2 * TI OMAP processors emulation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu-common.h"
24 #include "hw/boards.h"
26 #include "hw/arm/arm.h"
27 #include "hw/arm/omap.h"
28 #include "sysemu/sysemu.h"
29 #include "hw/arm/soc_dma.h"
30 #include "sysemu/block-backend.h"
31 #include "sysemu/blockdev.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 #include "qemu/cutils.h"
37 /* Should signal the TCMI/GPMC */
38 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
43 cpu_physical_memory_read(addr, &ret, 1);
47 void omap_badwidth_write8(void *opaque, hwaddr addr,
53 cpu_physical_memory_write(addr, &val8, 1);
56 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
61 cpu_physical_memory_read(addr, &ret, 2);
65 void omap_badwidth_write16(void *opaque, hwaddr addr,
68 uint16_t val16 = value;
71 cpu_physical_memory_write(addr, &val16, 2);
74 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
79 cpu_physical_memory_read(addr, &ret, 4);
83 void omap_badwidth_write32(void *opaque, hwaddr addr,
87 cpu_physical_memory_write(addr, &value, 4);
91 struct omap_mpu_timer_s {
109 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
111 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
113 if (timer->st && timer->enable && timer->rate)
114 return timer->val - muldiv64(distance >> (timer->ptv + 1),
115 timer->rate, NANOSECONDS_PER_SECOND);
120 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
122 timer->val = omap_timer_read(timer);
123 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
126 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
130 if (timer->enable && timer->st && timer->rate) {
131 timer->val = timer->reset_val; /* Should skip this on clk enable */
132 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
133 NANOSECONDS_PER_SECOND, timer->rate);
135 /* If timer expiry would be sooner than in about 1 ms and
136 * auto-reload isn't set, then fire immediately. This is a hack
137 * to make systems like PalmOS run in acceptable time. PalmOS
138 * sets the interval to a very low value and polls the status bit
139 * in a busy loop when it wants to sleep just a couple of CPU
141 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
142 timer_mod(timer->timer, timer->time + expires);
144 qemu_bh_schedule(timer->tick);
147 timer_del(timer->timer);
150 static void omap_timer_fire(void *opaque)
152 struct omap_mpu_timer_s *timer = opaque;
160 /* Edge-triggered irq */
161 qemu_irq_pulse(timer->irq);
164 static void omap_timer_tick(void *opaque)
166 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
168 omap_timer_sync(timer);
169 omap_timer_fire(timer);
170 omap_timer_update(timer);
173 static void omap_timer_clk_update(void *opaque, int line, int on)
175 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
177 omap_timer_sync(timer);
178 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
179 omap_timer_update(timer);
182 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
184 omap_clk_adduser(timer->clk,
185 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
186 timer->rate = omap_clk_getrate(timer->clk);
189 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
192 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
195 return omap_badwidth_read32(opaque, addr);
199 case 0x00: /* CNTL_TIMER */
200 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
202 case 0x04: /* LOAD_TIM */
205 case 0x08: /* READ_TIM */
206 return omap_timer_read(s);
213 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
214 uint64_t value, unsigned size)
216 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
219 omap_badwidth_write32(opaque, addr, value);
224 case 0x00: /* CNTL_TIMER */
226 s->enable = (value >> 5) & 1;
227 s->ptv = (value >> 2) & 7;
228 s->ar = (value >> 1) & 1;
230 omap_timer_update(s);
233 case 0x04: /* LOAD_TIM */
234 s->reset_val = value;
237 case 0x08: /* READ_TIM */
246 static const MemoryRegionOps omap_mpu_timer_ops = {
247 .read = omap_mpu_timer_read,
248 .write = omap_mpu_timer_write,
249 .endianness = DEVICE_LITTLE_ENDIAN,
252 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
256 s->reset_val = 31337;
264 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
266 qemu_irq irq, omap_clk clk)
268 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
272 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
273 s->tick = qemu_bh_new(omap_timer_fire, s);
274 omap_mpu_timer_reset(s);
275 omap_timer_clk_setup(s);
277 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
278 "omap-mpu-timer", 0x100);
280 memory_region_add_subregion(system_memory, base, &s->iomem);
286 struct omap_watchdog_timer_s {
287 struct omap_mpu_timer_s timer;
295 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
298 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
301 return omap_badwidth_read16(opaque, addr);
305 case 0x00: /* CNTL_TIMER */
306 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
307 (s->timer.st << 7) | (s->free << 1);
309 case 0x04: /* READ_TIMER */
310 return omap_timer_read(&s->timer);
312 case 0x08: /* TIMER_MODE */
313 return s->mode << 15;
320 static void omap_wd_timer_write(void *opaque, hwaddr addr,
321 uint64_t value, unsigned size)
323 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
326 omap_badwidth_write16(opaque, addr, value);
331 case 0x00: /* CNTL_TIMER */
332 omap_timer_sync(&s->timer);
333 s->timer.ptv = (value >> 9) & 7;
334 s->timer.ar = (value >> 8) & 1;
335 s->timer.st = (value >> 7) & 1;
336 s->free = (value >> 1) & 1;
337 omap_timer_update(&s->timer);
340 case 0x04: /* LOAD_TIMER */
341 s->timer.reset_val = value & 0xffff;
344 case 0x08: /* TIMER_MODE */
345 if (!s->mode && ((value >> 15) & 1))
346 omap_clk_get(s->timer.clk);
347 s->mode |= (value >> 15) & 1;
348 if (s->last_wr == 0xf5) {
349 if ((value & 0xff) == 0xa0) {
352 omap_clk_put(s->timer.clk);
355 /* XXX: on T|E hardware somehow this has no effect,
356 * on Zire 71 it works as specified. */
358 qemu_system_reset_request();
361 s->last_wr = value & 0xff;
369 static const MemoryRegionOps omap_wd_timer_ops = {
370 .read = omap_wd_timer_read,
371 .write = omap_wd_timer_write,
372 .endianness = DEVICE_NATIVE_ENDIAN,
375 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
377 timer_del(s->timer.timer);
379 omap_clk_get(s->timer.clk);
385 s->timer.reset_val = 0xffff;
390 omap_timer_update(&s->timer);
393 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
395 qemu_irq irq, omap_clk clk)
397 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
401 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
402 omap_wd_timer_reset(s);
403 omap_timer_clk_setup(&s->timer);
405 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
406 "omap-wd-timer", 0x100);
407 memory_region_add_subregion(memory, base, &s->iomem);
413 struct omap_32khz_timer_s {
414 struct omap_mpu_timer_s timer;
418 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
421 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
422 int offset = addr & OMAP_MPUI_REG_MASK;
425 return omap_badwidth_read32(opaque, addr);
430 return s->timer.reset_val;
433 return omap_timer_read(&s->timer);
436 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
445 static void omap_os_timer_write(void *opaque, hwaddr addr,
446 uint64_t value, unsigned size)
448 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
449 int offset = addr & OMAP_MPUI_REG_MASK;
452 omap_badwidth_write32(opaque, addr, value);
458 s->timer.reset_val = value & 0x00ffffff;
466 s->timer.ar = (value >> 3) & 1;
467 s->timer.it_ena = (value >> 2) & 1;
468 if (s->timer.st != (value & 1) || (value & 2)) {
469 omap_timer_sync(&s->timer);
470 s->timer.enable = value & 1;
471 s->timer.st = value & 1;
472 omap_timer_update(&s->timer);
481 static const MemoryRegionOps omap_os_timer_ops = {
482 .read = omap_os_timer_read,
483 .write = omap_os_timer_write,
484 .endianness = DEVICE_NATIVE_ENDIAN,
487 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
489 timer_del(s->timer.timer);
492 s->timer.reset_val = 0x00ffffff;
499 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
501 qemu_irq irq, omap_clk clk)
503 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
507 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
508 omap_os_timer_reset(s);
509 omap_timer_clk_setup(&s->timer);
511 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
512 "omap-os-timer", 0x800);
513 memory_region_add_subregion(memory, base, &s->iomem);
518 /* Ultra Low-Power Device Module */
519 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
522 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
526 return omap_badwidth_read16(opaque, addr);
530 case 0x14: /* IT_STATUS */
531 ret = s->ulpd_pm_regs[addr >> 2];
532 s->ulpd_pm_regs[addr >> 2] = 0;
533 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
536 case 0x18: /* Reserved */
537 case 0x1c: /* Reserved */
538 case 0x20: /* Reserved */
539 case 0x28: /* Reserved */
540 case 0x2c: /* Reserved */
543 case 0x00: /* COUNTER_32_LSB */
544 case 0x04: /* COUNTER_32_MSB */
545 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
546 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
547 case 0x10: /* GAUGING_CTRL */
548 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
549 case 0x30: /* CLOCK_CTRL */
