gic_dist_writew(opaque, offset + 2, value >> 16);
650 static const MemoryRegionOps gic_dist_ops = {
652 .read = { gic_dist_readb, gic_dist_readw, gic_dist_readl, },
653 .write = { gic_dist_writeb, gic_dist_writew, gic_dist_writel, },
655 .endianness = DEVICE_NATIVE_ENDIAN,
659 static uint32_t gic_cpu_read(gic_state *s, int cpu, int offset)
662 case 0x00: /* Control */
663 return s->cpu_enabled[cpu];
664 case 0x04: /* Priority mask */
665 return s->priority_mask[cpu];
666 case 0x08: /* Binary Point */
667 /* ??? Not implemented. */
669 case 0x0c: /* Acknowledge */
670 return gic_acknowledge_irq(s, cpu);
671 case 0x14: /* Running Priority */
672 return s->running_priority[cpu];
673 case 0x18: /* Highest Pending Interrupt */
674 return s->current_pending[cpu];
676 hw_error("gic_cpu_read: Bad offset %x\n", (int)offset);
681 static void gic_cpu_write(gic_state *s, int cpu, int offset, uint32_t value)
684 case 0x00: /* Control */
685 s->cpu_enabled[cpu] = (value & 1);
686 DPRINTF("CPU %d %sabled\n", cpu, s->cpu_enabled ? "En" : "Dis");
688 case 0x04: /* Priority mask */
689 s->priority_mask[cpu] = (value & 0xff);
691 case 0x08: /* Binary Point */
692 /* ??? Not implemented. */
694 case 0x10: /* End Of Interrupt */
695 return gic_complete_irq(s, cpu, value & 0x3ff);
697 hw_error("gic_cpu_write: Bad offset %x\n", (int)offset);
703 /* Wrappers to read/write the GIC CPU interface for the current CPU */
704 static uint64_t gic_thiscpu_read(void *opaque, target_phys_addr_t addr,
707 gic_state *s = (gic_state *)opaque;
708 return gic_cpu_read(s, gic_get_current_cpu(s), addr);
711 static void gic_thiscpu_write(void *opaque, target_phys_addr_t addr,
712 uint64_t value, unsigned size)
714 gic_state *s = (gic_state *)opaque;
715 gic_cpu_write(s, gic_get_current_cpu(s), addr, value);
718 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
719 * These just decode the opaque pointer into gic_state* + cpu id.
721 static uint64_t gic_do_cpu_read(void *opaque, target_phys_addr_t addr,
724 gic_state **backref = (gic_state **)opaque;
725 gic_state *s = *backref;
726 int id = (backref - s->backref);
727 return gic_cpu_read(s, id, addr);
730 static void gic_do_cpu_write(void *opaque, target_phys_addr_t addr,
731 uint64_t value, unsigned size)
733 gic_state **backref = (gic_state **)opaque;
734 gic_state *s = *backref;
735 int id = (backref - s->backref);
736 gic_cpu_write(s, id, addr, value);
739 static const MemoryRegionOps gic_thiscpu_ops = {
740 .read = gic_thiscpu_read,
741 .write = gic_thiscpu_write,
742 .endianness = DEVICE_NATIVE_ENDIAN,
745 static const MemoryRegionOps gic_cpu_ops = {
746 .read = gic_do_cpu_read,
747 .write = gic_do_cpu_write,
748 .endianness = DEVICE_NATIVE_ENDIAN,
752 static void gic_reset(DeviceState *dev)
754 gic_state *s = FROM_SYSBUS(gic_state, sysbus_from_qdev(dev));
756 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
757 for (i = 0 ; i < NUM_CPU(s); i++) {
758 s->priority_mask[i] = 0xf0;
759 s->current_pending[i] = 1023;
760 s->running_irq[i] = 1023;
761 s->running_priority[i] = 0x100;
763 /* The NVIC doesn't have per-cpu interfaces, so enable by default. */
764 s->cpu_enabled[i] = 1;
766 s->cpu_enabled[i] = 0;
769 for (i = 0; i < 16; i++) {
770 GIC_SET_ENABLED(i, ALL_CPU_MASK);
774 /* The NVIC is always enabled. */
781 static void gic_save(QEMUFile *f, void *opaque)
783 gic_state *s = (gic_state *)opaque;
787 qemu_put_be32(f, s->enabled);
788 for (i = 0; i < NUM_CPU(s); i++) {
789 qemu_put_be32(f, s->cpu_enabled[i]);
790 for (j = 0; j < GIC_INTERNAL; j++)
791 qemu_put_be32(f, s->priority1[j][i]);
792 for (j = 0; j < s->num_irq; j++)
793 qemu_put_be32(f, s->last_active[j][i]);
794 qemu_put_be32(f, s->priority_mask[i]);
795 qemu_put_be32(f, s->running_irq[i]);
796 qemu_put_be32(f, s->running_priority[i]);
797 qemu_put_be32(f, s->current_pending[i]);
799 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
800 qemu_put_be32(f, s->priority2[i]);
802 for (i = 0; i < s->num_irq; i++) {
804 qemu_put_be32(f, s->irq_target[i]);
806 qemu_put_byte(f, s->irq_state[i].enabled);
807 qemu_put_byte(f, s->irq_state[i].pending);
