12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
17 #include "syscall_defs.h"
19 #include "target_signal.h"
21 #include "qemu-queue.h"
23 #if defined(CONFIG_USE_NPTL)
24 #define THREAD __thread
29 /* This struct is used to hold certain information about the image.
30 * Basically, it replicates in user space what would be certain
31 * task_struct fields in the kernel
45 abi_ulong start_stack;
46 abi_ulong stack_limit;
48 abi_ulong code_offset;
49 abi_ulong data_offset;
56 #ifdef CONFIG_USE_FDPIC
57 abi_ulong loadmap_addr;
60 abi_ulong pt_dynamic_addr;
61 struct image_info *other_info;
66 /* Information about the current linux thread */
67 struct vm86_saved_state {
68 uint32_t eax; /* return code */
78 uint16_t cs, ss, ds, es, fs, gs;
84 #include "nwfpe/fpa11.h"
87 #define MAX_SIGQUEUE_SIZE 1024
90 struct sigqueue *next;
91 target_siginfo_t info;
94 struct emulated_sigtable {
95 int pending; /* true if signal is pending */
96 struct sigqueue *first;
97 struct sigqueue info; /* in order to always have memory for the
98 first signal, we put it here */
101 /* NOTE: we force a big alignment so that the stack stored after is
103 typedef struct TaskState {
104 pid_t ts_tid; /* tid (or pid) of this task */
110 #ifdef TARGET_UNICORE32
113 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
114 abi_ulong target_v86;
115 struct vm86_saved_state vm86_saved_regs;
116 struct target_vm86plus_struct vm86plus;
120 #ifdef CONFIG_USE_NPTL
121 abi_ulong child_tidptr;
126 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
127 /* Extra fields for semihosted binaries. */
132 int used; /* non zero if used */
133 struct image_info *info;
134 struct linux_binprm *bprm;
136 struct emulated_sigtable sigtab[TARGET_NSIG];
137 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
138 struct sigqueue *first_free; /* first free siginfo queue entry */
139 int signal_pending; /* non zero if a signal may be pending */
140 } __attribute__((aligned(16))) TaskState;
142 extern char *exec_path;
143 void init_task_state(TaskState *ts);
144 void task_settid(TaskState *);
145 void stop_all_tasks(void);
146 extern const char *qemu_uname_release;
147 extern unsigned long mmap_min_addr;
149 /* ??? See if we can avoid exposing so much of the loader internals. */
151 * MAX_ARG_PAGES defines the number of pages allocated for arguments
152 * and envelope for the new program. 32 should suffice, this gives
153 * a maximum env+arg of 128kB w/4KB pages!
155 #define MAX_ARG_PAGES 33
157 /* Read a good amount of data initially, to hopefully get all the
158 program headers loaded. */
159 #define BPRM_BUF_SIZE 1024
162 * This structure is used to hold the arguments that are
163 * used when loading binaries.
165 struct linux_binprm {
166 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
167 void *page[MAX_ARG_PAGES];
174 char * filename; /* Name of binary */
175 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
178 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
179 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
180 abi_ulong stringp, int push_ptr);
181 int loader_exec(const char * filename, char ** argv, char ** envp,
182 struct target_pt_regs * regs, struct image_info *infop,
183 struct linux_binprm *);
185 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
186 struct image_info * info);
187 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
188 struct image_info * info);
190 abi_long memcpy_to_target(abi_ulong dest, const void *src,
192 void target_set_brk(abi_ulong new_brk);
193 abi_long do_brk(abi_ulong new_brk);
194 void syscall_init(void);
195 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
196 abi_long arg2, abi_long arg3, abi_long arg4,
197 abi_long arg5, abi_long arg6, abi_long arg7,
199 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
200 extern THREAD CPUArchState *thread_env;
201 void cpu_loop(CPUArchState *env);
202 char *target_strerror(int err);
203 int get_osversion(void);
204 void fork_start(void);
205 void fork_end(int child);
207 /* Creates the initial guest address space in the host memory space using
208 * the given host start address hint and size. The guest_start parameter
209 * specifies the start address of the guest space. guest_base will be the
210 * difference between the host start address computed by this function and
211 * guest_start. If fixed is specified, then the mapped address space must
212 * start at host_start. The real start address of the mapped memory space is
213 * returned or -1 if there was an error.