550 case 0x34: /* SOFT_REQ */
551 case 0x38: /* COUNTER_32_FIQ */
552 case 0x3c: /* DPLL_CTRL */
553 case 0x40: /* STATUS_REQ */
554 /* XXX: check clk::usecount state for every clock */
555 case 0x48: /* LOCL_TIME */
556 case 0x4c: /* APLL_CTRL */
557 case 0x50: /* POWER_CTRL */
558 return s->ulpd_pm_regs[addr >> 2];
565 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
566 uint16_t diff, uint16_t value)
568 if (diff & (1 << 4)) /* USB_MCLK_EN */
569 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
570 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
571 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
574 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
575 uint16_t diff, uint16_t value)
577 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
578 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
579 if (diff & (1 << 1)) /* SOFT_COM_REQ */
580 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
581 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
582 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
583 if (diff & (1 << 3)) /* SOFT_USB_REQ */
584 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
587 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
588 uint64_t value, unsigned size)
590 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
593 static const int bypass_div[4] = { 1, 2, 4, 4 };
597 omap_badwidth_write16(opaque, addr, value);
602 case 0x00: /* COUNTER_32_LSB */
603 case 0x04: /* COUNTER_32_MSB */
604 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
605 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
606 case 0x14: /* IT_STATUS */
607 case 0x40: /* STATUS_REQ */
611 case 0x10: /* GAUGING_CTRL */
612 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
613 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
614 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
617 s->ulpd_gauge_start = now;
619 now -= s->ulpd_gauge_start;
622 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
623 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
624 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
625 if (ticks >> 32) /* OVERFLOW_32K */
626 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
628 /* High frequency ticks */
629 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
630 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
631 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
632 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
633 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
635 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
636 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
639 s->ulpd_pm_regs[addr >> 2] = value;
642 case 0x18: /* Reserved */
643 case 0x1c: /* Reserved */
644 case 0x20: /* Reserved */
645 case 0x28: /* Reserved */
646 case 0x2c: /* Reserved */
649 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
650 case 0x38: /* COUNTER_32_FIQ */
651 case 0x48: /* LOCL_TIME */
652 case 0x50: /* POWER_CTRL */
653 s->ulpd_pm_regs[addr >> 2] = value;
656 case 0x30: /* CLOCK_CTRL */
657 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
658 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
659 omap_ulpd_clk_update(s, diff, value);
662 case 0x34: /* SOFT_REQ */
663 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
665 omap_ulpd_req_update(s, diff, value);
668 case 0x3c: /* DPLL_CTRL */
669 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
670 * omitted altogether, probably a typo. */
671 /* This register has identical semantics with DPLL(1:3) control
672 * registers, see omap_dpll_write() */
673 diff = s->ulpd_pm_regs[addr >> 2] & value;
674 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
675 if (diff & (0x3ff << 2)) {
676 if (value & (1 << 4)) { /* PLL_ENABLE */
677 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
678 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
680 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
683 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
686 /* Enter the desired mode. */
687 s->ulpd_pm_regs[addr >> 2] =
688 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
689 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
691 /* Act as if the lock is restored. */
692 s->ulpd_pm_regs[addr >> 2] |= 2;
695 case 0x4c: /* APLL_CTRL */
696 diff = s->ulpd_pm_regs[addr >> 2] & value;
697 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
698 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
699 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
700 (value & (1 << 0)) ? "apll" : "dpll4"));
708 static const MemoryRegionOps omap_ulpd_pm_ops = {
709 .read = omap_ulpd_pm_read,
710 .write = omap_ulpd_pm_write,
711 .endianness = DEVICE_NATIVE_ENDIAN,
714 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
716 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
717 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
718 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
719 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
720 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
721 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
722 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
723 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
724 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
725 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
726 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
727 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
728 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
729 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
730 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
732 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
733 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
734 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
735 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
736 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
737 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
738 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
741 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
743 struct omap_mpu_state_s *mpu)
745 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
746 "omap-ulpd-pm", 0x800);
747 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
748 omap_ulpd_pm_reset(mpu);
751 /* OMAP Pin Configuration */
752 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
755 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
758 return omap_badwidth_read32(opaque, addr);
762 case 0x00: /* FUNC_MUX_CTRL_0 */
763 case 0x04: /* FUNC_MUX_CTRL_1 */
764 case 0x08: /* FUNC_MUX_CTRL_2 */
765 return s->func_mux_ctrl[addr >> 2];
767 case 0x0c: /* COMP_MODE_CTRL_0 */
768 return s->comp_mode_ctrl[0];
770 case 0x10: /* FUNC_MUX_CTRL_3 */
771 case 0x14: /* FUNC_MUX_CTRL_4 */
772 case 0x18: /* FUNC_MUX_CTRL_5 */
773 case 0x1c: /* FUNC_MUX_CTRL_6 */
774 case 0x20: /* FUNC_MUX_CTRL_7 */
775 case 0x24: /* FUNC_MUX_CTRL_8 */
776 case 0x28: /* FUNC_MUX_CTRL_9 */
777 case 0x2c: /* FUNC_MUX_CTRL_A */
778 case 0x30: /* FUNC_MUX_CTRL_B */
779 case 0x34: /* FUNC_MUX_CTRL_C */
780 case 0x38: /* FUNC_MUX_CTRL_D */
781 return s->func_mux_ctrl[(addr >> 2) - 1];
783 case 0x40: /* PULL_DWN_CTRL_0 */
784 case 0x44: /* PULL_DWN_CTRL_1 */
785 case 0x48: /* PULL_DWN_CTRL_2 */
786 case 0x4c: /* PULL_DWN_CTRL_3 */
787 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
789 case 0x50: /* GATE_INH_CTRL_0 */
790 return s->gate_inh_ctrl[0];
792 case 0x60: /* VOLTAGE_CTRL_0 */
793 return s->voltage_ctrl[0];
795 case 0x70: /* TEST_DBG_CTRL_0 */
796 return s->test_dbg_ctrl[0];
798 case 0x80: /* MOD_CONF_CTRL_0 */
799 return s->mod_conf_ctrl[0];
806 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
807 uint32_t diff, uint32_t value)
810 if (diff & (1 << 9)) /* BLUETOOTH */
811 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
813 if (diff & (1 << 7)) /* USB.CLKO */
814 omap_clk_onoff(omap_findclk(s, "usb.clko"),
819 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
820 uint32_t diff, uint32_t value)
823 if (diff & (1U << 31)) {
824 /* MCBSP3_CLK_HIZ_DI */
825 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
827 if (diff & (1 << 1)) {
829 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
834 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
835 uint32_t diff, uint32_t value)
837 if (diff & (1U << 31)) {
838 /* CONF_MOD_UART3_CLK_MODE_R */
839 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
840 omap_findclk(s, ((value >> 31) & 1) ?
841 "ck_48m" : "armper_ck"));
843 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
844 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
845 omap_findclk(s, ((value >> 30) & 1) ?
846 "ck_48m" : "armper_ck"));
847 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
848 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
849 omap_findclk(s, ((value >> 29) & 1) ?
850 "ck_48m" : "armper_ck"));
851 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
852 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
853 omap_findclk(s, ((value >> 23) & 1) ?
854 "ck_48m" : "armper_ck"));
855 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
856 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
857 omap_findclk(s, ((value >> 12) & 1) ?