808 qemu_put_byte(f, s->irq_state[i].active);
809 qemu_put_byte(f, s->irq_state[i].level);
810 qemu_put_byte(f, s->irq_state[i].model);
811 qemu_put_byte(f, s->irq_state[i].trigger);
815 static int gic_load(QEMUFile *f, void *opaque, int version_id)
817 gic_state *s = (gic_state *)opaque;
824 s->enabled = qemu_get_be32(f);
825 for (i = 0; i < NUM_CPU(s); i++) {
826 s->cpu_enabled[i] = qemu_get_be32(f);
827 for (j = 0; j < GIC_INTERNAL; j++)
828 s->priority1[j][i] = qemu_get_be32(f);
829 for (j = 0; j < s->num_irq; j++)
830 s->last_active[j][i] = qemu_get_be32(f);
831 s->priority_mask[i] = qemu_get_be32(f);
832 s->running_irq[i] = qemu_get_be32(f);
833 s->running_priority[i] = qemu_get_be32(f);
834 s->current_pending[i] = qemu_get_be32(f);
836 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
837 s->priority2[i] = qemu_get_be32(f);
839 for (i = 0; i < s->num_irq; i++) {
841 s->irq_target[i] = qemu_get_be32(f);
843 s->irq_state[i].enabled = qemu_get_byte(f);
844 s->irq_state[i].pending = qemu_get_byte(f);
845 s->irq_state[i].active = qemu_get_byte(f);
846 s->irq_state[i].level = qemu_get_byte(f);
847 s->irq_state[i].model = qemu_get_byte(f);
848 s->irq_state[i].trigger = qemu_get_byte(f);
855 static void gic_init(gic_state *s, int num_cpu, int num_irq)
857 static void gic_init(gic_state *s, int num_irq)
863 s->num_cpu = num_cpu;
864 if (s->num_cpu > NCPU) {
865 hw_error("requested %u CPUs exceeds GIC maximum %d\n",
869 s->num_irq = num_irq + GIC_BASE_IRQ;
870 if (s->num_irq > GIC_MAXIRQ) {
871 hw_error("requested %u interrupt lines exceeds GIC maximum %d\n",
872 num_irq, GIC_MAXIRQ);
874 /* ITLinesNumber is represented as (N / 32) - 1 (see
875 * gic_dist_readb) so this is an implementation imposed
876 * restriction, not an architectural one:
878 if (s->num_irq < 32 || (s->num_irq % 32)) {
879 hw_error("%d interrupt lines unsupported: not divisible by 32\n",
883 i = s->num_irq - GIC_INTERNAL;
885 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
886 * GPIO array layout is thus:
888 * [N..N+31] PPIs for CPU 0
889 * [N+32..N+63] PPIs for CPU 1
892 i += (GIC_INTERNAL * num_cpu);
894 qdev_init_gpio_in(&s->busdev.qdev, gic_set_irq, i);
895 for (i = 0; i < NUM_CPU(s); i++) {
896 sysbus_init_irq(&s->busdev, &s->parent_irq[i]);
898 memory_region_init_io(&s->iomem, &gic_dist_ops, s, "gic_dist", 0x1000);
900 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
901 * a region for "CPU interface for this core", then a region for
902 * "CPU interface for core 0", "for core 1", ...
903 * NB that the memory region size of 0x100 applies for the 11MPCore
904 * and also cores following the GIC v1 spec (ie A9).
905 * GIC v2 defines a larger memory region (0x1000) so this will need
906 * to be extended when we implement A15.
908 memory_region_init_io(&s->cpuiomem[0], &gic_thiscpu_ops, s,
910 for (i = 0; i < NUM_CPU(s); i++) {
912 memory_region_init_io(&s->cpuiomem[i+1], &gic_cpu_ops, &s->backref[i],
917 register_savevm(NULL, "arm_gic", -1, 2, gic_save, gic_load, s);
922 static int arm_gic_init(SysBusDevice *dev)
924 /* Device instance init function for the GIC sysbus device */
926 gic_state *s = FROM_SYSBUS(gic_state, dev);
927 gic_init(s, s->num_cpu, s->num_irq);
929 sysbus_init_mmio(dev, &s->iomem);
930 /* cpu interfaces (one for "current cpu" plus one per cpu) */
931 for (i = 0; i <= NUM_CPU(s); i++) {
932 sysbus_init_mmio(dev, &s->cpuiomem[i]);
937 static Property arm_gic_properties[] = {
938 DEFINE_PROP_UINT32("num-cpu", gic_state, num_cpu, 1),
939 DEFINE_PROP_UINT32("num-irq", gic_state, num_irq, 32),
940 DEFINE_PROP_END_OF_LIST(),
943 static void arm_gic_class_init(ObjectClass *klass, void *data)
945 DeviceClass *dc = DEVICE_CLASS(klass);
946 SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
947 sbc->init = arm_gic_init;
948 dc->props = arm_gic_properties;
949 dc->reset = gic_reset;
953 static TypeInfo arm_gic_info = {
955 .parent = TYPE_SYS_BUS_DEVICE,
956 .instance_size = sizeof(gic_state),
957 .class_init = arm_gic_class_init,
960 static void arm_gic_register_types(void)
962 type_register_static(&arm_gic_info);
965 type_init(arm_gic_register_types)