215 unsigned long init_guest_space(unsigned long host_start,
216 unsigned long host_size,
217 unsigned long guest_start,
220 #include "qemu-log.h"
223 void print_syscall(int num,
224 abi_long arg1, abi_long arg2, abi_long arg3,
225 abi_long arg4, abi_long arg5, abi_long arg6);
226 void print_syscall_ret(int num, abi_long arg1);
227 extern int do_strace;
230 void process_pending_signals(CPUArchState *cpu_env);
231 void signal_init(void);
232 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
233 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
234 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
235 int target_to_host_signal(int sig);
236 int host_to_target_signal(int sig);
237 long do_sigreturn(CPUArchState *env);
238 long do_rt_sigreturn(CPUArchState *env);
239 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
243 void save_v86_state(CPUX86State *env);
244 void handle_vm86_trap(CPUX86State *env, int trapno);
245 void handle_vm86_fault(CPUX86State *env);
246 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
247 #elif defined(TARGET_SPARC64)
248 void sparc64_set_context(CPUSPARCState *env);
249 void sparc64_get_context(CPUSPARCState *env);
253 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
254 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
255 int flags, int fd, abi_ulong offset);
256 int target_munmap(abi_ulong start, abi_ulong len);
257 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
258 abi_ulong new_size, unsigned long flags,
260 int target_msync(abi_ulong start, abi_ulong len, int flags);
261 extern unsigned long last_brk;
262 extern abi_ulong mmap_next_start;
263 void mmap_lock(void);
264 void mmap_unlock(void);
265 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
266 void cpu_list_lock(void);
267 void cpu_list_unlock(void);
268 #if defined(CONFIG_USE_NPTL)
269 void mmap_fork_start(void);
270 void mmap_fork_end(int child);
274 extern unsigned long guest_stack_size;
278 #define VERIFY_READ 0
279 #define VERIFY_WRITE 1 /* implies read access */
281 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
283 return page_check_range((target_ulong)addr, size,
284 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
287 /* NOTE __get_user and __put_user use host pointers and don't check access. */
288 /* These are usually used to access struct data members once the
289 * struct has been locked - usually with lock_user_struct().
291 #define __put_user(x, hptr)\
293 switch(sizeof(*hptr)) {\
295 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
298 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
301 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
304 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
312 #define __get_user(x, hptr) \
314 switch(sizeof(*hptr)) {\
316 x = (typeof(*hptr))*(uint8_t *)(hptr);\
319 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
322 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
325 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
335 /* put_user()/get_user() take a guest address and check access */
336 /* These are usually used to access an atomic data type, such as an int,
337 * that has been passed by address. These internally perform locking
338 * and unlocking on the data type.
340 #define put_user(x, gaddr, target_type) \
342 abi_ulong __gaddr = (gaddr); \
343 target_type *__hptr; \
345 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
346 __ret = __put_user((x), __hptr); \
347 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
349 __ret = -TARGET_EFAULT; \
353 #define get_user(x, gaddr, target_type) \
355 abi_ulong __gaddr = (gaddr); \
356 target_type *__hptr; \
358 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
359 __ret = __get_user((x), __hptr); \
360 unlock_user(__hptr, __gaddr, 0); \
362 /* avoid warning */ \
364 __ret = -TARGET_EFAULT; \
369 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
370 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
371 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
372 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
373 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
374 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
375 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
376 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
377 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
378 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
380 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
381 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
382 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
383 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
384 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
385 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
386 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
387 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
388 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
389 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
391 /* copy_from_user() and copy_to_user() are usually used to copy data
392 * buffers between the target and host. These internally perform
393 * locking/unlocking of the memory.
395 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
396 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
398 /* Functions for accessing guest memory. The tget and tput functions
399 read/write single values, byteswapping as necessary. The lock_user
400 gets a pointer to a contiguous area of guest memory, but does not perform
401 and byteswapping. lock_user may return either a pointer to the guest
402 memory, or a temporary buffer. */
404 /* Lock an area of guest memory into the host. If copy is true then the
405 host area will have the same contents as the guest. */
406 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
408 if (!access_ok(type, guest_addr, len))
415 memcpy(addr, g2h(guest_addr), len);
417 memset(addr, 0, len);
421 return g2h(guest_addr);
425 /* Unlock an area of guest memory. The first LEN bytes must be
426 flushed back to guest memory. host_ptr = NULL is explicitly
427 allowed and does nothing. */
428 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
435 if (host_ptr == g2h(guest_addr))
438 memcpy(g2h(guest_addr), host_ptr, len);
443 /* Return the length of a string in target memory or -TARGET_EFAULT if
445 abi_long target_strlen(abi_ulong gaddr);
447 /* Like lock_user but for null terminated strings. */
448 static inline void *lock_user_string(abi_ulong guest_addr)
451 len = target_strlen(guest_addr);
454 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
457 /* Helper macros for locking/ulocking a target struct. */
458 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
459 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
460 #define unlock_user_struct(host_ptr, guest_addr, copy) \
461 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
463 #if defined(CONFIG_USE_NPTL)