858 "ck_48m" : "armper_ck"));
859 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
860 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
863 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
864 uint64_t value, unsigned size)
866 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
870 omap_badwidth_write32(opaque, addr, value);
875 case 0x00: /* FUNC_MUX_CTRL_0 */
876 diff = s->func_mux_ctrl[addr >> 2] ^ value;
877 s->func_mux_ctrl[addr >> 2] = value;
878 omap_pin_funcmux0_update(s, diff, value);
881 case 0x04: /* FUNC_MUX_CTRL_1 */
882 diff = s->func_mux_ctrl[addr >> 2] ^ value;
883 s->func_mux_ctrl[addr >> 2] = value;
884 omap_pin_funcmux1_update(s, diff, value);
887 case 0x08: /* FUNC_MUX_CTRL_2 */
888 s->func_mux_ctrl[addr >> 2] = value;
891 case 0x0c: /* COMP_MODE_CTRL_0 */
892 s->comp_mode_ctrl[0] = value;
893 s->compat1509 = (value != 0x0000eaef);
894 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
895 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
898 case 0x10: /* FUNC_MUX_CTRL_3 */
899 case 0x14: /* FUNC_MUX_CTRL_4 */
900 case 0x18: /* FUNC_MUX_CTRL_5 */
901 case 0x1c: /* FUNC_MUX_CTRL_6 */
902 case 0x20: /* FUNC_MUX_CTRL_7 */
903 case 0x24: /* FUNC_MUX_CTRL_8 */
904 case 0x28: /* FUNC_MUX_CTRL_9 */
905 case 0x2c: /* FUNC_MUX_CTRL_A */
906 case 0x30: /* FUNC_MUX_CTRL_B */
907 case 0x34: /* FUNC_MUX_CTRL_C */
908 case 0x38: /* FUNC_MUX_CTRL_D */
909 s->func_mux_ctrl[(addr >> 2) - 1] = value;
912 case 0x40: /* PULL_DWN_CTRL_0 */
913 case 0x44: /* PULL_DWN_CTRL_1 */
914 case 0x48: /* PULL_DWN_CTRL_2 */
915 case 0x4c: /* PULL_DWN_CTRL_3 */
916 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
919 case 0x50: /* GATE_INH_CTRL_0 */
920 s->gate_inh_ctrl[0] = value;
923 case 0x60: /* VOLTAGE_CTRL_0 */
924 s->voltage_ctrl[0] = value;
927 case 0x70: /* TEST_DBG_CTRL_0 */
928 s->test_dbg_ctrl[0] = value;
931 case 0x80: /* MOD_CONF_CTRL_0 */
932 diff = s->mod_conf_ctrl[0] ^ value;
933 s->mod_conf_ctrl[0] = value;
934 omap_pin_modconf1_update(s, diff, value);
942 static const MemoryRegionOps omap_pin_cfg_ops = {
943 .read = omap_pin_cfg_read,
944 .write = omap_pin_cfg_write,
945 .endianness = DEVICE_NATIVE_ENDIAN,
948 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
950 /* Start in Compatibility Mode. */
952 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
953 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
954 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
955 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
956 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
957 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
958 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
959 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
960 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
961 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
964 static void omap_pin_cfg_init(MemoryRegion *system_memory,
966 struct omap_mpu_state_s *mpu)
968 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
969 "omap-pin-cfg", 0x800);
970 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
971 omap_pin_cfg_reset(mpu);
974 /* Device Identification, Die Identification */
975 static uint64_t omap_id_read(void *opaque, hwaddr addr,
978 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
981 return omap_badwidth_read32(opaque, addr);
985 case 0xfffe1800: /* DIE_ID_LSB */
987 case 0xfffe1804: /* DIE_ID_MSB */
990 case 0xfffe2000: /* PRODUCT_ID_LSB */
992 case 0xfffe2004: /* PRODUCT_ID_MSB */
995 case 0xfffed400: /* JTAG_ID_LSB */
996 switch (s->mpu_model) {
1002 hw_error("%s: bad mpu model\n", __FUNCTION__);
1006 case 0xfffed404: /* JTAG_ID_MSB */
1007 switch (s->mpu_model) {
1013 hw_error("%s: bad mpu model\n", __FUNCTION__);
1022 static void omap_id_write(void *opaque, hwaddr addr,
1023 uint64_t value, unsigned size)
1026 omap_badwidth_write32(opaque, addr, value);
1033 static const MemoryRegionOps omap_id_ops = {
1034 .read = omap_id_read,
1035 .write = omap_id_write,
1036 .endianness = DEVICE_NATIVE_ENDIAN,
1039 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1041 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042 "omap-id", 0x100000000ULL);
1043 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1045 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1048 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049 if (!cpu_is_omap15xx(mpu)) {
1050 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051 &mpu->id_iomem, 0xfffe2000, 0x800);
1052 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1056 /* MPUI Control (Dummy) */
1057 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1060 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1063 return omap_badwidth_read32(opaque, addr);
1067 case 0x00: /* CTRL */
1068 return s->mpui_ctrl;
1069 case 0x04: /* DEBUG_ADDR */
1071 case 0x08: /* DEBUG_DATA */
1073 case 0x0c: /* DEBUG_FLAG */
1075 case 0x10: /* STATUS */
1078 /* Not in OMAP310 */
1079 case 0x14: /* DSP_STATUS */
1080 case 0x18: /* DSP_BOOT_CONFIG */
1082 case 0x1c: /* DSP_MPUI_CONFIG */
1090 static void omap_mpui_write(void *opaque, hwaddr addr,
1091 uint64_t value, unsigned size)
1093 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1096 omap_badwidth_write32(opaque, addr, value);
1101 case 0x00: /* CTRL */
1102 s->mpui_ctrl = value & 0x007fffff;
1105 case 0x04: /* DEBUG_ADDR */
1106 case 0x08: /* DEBUG_DATA */
1107 case 0x0c: /* DEBUG_FLAG */
1108 case 0x10: /* STATUS */
1109 /* Not in OMAP310 */
1110 case 0x14: /* DSP_STATUS */
1113 case 0x18: /* DSP_BOOT_CONFIG */
1114 case 0x1c: /* DSP_MPUI_CONFIG */
1122 static const MemoryRegionOps omap_mpui_ops = {
1123 .read = omap_mpui_read,
1124 .write = omap_mpui_write,
1125 .endianness = DEVICE_NATIVE_ENDIAN,
1128 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1130 s->mpui_ctrl = 0x0003ff1b;
1133 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134 struct omap_mpu_state_s *mpu)
1136 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137 "omap-mpui", 0x100);
1138 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1140 omap_mpui_reset(mpu);
1144 struct omap_tipb_bridge_s {
1152 uint16_t enh_control;
1155 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1158 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1161 return omap_badwidth_read16(opaque, addr);
1165 case 0x00: /* TIPB_CNTL */
1167 case 0x04: /* TIPB_BUS_ALLOC */
1169 case 0x08: /* MPU_TIPB_CNTL */
1171 case 0x0c: /* ENHANCED_TIPB_CNTL */
1172 return s->enh_control;
1173 case 0x10: /* ADDRESS_DBG */
1174 case 0x14: /* DATA_DEBUG_LOW */
1175 case 0x18: /* DATA_DEBUG_HIGH */
1177 case 0x1c: /* DEBUG_CNTR_SIG */
1185 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186 uint64_t value, unsigned size)
1188 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1191 omap_badwidth_write16(opaque, addr, value);
1196 case 0x00: /* TIPB_CNTL */
1197 s->control = value & 0xffff;
1200 case 0x04: /* TIPB_BUS_ALLOC */
1201 s->alloc = value & 0x003f;
1204 case 0x08: /* MPU_TIPB_CNTL */
1205 s->buffer = value & 0x0003;
1208 case 0x0c: /* ENHANCED_TIPB_CNTL */
1209 s->width_intr = !(value & 2);
1210 s->enh_control = value & 0x000f;
1213 case 0x10: /* ADDRESS_DBG */
1214 case 0x14: /* DATA_DEBUG_LOW */
1215 case 0x18: /* DATA_DEBUG_HIGH */
1216 case 0x1c: /* DEBUG_CNTR_SIG */
1225 static const MemoryRegionOps omap_tipb_bridge_ops = {
1226 .read = omap_tipb_bridge_read,
1227 .write = omap_tipb_bridge_write,
1228 .endianness = DEVICE_NATIVE_ENDIAN,
1231 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1233 s->control = 0xffff;
1236 s->enh_control = 0x000f;
1239 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240 MemoryRegion *memory, hwaddr base,
1241 qemu_irq abort_irq, omap_clk clk)
1243 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1245 s->abort = abort_irq;
1246 omap_tipb_bridge_reset(s);
1248 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249 "omap-tipb-bridge", 0x100);
1250 memory_region_add_subregion(memory, base, &s->iomem);
1255 /* Dummy Traffic Controller's Memory Interface */
1256 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1259 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1263 return omap_badwidth_read32(opaque, addr);
1267 case 0x00: /* IMIF_PRIO */
1268 case 0x04: /* EMIFS_PRIO */
1269 case 0x08: /* EMIFF_PRIO */
1270 case 0x0c: /* EMIFS_CONFIG */
1271 case 0x10: /* EMIFS_CS0_CONFIG */
1272 case 0x14: /* EMIFS_CS1_CONFIG */
1273 case 0x18: /* EMIFS_CS2_CONFIG */
1274 case 0x1c: /* EMIFS_CS3_CONFIG */
1275 case 0x24: /* EMIFF_MRS */
1276 case 0x28: /* TIMEOUT1 */
1277 case 0x2c: /* TIMEOUT2 */
1278 case 0x30: /* TIMEOUT3 */
1279 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1280 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1281 return s->tcmi_regs[addr >> 2];
1283 case 0x20: /* EMIFF_SDRAM_CONFIG */
1284 ret = s->tcmi_regs[addr >> 2];
1285 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286 /* XXX: We can try using the VGA_DIRTY flag for this */
1294 static void omap_tcmi_write(void *opaque, hwaddr addr,
1295 uint64_t value, unsigned size)
1297 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1300 omap_badwidth_write32(opaque, addr, value);
1305 case 0x00: /* IMIF_PRIO */
1306 case 0x04: /* EMIFS_PRIO */
1307 case 0x08: /* EMIFF_PRIO */
1308 case 0x10: /* EMIFS_CS0_CONFIG */
1309 case 0x14: /* EMIFS_CS1_CONFIG */
1310 case 0x18: /* EMIFS_CS2_CONFIG */
1311 case 0x1c: /* EMIFS_CS3_CONFIG */
1312 case 0x20: /* EMIFF_SDRAM_CONFIG */
1313 case 0x24: /* EMIFF_MRS */
1314 case 0x28: /* TIMEOUT1 */
1315 case 0x2c: /* TIMEOUT2 */
1316 case 0x30: /* TIMEOUT3 */
1317 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1318 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1319 s->tcmi_regs[addr >> 2] = value;
1321 case 0x0c: /* EMIFS_CONFIG */
1322 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1330 static const MemoryRegionOps omap_tcmi_ops = {
1331 .read = omap_tcmi_read,
1332 .write = omap_tcmi_write,
1333 .endianness = DEVICE_NATIVE_ENDIAN,
1336 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1338 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1355 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356 struct omap_mpu_state_s *mpu)
1358 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359 "omap-tcmi", 0x100);
1360 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361 omap_tcmi_reset(mpu);
1364 /* Digital phase-locked loops control */
1371 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1374 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1377 return omap_badwidth_read16(opaque, addr);
1380 if (addr == 0x00) /* CTL_REG */
1387 static void omap_dpll_write(void *opaque, hwaddr addr,
1388 uint64_t value, unsigned size)
1390 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1392 static const int bypass_div[4] = { 1, 2, 4, 4 };
1396 omap_badwidth_write16(opaque, addr, value);
1400 if (addr == 0x00) { /* CTL_REG */
1401 /* See omap_ulpd_pm_write() too */
1402 diff = s->mode & value;
1403 s->mode = value & 0x2fff;
1404 if (diff & (0x3ff << 2)) {
1405 if (value & (1 << 4)) { /* PLL_ENABLE */
1406 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1407 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1409 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1412 omap_clk_setrate(s->dpll, div, mult);
1415 /* Enter the desired mode. */
1416 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1418 /* Act as if the lock is restored. */
1425 static const MemoryRegionOps omap_dpll_ops = {
1426 .read = omap_dpll_read,
1427 .write = omap_dpll_write,
1428 .endianness = DEVICE_NATIVE_ENDIAN,
1431 static void omap_dpll_reset(struct dpll_ctl_s *s)
1434 omap_clk_setrate(s->dpll, 1, 1);
1437 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1438 hwaddr base, omap_clk clk)
1440 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1446 memory_region_add_subregion(memory, base, &s->iomem);
1450 /* MPU Clock/Reset/Power Mode Control */
1451 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1454 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1457 return omap_badwidth_read16(opaque, addr);
1461 case 0x00: /* ARM_CKCTL */
1462 return s->clkm.arm_ckctl;
1464 case 0x04: /* ARM_IDLECT1 */
1465 return s->clkm.arm_idlect1;
1467 case 0x08: /* ARM_IDLECT2 */
1468 return s->clkm.arm_idlect2;
1470 case 0x0c: /* ARM_EWUPCT */
1471 return s->clkm.arm_ewupct;
1473 case 0x10: /* ARM_RSTCT1 */
1474 return s->clkm.arm_rstct1;
1476 case 0x14: /* ARM_RSTCT2 */
1477 return s->clkm.arm_rstct2;
1479 case 0x18: /* ARM_SYSST */
1480 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1482 case 0x1c: /* ARM_CKOUT1 */
1483 return s->clkm.arm_ckout1;
1485 case 0x20: /* ARM_CKOUT2 */
1493 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494 uint16_t diff, uint16_t value)
1498 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1499 if (value & (1 << 14))
1502 clk = omap_findclk(s, "arminth_ck");
1503 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1506 if (diff & (1 << 12)) { /* ARM_TIMXO */
1507 clk = omap_findclk(s, "armtim_ck");
1508 if (value & (1 << 12))
1509 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1511 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1514 if (diff & (3 << 10)) { /* DSPMMUDIV */
1515 clk = omap_findclk(s, "dspmmu_ck");
1516 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1518 if (diff & (3 << 8)) { /* TCDIV */
1519 clk = omap_findclk(s, "tc_ck");
1520 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1522 if (diff & (3 << 6)) { /* DSPDIV */
1523 clk = omap_findclk(s, "dsp_ck");
1524 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1526 if (diff & (3 << 4)) { /* ARMDIV */
1527 clk = omap_findclk(s, "arm_ck");
1528 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1530 if (diff & (3 << 2)) { /* LCDDIV */
1531 clk = omap_findclk(s, "lcd_ck");
1532 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1534 if (diff & (3 << 0)) { /* PERDIV */
1535 clk = omap_findclk(s, "armper_ck");
1536 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1540 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541 uint16_t diff, uint16_t value)
1545 if (value & (1 << 11)) { /* SETARM_IDLE */
1546 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1548 if (!(value & (1 << 10))) /* WKUP_MODE */
1549 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1551 #define SET_CANIDLE(clock, bit) \
1552 if (diff & (1 << bit)) { \
1553 clk = omap_findclk(s, clock); \
1554 omap_clk_canidle(clk, (value >> bit) & 1); \
1556 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1557 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1558 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1559 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1560 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1561 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1562 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1563 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1564 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1565 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1566 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1567 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1568 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1569 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1572 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1573 uint16_t diff, uint16_t value)
1577 #define SET_ONOFF(clock, bit) \
1578 if (diff & (1 << bit)) { \
1579 clk = omap_findclk(s, clock); \
1580 omap_clk_onoff(clk, (value >> bit) & 1); \
1582 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1583 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1584 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1585 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1586 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1587 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1588 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1589 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1590 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1591 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1592 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1595 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1596 uint16_t diff, uint16_t value)
1600 if (diff & (3 << 4)) { /* TCLKOUT */
1601 clk = omap_findclk(s, "tclk_out");
1602 switch ((value >> 4) & 3) {
1604 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1605 omap_clk_onoff(clk, 1);
1608 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1609 omap_clk_onoff(clk, 1);
1612 omap_clk_onoff(clk, 0);
1615 if (diff & (3 << 2)) { /* DCLKOUT */
1616 clk = omap_findclk(s, "dclk_out");
1617 switch ((value >> 2) & 3) {
1619 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1622 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1625 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1628 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1632 if (diff & (3 << 0)) { /* ACLKOUT */
1633 clk = omap_findclk(s, "aclk_out");
1634 switch ((value >> 0) & 3) {
1636 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1637 omap_clk_onoff(clk, 1);
1640 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1641 omap_clk_onoff(clk, 1);
1644 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1645 omap_clk_onoff(clk, 1);
1648 omap_clk_onoff(clk, 0);
1653 static void omap_clkm_write(void *opaque, hwaddr addr,
1654 uint64_t value, unsigned size)
1656 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1659 static const char *clkschemename[8] = {
1660 "fully synchronous", "fully asynchronous", "synchronous scalable",
1661 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1665 omap_badwidth_write16(opaque, addr, value);
1670 case 0x00: /* ARM_CKCTL */
1671 diff = s->clkm.arm_ckctl ^ value;
1672 s->clkm.arm_ckctl = value & 0x7fff;
1673 omap_clkm_ckctl_update(s, diff, value);
1676 case 0x04: /* ARM_IDLECT1 */
1677 diff = s->clkm.arm_idlect1 ^ value;
1678 s->clkm.arm_idlect1 = value & 0x0fff;
1679 omap_clkm_idlect1_update(s, diff, value);
1682 case 0x08: /* ARM_IDLECT2 */
1683 diff = s->clkm.arm_idlect2 ^ value;
1684 s->clkm.arm_idlect2 = value & 0x07ff;
1685 omap_clkm_idlect2_update(s, diff, value);
1688 case 0x0c: /* ARM_EWUPCT */
1689 s->clkm.arm_ewupct = value & 0x003f;
1692 case 0x10: /* ARM_RSTCT1 */
1693 diff = s->clkm.arm_rstct1 ^ value;
1694 s->clkm.arm_rstct1 = value & 0x0007;
1696 qemu_system_reset_request();
1697 s->clkm.cold_start = 0xa;
1699 if (diff & ~value & 4) { /* DSP_RST */
1701 omap_tipb_bridge_reset(s->private_tipb);
1702 omap_tipb_bridge_reset(s->public_tipb);
1704 if (diff & 2) { /* DSP_EN */
1705 clk = omap_findclk(s, "dsp_ck");
1706 omap_clk_canidle(clk, (~value >> 1) & 1);
1710 case 0x14: /* ARM_RSTCT2 */
1711 s->clkm.arm_rstct2 = value & 0x0001;
1714 case 0x18: /* ARM_SYSST */
1715 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1716 s->clkm.clocking_scheme = (value >> 11) & 7;
1717 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1718 clkschemename[s->clkm.clocking_scheme]);
1720 s->clkm.cold_start &= value & 0x3f;
1723 case 0x1c: /* ARM_CKOUT1 */
1724 diff = s->clkm.arm_ckout1 ^ value;
1725 s->clkm.arm_ckout1 = value & 0x003f;
1726 omap_clkm_ckout1_update(s, diff, value);
1729 case 0x20: /* ARM_CKOUT2 */
1735 static const MemoryRegionOps omap_clkm_ops = {
1736 .read = omap_clkm_read,
1737 .write = omap_clkm_write,
1738 .endianness = DEVICE_NATIVE_ENDIAN,
1741 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1744 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1745 CPUState *cpu = CPU(s->cpu);
1748 return omap_badwidth_read16(opaque, addr);
1752 case 0x04: /* DSP_IDLECT1 */
1753 return s->clkm.dsp_idlect1;
1755 case 0x08: /* DSP_IDLECT2 */
1756 return s->clkm.dsp_idlect2;
1758 case 0x14: /* DSP_RSTCT2 */
1759 return s->clkm.dsp_rstct2;
1761 case 0x18: /* DSP_SYSST */
1763 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1764 (cpu->halted << 6); /* Quite useless... */
1771 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1772 uint16_t diff, uint16_t value)
1776 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1779 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1780 uint16_t diff, uint16_t value)
1784 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1787 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1788 uint64_t value, unsigned size)
1790 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1794 omap_badwidth_write16(opaque, addr, value);
1799 case 0x04: /* DSP_IDLECT1 */
1800 diff = s->clkm.dsp_idlect1 ^ value;
1801 s->clkm.dsp_idlect1 = value & 0x01f7;
1802 omap_clkdsp_idlect1_update(s, diff, value);
1805 case 0x08: /* DSP_IDLECT2 */
1806 s->clkm.dsp_idlect2 = value & 0x0037;
1807 diff = s->clkm.dsp_idlect1 ^ value;
1808 omap_clkdsp_idlect2_update(s, diff, value);
1811 case 0x14: /* DSP_RSTCT2 */
1812 s->clkm.dsp_rstct2 = value & 0x0001;
1815 case 0x18: /* DSP_SYSST */
1816 s->clkm.cold_start &= value & 0x3f;
1824 static const MemoryRegionOps omap_clkdsp_ops = {
1825 .read = omap_clkdsp_read,
1826 .write = omap_clkdsp_write,
1827 .endianness = DEVICE_NATIVE_ENDIAN,
1830 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1832 if (s->wdt && s->wdt->reset)
1833 s->clkm.cold_start = 0x6;
1834 s->clkm.clocking_scheme = 0;
1835 omap_clkm_ckctl_update(s, ~0, 0x3000);
1836 s->clkm.arm_ckctl = 0x3000;
1837 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1838 s->clkm.arm_idlect1 = 0x0400;
1839 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1840 s->clkm.arm_idlect2 = 0x0100;
1841 s->clkm.arm_ewupct = 0x003f;
1842 s->clkm.arm_rstct1 = 0x0000;
1843 s->clkm.arm_rstct2 = 0x0000;
1844 s->clkm.arm_ckout1 = 0x0015;
1845 s->clkm.dpll1_mode = 0x2002;
1846 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1847 s->clkm.dsp_idlect1 = 0x0040;
1848 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1849 s->clkm.dsp_idlect2 = 0x0000;
1850 s->clkm.dsp_rstct2 = 0x0000;
1853 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1854 hwaddr dsp_base, struct omap_mpu_state_s *s)
1856 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1857 "omap-clkm", 0x100);
1858 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1859 "omap-clkdsp", 0x1000);
1861 s->clkm.arm_idlect1 = 0x03ff;
1862 s->clkm.arm_idlect2 = 0x0100;
1863 s->clkm.dsp_idlect1 = 0x0002;
1865 s->clkm.cold_start = 0x3a;
1867 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1868 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1872 struct omap_mpuio_s {
1876 qemu_irq handler[16];
1898 static void omap_mpuio_set(void *opaque, int line, int level)
1900 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1901 uint16_t prev = s->inputs;
1904 s->inputs |= 1 << line;
1906 s->inputs &= ~(1 << line);
1908 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1909 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1910 s->ints |= 1 << line;
1911 qemu_irq_raise(s->irq);
1914 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1915 (s->event >> 1) == line) /* PIN_SELECT */
1916 s->latch = s->inputs;
1920 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1923 uint8_t *row, rows = 0, cols = ~s->cols;
1925 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1929 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1930 s->row_latch = ~rows;
1933 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1936 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1937 int offset = addr & OMAP_MPUI_REG_MASK;
1941 return omap_badwidth_read16(opaque, addr);
1945 case 0x00: /* INPUT_LATCH */
1948 case 0x04: /* OUTPUT_REG */
1951 case 0x08: /* IO_CNTL */
1954 case 0x10: /* KBR_LATCH */
1955 return s->row_latch;
1957 case 0x14: /* KBC_REG */
1960 case 0x18: /* GPIO_EVENT_MODE_REG */
1963 case 0x1c: /* GPIO_INT_EDGE_REG */
1966 case 0x20: /* KBD_INT */
1967 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1969 case 0x24: /* GPIO_INT */
1973 qemu_irq_lower(s->irq);
1976 case 0x28: /* KBD_MASKIT */
1979 case 0x2c: /* GPIO_MASKIT */
1982 case 0x30: /* GPIO_DEBOUNCING_REG */
1985 case 0x34: /* GPIO_LATCH_REG */
1993 static void omap_mpuio_write(void *opaque, hwaddr addr,
1994 uint64_t value, unsigned size)
1996 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1997 int offset = addr & OMAP_MPUI_REG_MASK;
2002 omap_badwidth_write16(opaque, addr, value);
2007 case 0x04: /* OUTPUT_REG */
2008 diff = (s->outputs ^ value) & ~s->dir;
2010 while ((ln = ctz32(diff)) != 32) {
2012 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2017 case 0x08: /* IO_CNTL */
2018 diff = s->outputs & (s->dir ^ value);
2021 value = s->outputs & ~s->dir;
2022 while ((ln = ctz32(diff)) != 32) {
2024 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2029 case 0x14: /* KBC_REG */
2031 omap_mpuio_kbd_update(s);
2034 case 0x18: /* GPIO_EVENT_MODE_REG */
2035 s->event = value & 0x1f;
2038 case 0x1c: /* GPIO_INT_EDGE_REG */
2042 case 0x28: /* KBD_MASKIT */
2043 s->kbd_mask = value & 1;
2044 omap_mpuio_kbd_update(s);
2047 case 0x2c: /* GPIO_MASKIT */
2051 case 0x30: /* GPIO_DEBOUNCING_REG */
2052 s->debounce = value & 0x1ff;
2055 case 0x00: /* INPUT_LATCH */
2056 case 0x10: /* KBR_LATCH */
2057 case 0x20: /* KBD_INT */
2058 case 0x24: /* GPIO_INT */
2059 case 0x34: /* GPIO_LATCH_REG */
2069 static const MemoryRegionOps omap_mpuio_ops = {
2070 .read = omap_mpuio_read,
2071 .write = omap_mpuio_write,
2072 .endianness = DEVICE_NATIVE_ENDIAN,
2075 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2087 s->row_latch = 0x1f;
2091 static void omap_mpuio_onoff(void *opaque, int line, int on)
2093 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2097 omap_mpuio_kbd_update(s);
2100 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2102 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2105 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2108 s->kbd_irq = kbd_int;
2110 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2111 omap_mpuio_reset(s);
2113 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2114 "omap-mpuio", 0x800);
2115 memory_region_add_subregion(memory, base, &s->iomem);
2117 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2122 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2127 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2129 if (line >= 16 || line < 0)
2130 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2131 s->handler[line] = handler;
2134 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2136 if (row >= 5 || row < 0)
2137 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2140 s->buttons[row] |= 1 << col;
2142 s->buttons[row] &= ~(1 << col);
2144 omap_mpuio_kbd_update(s);
2147 /* MicroWire Interface */
2148 struct omap_uwire_s {
2159 uWireSlave *chip[4];
2162 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2164 int chipselect = (s->control >> 10) & 3; /* INDEX */
2165 uWireSlave *slave = s->chip[chipselect];
2167 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2168 if (s->control & (1 << 12)) /* CS_CMD */
2169 if (slave && slave->send)
2170 slave->send(slave->opaque,
2171 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2172 s->control &= ~(1 << 14); /* CSRB */
2173 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2174 * a DRQ. When is the level IRQ supposed to be reset? */
2177 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2178 if (s->control & (1 << 12)) /* CS_CMD */
2179 if (slave && slave->receive)
2180 s->rxbuf = slave->receive(slave->opaque);
2181 s->control |= 1 << 15; /* RDRB */
2182 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2183 * a DRQ. When is the level IRQ supposed to be reset? */
2187 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2190 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2191 int offset = addr & OMAP_MPUI_REG_MASK;
2194 return omap_badwidth_read16(opaque, addr);
2198 case 0x00: /* RDR */
2199 s->control &= ~(1 << 15); /* RDRB */
2202 case 0x04: /* CSR */
2205 case 0x08: /* SR1 */
2207 case 0x0c: /* SR2 */
2209 case 0x10: /* SR3 */
2211 case 0x14: /* SR4 */
2213 case 0x18: /* SR5 */
2221 static void omap_uwire_write(void *opaque, hwaddr addr,
2222 uint64_t value, unsigned size)
2224 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2225 int offset = addr & OMAP_MPUI_REG_MASK;
2228 omap_badwidth_write16(opaque, addr, value);
2233 case 0x00: /* TDR */
2234 s->txbuf = value; /* TD */
2235 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2236 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2237 (s->control & (1 << 12)))) { /* CS_CMD */
2238 s->control |= 1 << 14; /* CSRB */
2239 omap_uwire_transfer_start(s);
2243 case 0x04: /* CSR */
2244 s->control = value & 0x1fff;
2245 if (value & (1 << 13)) /* START */
2246 omap_uwire_transfer_start(s);
2249 case 0x08: /* SR1 */
2250 s->setup[0] = value & 0x003f;
2253 case 0x0c: /* SR2 */
2254 s->setup[1] = value & 0x0fc0;
2257 case 0x10: /* SR3 */
2258 s->setup[2] = value & 0x0003;
2261 case 0x14: /* SR4 */
2262 s->setup[3] = value & 0x0001;
2265 case 0x18: /* SR5 */
2266 s->setup[4] = value & 0x000f;
2275 static const MemoryRegionOps omap_uwire_ops = {
2276 .read = omap_uwire_read,
2277 .write = omap_uwire_write,
2278 .endianness = DEVICE_NATIVE_ENDIAN,
2281 static void omap_uwire_reset(struct omap_uwire_s *s)
2291 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2293 qemu_irq txirq, qemu_irq rxirq,
2297 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2302 omap_uwire_reset(s);
2304 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2305 memory_region_add_subregion(system_memory, base, &s->iomem);
2310 void omap_uwire_attach(struct omap_uwire_s *s,
2311 uWireSlave *slave, int chipselect)
2313 if (chipselect < 0 || chipselect > 3) {
2314 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2318 s->chip[chipselect] = slave;
2321 /* Pseudonoise Pulse-Width Light Modulator */
2330 static void omap_pwl_update(struct omap_pwl_s *s)
2332 int output = (s->clk && s->enable) ? s->level : 0;
2334 if (output != s->output) {
2336 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2340 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2343 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2344 int offset = addr & OMAP_MPUI_REG_MASK;
2347 return omap_badwidth_read8(opaque, addr);
2351 case 0x00: /* PWL_LEVEL */
2353 case 0x04: /* PWL_CTRL */
2360 static void omap_pwl_write(void *opaque, hwaddr addr,
2361 uint64_t value, unsigned size)
2363 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2364 int offset = addr & OMAP_MPUI_REG_MASK;
2367 omap_badwidth_write8(opaque, addr, value);
2372 case 0x00: /* PWL_LEVEL */
2376 case 0x04: /* PWL_CTRL */
2377 s->enable = value & 1;
2386 static const MemoryRegionOps omap_pwl_ops = {
2387 .read = omap_pwl_read,
2388 .write = omap_pwl_write,
2389 .endianness = DEVICE_NATIVE_ENDIAN,
2392 static void omap_pwl_reset(struct omap_pwl_s *s)
2401 static void omap_pwl_clk_update(void *opaque, int line, int on)
2403 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2409 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2413 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2417 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2419 memory_region_add_subregion(system_memory, base, &s->iomem);
2421 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2425 /* Pulse-Width Tone module */
2434 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2437 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2438 int offset = addr & OMAP_MPUI_REG_MASK;
2441 return omap_badwidth_read8(opaque, addr);
2445 case 0x00: /* FRC */
2447 case 0x04: /* VCR */
2449 case 0x08: /* GCR */
2456 static void omap_pwt_write(void *opaque, hwaddr addr,
2457 uint64_t value, unsigned size)
2459 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2460 int offset = addr & OMAP_MPUI_REG_MASK;
2463 omap_badwidth_write8(opaque, addr, value);
2468 case 0x00: /* FRC */
2469 s->frc = value & 0x3f;
2471 case 0x04: /* VRC */
2472 if ((value ^ s->vrc) & 1) {
2474 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2475 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2476 ((omap_clk_getrate(s->clk) >> 3) /
2477 /* Pre-multiplexer divider */
2478 ((s->gcr & 2) ? 1 : 154) /
2479 /* Octave multiplexer */
2480 (2 << (value & 3)) *
2481 /* 101/107 divider */
2482 ((value & (1 << 2)) ? 101 : 107) *
2484 ((value & (1 << 3)) ? 49 : 55) *
2486 ((value & (1 << 4)) ? 50 : 63) *
2487 /* 80/127 divider */
2488 ((value & (1 << 5)) ? 80 : 127) /
2489 (107 * 55 * 63 * 127)));
2491 printf("%s: silence!\n", __FUNCTION__);
2493 s->vrc = value & 0x7f;
2495 case 0x08: /* GCR */
2504 static const MemoryRegionOps omap_pwt_ops = {
2505 .read =omap_pwt_read,
2506 .write = omap_pwt_write,
2507 .endianness = DEVICE_NATIVE_ENDIAN,
2510 static void omap_pwt_reset(struct omap_pwt_s *s)
2517 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2521 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2525 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2527 memory_region_add_subregion(system_memory, base, &s->iomem);
2531 /* Real-time Clock module */
2548 struct tm current_tm;
2553 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2555 /* s->alarm is level-triggered */
2556 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2559 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2561 s->alarm_ti = mktimegm(&s->alarm_tm);
2562 if (s->alarm_ti == -1)
2563 printf("%s: conversion failed\n", __FUNCTION__);
2566 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2569 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2570 int offset = addr & OMAP_MPUI_REG_MASK;
2574 return omap_badwidth_read8(opaque, addr);
2578 case 0x00: /* SECONDS_REG */
2579 return to_bcd(s->current_tm.tm_sec);
2581 case 0x04: /* MINUTES_REG */
2582 return to_bcd(s->current_tm.tm_min);
2584 case 0x08: /* HOURS_REG */
2586 return ((s->current_tm.tm_hour > 11) << 7) |
2587 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2589 return to_bcd(s->current_tm.tm_hour);
2591 case 0x0c: /* DAYS_REG */
2592 return to_bcd(s->current_tm.tm_mday);
2594 case 0x10: /* MONTHS_REG */
2595 return to_bcd(s->current_tm.tm_mon + 1);
2597 case 0x14: /* YEARS_REG */
2598 return to_bcd(s->current_tm.tm_year % 100);
2600 case 0x18: /* WEEK_REG */
2601 return s->current_tm.tm_wday;
2603 case 0x20: /* ALARM_SECONDS_REG */
2604 return to_bcd(s->alarm_tm.tm_sec);
2606 case 0x24: /* ALARM_MINUTES_REG */
2607 return to_bcd(s->alarm_tm.tm_min);
2609 case 0x28: /* ALARM_HOURS_REG */
2611 return ((s->alarm_tm.tm_hour > 11) << 7) |
2612 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2614 return to_bcd(s->alarm_tm.tm_hour);
2616 case 0x2c: /* ALARM_DAYS_REG */
2617 return to_bcd(s->alarm_tm.tm_mday);
2619 case 0x30: /* ALARM_MONTHS_REG */
2620 return to_bcd(s->alarm_tm.tm_mon + 1);
2622 case 0x34: /* ALARM_YEARS_REG */
2623 return to_bcd(s->alarm_tm.tm_year % 100);
2625 case 0x40: /* RTC_CTRL_REG */
2626 return (s->pm_am << 3) | (s->auto_comp << 2) |
2627 (s->round << 1) | s->running;
2629 case 0x44: /* RTC_STATUS_REG */
2634 case 0x48: /* RTC_INTERRUPTS_REG */
2635 return s->interrupts;
2637 case 0x4c: /* RTC_COMP_LSB_REG */
2638 return ((uint16_t) s->comp_reg) & 0xff;
2640 case 0x50: /* RTC_COMP_MSB_REG */
2641 return ((uint16_t) s->comp_reg) >> 8;
2648 static void omap_rtc_write(void *opaque, hwaddr addr,
2649 uint64_t value, unsigned size)
2651 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2652 int offset = addr & OMAP_MPUI_REG_MASK;
2657 omap_badwidth_write8(opaque, addr, value);
2662 case 0x00: /* SECONDS_REG */
2664 printf("RTC SEC_REG <-- %02x\n", value);
2666 s->ti -= s->current_tm.tm_sec;
2667 s->ti += from_bcd(value);
2670 case 0x04: /* MINUTES_REG */
2672 printf("RTC MIN_REG <-- %02x\n", value);
2674 s->ti -= s->current_tm.tm_min * 60;
2675 s->ti += from_bcd(value) * 60;
2678 case 0x08: /* HOURS_REG */
2680 printf("RTC HRS_REG <-- %02x\n", value);
2682 s->ti -= s->current_tm.tm_hour * 3600;
2684 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2685 s->ti += ((value >> 7) & 1) * 43200;
2687 s->ti += from_bcd(value & 0x3f) * 3600;
2690 case 0x0c: /* DAYS_REG */
2692 printf("RTC DAY_REG <-- %02x\n", value);
2694 s->ti -= s->current_tm.tm_mday * 86400;
2695 s->ti += from_bcd(value) * 86400;
2698 case 0x10: /* MONTHS_REG */
2700 printf("RTC MTH_REG <-- %02x\n", value);
2702 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2703 new_tm.tm_mon = from_bcd(value);
2704 ti[0] = mktimegm(&s->current_tm);
2705 ti[1] = mktimegm(&new_tm);
2707 if (ti[0] != -1 && ti[1] != -1) {
2711 /* A less accurate version */
2712 s->ti -= s->current_tm.tm_mon * 2592000;
2713 s->ti += from_bcd(value) * 2592000;
2717 case 0x14: /* YEARS_REG */
2719 printf("RTC YRS_REG <-- %02x\n", value);
2721 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2722 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2723 ti[0] = mktimegm(&s->current_tm);
2724 ti[1] = mktimegm(&new_tm);
2726 if (ti[0] != -1 && ti[1] != -1) {
2730 /* A less accurate version */
2731 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2732 s->ti += (time_t)from_bcd(value) * 31536000;
2736 case 0x18: /* WEEK_REG */
2737 return; /* Ignored */
2739 case 0x20: /* ALARM_SECONDS_REG */
2741 printf("ALM SEC_REG <-- %02x\n", value);
2743 s->alarm_tm.tm_sec = from_bcd(value);
2744 omap_rtc_alarm_update(s);
2747 case 0x24: /* ALARM_MINUTES_REG */
2749 printf("ALM MIN_REG <-- %02x\n", value);
2751 s->alarm_tm.tm_min = from_bcd(value);
2752 omap_rtc_alarm_update(s);
2755 case 0x28: /* ALARM_HOURS_REG */
2757 printf("ALM HRS_REG <-- %02x\n", value);
2760 s->alarm_tm.tm_hour =
2761 ((from_bcd(value & 0x3f)) % 12) +
2762 ((value >> 7) & 1) * 12;
2764 s->alarm_tm.tm_hour = from_bcd(value);
2765 omap_rtc_alarm_update(s);
2768 case 0x2c: /* ALARM_DAYS_REG */
2770 printf("ALM DAY_REG <-- %02x\n", value);
2772 s->alarm_tm.tm_mday = from_bcd(value);
2773 omap_rtc_alarm_update(s);
2776 case 0x30: /* ALARM_MONTHS_REG */
2778 printf("ALM MON_REG <-- %02x\n", value);
2780 s->alarm_tm.tm_mon = from_bcd(value);
2781 omap_rtc_alarm_update(s);
2784 case 0x34: /* ALARM_YEARS_REG */
2786 printf("ALM YRS_REG <-- %02x\n", value);
2788 s->alarm_tm.tm_year = from_bcd(value);
2789 omap_rtc_alarm_update(s);
2792 case 0x40: /* RTC_CTRL_REG */
2794 printf("RTC CONTROL <-- %02x\n", value);
2796 s->pm_am = (value >> 3) & 1;
2797 s->auto_comp = (value >> 2) & 1;
2798 s->round = (value >> 1) & 1;
2799 s->running = value & 1;
2801 s->status |= s->running << 1;
2804 case 0x44: /* RTC_STATUS_REG */
2806 printf("RTC STATUSL <-- %02x\n", value);
2808 s->status &= ~((value & 0xc0) ^ 0x80);
2809 omap_rtc_interrupts_update(s);
2812 case 0x48: /* RTC_INTERRUPTS_REG */
2814 printf("RTC INTRS <-- %02x\n", value);
2816 s->interrupts = value;
2819 case 0x4c: /* RTC_COMP_LSB_REG */
2821 printf("RTC COMPLSB <-- %02x\n", value);
2823 s->comp_reg &= 0xff00;
2824 s->comp_reg |= 0x00ff & value;
2827 case 0x50: /* RTC_COMP_MSB_REG */
2829 printf("RTC COMPMSB <-- %02x\n", value);
2831 s->comp_reg &= 0x00ff;
2832 s->comp_reg |= 0xff00 & (value << 8);
2841 static const MemoryRegionOps omap_rtc_ops = {
2842 .read = omap_rtc_read,
2843 .write = omap_rtc_write,
2844 .endianness = DEVICE_NATIVE_ENDIAN,
2847 static void omap_rtc_tick(void *opaque)
2849 struct omap_rtc_s *s = opaque;
2852 /* Round to nearest full minute. */
2853 if (s->current_tm.tm_sec < 30)
2854 s->ti -= s->current_tm.tm_sec;
2856 s->ti += 60 - s->current_tm.tm_sec;
2861 localtime_r(&s->ti, &s->current_tm);
2863 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2865 omap_rtc_interrupts_update(s);
2868 if (s->interrupts & 0x04)
2869 switch (s->interrupts & 3) {
2872 qemu_irq_pulse(s->irq);
2875 if (s->current_tm.tm_sec)
2878 qemu_irq_pulse(s->irq);
2881 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2884 qemu_irq_pulse(s->irq);
2887 if (s->current_tm.tm_sec ||
2888 s->current_tm.tm_min || s->current_tm.tm_hour)
2891 qemu_irq_pulse(s->irq);
2901 * Every full hour add a rough approximation of the compensation
2902 * register to the 32kHz Timer (which drives the RTC) value.
2904 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2905 s->tick += s->comp_reg * 1000 / 32768;
2907 timer_mod(s->clk, s->tick);
2910 static void omap_rtc_reset(struct omap_rtc_s *s)
2920 s->tick = qemu_clock_get_ms(rtc_clock);
2921 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2922 s->alarm_tm.tm_mday = 0x01;
2924 qemu_get_timedate(&tm, 0);
2925 s->ti = mktimegm(&tm);
2927 omap_rtc_alarm_update(s);
2931 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2933 qemu_irq timerirq, qemu_irq alarmirq,
2936 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2939 s->alarm = alarmirq;
2940 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2944 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2946 memory_region_add_subregion(system_memory, base, &s->iomem);
2951 /* Multi-channel Buffered Serial Port interfaces */
2952 struct omap_mcbsp_s {
2973 QEMUTimer *source_timer;
2974 QEMUTimer *sink_timer;
2977 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2981 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2983 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2986 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2994 qemu_irq_pulse(s->rxirq);
2996 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2998 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3001 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3009 qemu_irq_pulse(s->txirq);
3012 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3014 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3015 s->spcr[0] |= 1 << 2; /* RFULL */
3016 s->spcr[0] |= 1 << 1; /* RRDY */
3017 qemu_irq_raise(s->rxdrq);
3018 omap_mcbsp_intr_update(s);
3021 static void omap_mcbsp_source_tick(void *opaque)
3023 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3024 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3029 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3031 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3033 omap_mcbsp_rx_newdata(s);
3034 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3035 NANOSECONDS_PER_SECOND);
3038 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3040 if (!s->codec || !s->codec->rts)
3041 omap_mcbsp_source_tick(s);
3042 else if (s->codec->in.len) {
3043 s->rx_req = s->codec->in.len;
3044 omap_mcbsp_rx_newdata(s);
3048 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3050 timer_del(s->source_timer);
3053 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3055 s->spcr[0] &= ~(1 << 1); /* RRDY */
3056 qemu_irq_lower(s->rxdrq);
3057 omap_mcbsp_intr_update(s);
3060 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3062 s->spcr[1] |= 1 << 1; /* XRDY */
3063 qemu_irq_raise(s->txdrq);
3064 omap_mcbsp_intr_update(s);
3067 static void omap_mcbsp_sink_tick(void *opaque)
3069 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3070 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3075 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3077 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3079 omap_mcbsp_tx_newdata(s);
3080 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3081 NANOSECONDS_PER_SECOND);
3084 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3086 if (!s->codec || !s->codec->cts)
3087 omap_mcbsp_sink_tick(s);
3088 else if (s->codec->out.size) {
3089 s->tx_req = s->codec->out.size;
3090 omap_mcbsp_tx_newdata(s);
3094 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3096 s->spcr[1] &= ~(1 << 1); /* XRDY */
3097 qemu_irq_lower(s->txdrq);
3098 omap_mcbsp_intr_update(s);
3099 if (s->codec && s->codec->cts)
3100 s->codec->tx_swallow(s->codec->opaque);
3103 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3106 omap_mcbsp_tx_done(s);
3107 timer_del(s->sink_timer);
3110 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3112 int prev_rx_rate, prev_tx_rate;
3113 int rx_rate = 0, tx_rate = 0;
3114 int cpu_rate = 1500000; /* XXX */
3116 /* TODO: check CLKSTP bit */
3117 if (s->spcr[1] & (1 << 6)) { /* GRST */
3118 if (s->spcr[0] & (1 << 0)) { /* RRST */
3119 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3120 (s->pcr & (1 << 8))) { /* CLKRM */
3121 if (~s->pcr & (1 << 7)) /* SCLKME */
3122 rx_rate = cpu_rate /
3123 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3126 rx_rate = s->codec->rx_rate;
3129 if (s->spcr[1] & (1 << 0)) { /* XRST */
3130 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3131 (s->pcr & (1 << 9))) { /* CLKXM */
3132 if (~s->pcr & (1 << 7)) /* SCLKME */
3133 tx_rate = cpu_rate /
3134 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3137 tx_rate = s->codec->tx_rate;
3140 prev_tx_rate = s->tx_rate;
3141 prev_rx_rate = s->rx_rate;
3142 s->tx_rate = tx_rate;
3143 s->rx_rate = rx_rate;
3146 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3148 if (!prev_tx_rate && tx_rate)
3149 omap_mcbsp_tx_start(s);
3150 else if (s->tx_rate && !tx_rate)
3151 omap_mcbsp_tx_stop(s);
3153 if (!prev_rx_rate && rx_rate)
3154 omap_mcbsp_rx_start(s);
3155 else if (prev_tx_rate && !tx_rate)
3156 omap_mcbsp_rx_stop(s);
3159 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3162 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3163 int offset = addr & OMAP_MPUI_REG_MASK;
3167 return omap_badwidth_read16(opaque, addr);
3171 case 0x00: /* DRR2 */
3172 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3175 case 0x02: /* DRR1 */
3176 if (s->rx_req < 2) {
3177 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3178 omap_mcbsp_rx_done(s);
3181 if (s->codec && s->codec->in.len >= 2) {
3182 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3183 ret |= s->codec->in.fifo[s->codec->in.start ++];
3184 s->codec->in.len -= 2;
3188 omap_mcbsp_rx_done(s);
3193 case 0x04: /* DXR2 */
3194 case 0x06: /* DXR1 */
3197 case 0x08: /* SPCR2 */
3199 case 0x0a: /* SPCR1 */
3201 case 0x0c: /* RCR2 */
3203 case 0x0e: /* RCR1 */
3205 case 0x10: /* XCR2 */
3207 case 0x12: /* XCR1 */
3209 case 0x14: /* SRGR2 */
3211 case 0x16: /* SRGR1 */
3213 case 0x18: /* MCR2 */
3215 case 0x1a: /* MCR1 */
3217 case 0x1c: /* RCERA */
3219 case 0x1e: /* RCERB */
3221 case 0x20: /* XCERA */
3223 case 0x22: /* XCERB */
3225 case 0x24: /* PCR0 */
3227 case 0x26: /* RCERC */
3229 case 0x28: /* RCERD */
3231 case 0x2a: /* XCERC */
3233 case 0x2c: /* XCERD */
3235 case 0x2e: /* RCERE */
3237 case 0x30: /* RCERF */
3239 case 0x32: /* XCERE */
3241 case 0x34: /* XCERF */
3243 case 0x36: /* RCERG */
3245 case 0x38: /* RCERH */
3247 case 0x3a: /* XCERG */
3249 case 0x3c: /* XCERH */
3257 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3260 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3261 int offset = addr & OMAP_MPUI_REG_MASK;
3264 case 0x00: /* DRR2 */
3265 case 0x02: /* DRR1 */
3269 case 0x04: /* DXR2 */
3270 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3273 case 0x06: /* DXR1 */
3274 if (s->tx_req > 1) {
3276 if (s->codec && s->codec->cts) {
3277 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3278 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3281 omap_mcbsp_tx_done(s);
3283 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3286 case 0x08: /* SPCR2 */
3287 s->spcr[1] &= 0x0002;
3288 s->spcr[1] |= 0x03f9 & value;
3289 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3290 if (~value & 1) /* XRST */
3292 omap_mcbsp_req_update(s);
3294 case 0x0a: /* SPCR1 */
3295 s->spcr[0] &= 0x0006;
3296 s->spcr[0] |= 0xf8f9 & value;
3297 if (value & (1 << 15)) /* DLB */
3298 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3299 if (~value & 1) { /* RRST */
3302 omap_mcbsp_rx_done(s);
3304 omap_mcbsp_req_update(s);
3307 case 0x0c: /* RCR2 */
3308 s->rcr[1] = value & 0xffff;
3310 case 0x0e: /* RCR1 */
3311 s->rcr[0] = value & 0x7fe0;
3313 case 0x10: /* XCR2 */
3314 s->xcr[1] = value & 0xffff;
3316 case 0x12: /* XCR1 */
3317 s->xcr[0] = value & 0x7fe0;
3319 case 0x14: /* SRGR2 */
3320 s->srgr[1] = value & 0xffff;
3321 omap_mcbsp_req_update(s);
3323 case 0x16: /* SRGR1 */
3324 s->srgr[0] = value & 0xffff;
3325 omap_mcbsp_req_update(s);
3327 case 0x18: /* MCR2 */
3328 s->mcr[1] = value & 0x03e3;
3329 if (value & 3) /* XMCM */
3330 printf("%s: Tx channel selection mode enable attempt\n",
3333 case 0x1a: /* MCR1 */
3334 s->mcr[0] = value & 0x03e1;
3335 if (value & 1) /* RMCM */
3336 printf("%s: Rx channel selection mode enable attempt\n",
3339 case 0x1c: /* RCERA */
3340 s->rcer[0] = value & 0xffff;
3342 case 0x1e: /* RCERB */
3343 s->rcer[1] = value & 0xffff;
3345 case 0x20: /* XCERA */
3346 s->xcer[0] = value & 0xffff;
3348 case 0x22: /* XCERB */
3349 s->xcer[1] = value & 0xffff;
3351 case 0x24: /* PCR0 */
3352 s->pcr = value & 0x7faf;
3354 case 0x26: /* RCERC */
3355 s->rcer[2] = value & 0xffff;
3357 case 0x28: /* RCERD */
3358 s->rcer[3] = value & 0xffff;
3360 case 0x2a: /* XCERC */
3361 s->xcer[2] = value & 0xffff;
3363 case 0x2c: /* XCERD */
3364 s->xcer[3] = value & 0xffff;
3366 case 0x2e: /* RCERE */
3367 s->rcer[4] = value & 0xffff;
3369 case 0x30: /* RCERF */
3370 s->rcer[5] = value & 0xffff;
3372 case 0x32: /* XCERE */
3373 s->xcer[4] = value & 0xffff;
3375 case 0x34: /* XCERF */
3376 s->xcer[5] = value & 0xffff;
3378 case 0x36: /* RCERG */
3379 s->rcer[6] = value & 0xffff;
3381 case 0x38: /* RCERH */
3382 s->rcer[7] = value & 0xffff;
3384 case 0x3a: /* XCERG */
3385 s->xcer[6] = value & 0xffff;
3387 case 0x3c: /* XCERH */
3388 s->xcer[7] = value & 0xffff;
3395 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3398 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3399 int offset = addr & OMAP_MPUI_REG_MASK;
3401 if (offset == 0x04) { /* DXR */
3402 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3404 if (s->tx_req > 3) {
3406 if (s->codec && s->codec->cts) {
3407 s->codec->out.fifo[s->codec->out.len ++] =
3408 (value >> 24) & 0xff;
3409 s->codec->out.fifo[s->codec->out.len ++] =
3410 (value >> 16) & 0xff;
3411 s->codec->out.fifo[s->codec->out.len ++] =
3412 (value >> 8) & 0xff;
3413 s->codec->out.fifo[s->codec->out.len ++] =
3414 (value >> 0) & 0xff;
3417 omap_mcbsp_tx_done(s);
3419 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3423 omap_badwidth_write16(opaque, addr, value);
3426 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3427 uint64_t value, unsigned size)
3431 omap_mcbsp_writeh(opaque, addr, value);
3434 omap_mcbsp_writew(opaque, addr, value);
3437 omap_badwidth_write16(opaque, addr, value);
3441 static const MemoryRegionOps omap_mcbsp_ops = {
3442 .read = omap_mcbsp_read,
3443 .write = omap_mcbsp_write,
3444 .endianness = DEVICE_NATIVE_ENDIAN,
3447 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3449 memset(&s->spcr, 0, sizeof(s->spcr));
3450 memset(&s->rcr, 0, sizeof(s->rcr));
3451 memset(&s->xcr, 0, sizeof(s->xcr));
3452 s->srgr[0] = 0x0001;
3453 s->srgr[1] = 0x2000;
3454 memset(&s->mcr, 0, sizeof(s->mcr));
3455 memset(&s->pcr, 0, sizeof(s->pcr));
3456 memset(&s->rcer, 0, sizeof(s->rcer));
3457 memset(&s->xcer, 0, sizeof(s->xcer));
3462 timer_del(s->source_timer);
3463 timer_del(s->sink_timer);
3466 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3468 qemu_irq txirq, qemu_irq rxirq,
3469 qemu_irq *dma, omap_clk clk)
3471 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3477 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3478 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3479 omap_mcbsp_reset(s);
3481 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3482 memory_region_add_subregion(system_memory, base, &s->iomem);
3487 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3489 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3492 s->rx_req = s->codec->in.len;
3493 omap_mcbsp_rx_newdata(s);
3497 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3499 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502 s->tx_req = s->codec->out.size;
3503 omap_mcbsp_tx_newdata(s);
3507 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3510 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3511 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3514 /* LED Pulse Generators */
3527 static void omap_lpg_tick(void *opaque)
3529 struct omap_lpg_s *s = opaque;
3532 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3534 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3536 s->cycle = !s->cycle;
3537 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3540 static void omap_lpg_update(struct omap_lpg_s *s)
3542 int64_t on, period = 1, ticks = 1000;
3543 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3545 if (~s->control & (1 << 6)) /* LPGRES */
3547 else if (s->control & (1 << 7)) /* PERM_ON */
3550 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3552 on = (s->clk && s->power) ? muldiv64(ticks,
3553 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3557 if (on == period && s->on < s->period)
3558 printf("%s: LED is on\n", __FUNCTION__);
3559 else if (on == 0 && s->on)
3560 printf("%s: LED is off\n", __FUNCTION__);
3561 else if (on && (on != s->on || period != s->period)) {
3573 static void omap_lpg_reset(struct omap_lpg_s *s)
3581 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3584 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3585 int offset = addr & OMAP_MPUI_REG_MASK;
3588 return omap_badwidth_read8(opaque, addr);
3592 case 0x00: /* LCR */
3595 case 0x04: /* PMR */
3603 static void omap_lpg_write(void *opaque, hwaddr addr,
3604 uint64_t value, unsigned size)
3606 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3607 int offset = addr & OMAP_MPUI_REG_MASK;
3610 omap_badwidth_write8(opaque, addr, value);
3615 case 0x00: /* LCR */
3616 if (~value & (1 << 6)) /* LPGRES */
3618 s->control = value & 0xff;
3622 case 0x04: /* PMR */
3623 s->power = value & 0x01;
3633 static const MemoryRegionOps omap_lpg_ops = {
3634 .read = omap_lpg_read,
3635 .write = omap_lpg_write,
3636 .endianness = DEVICE_NATIVE_ENDIAN,
3639 static void omap_lpg_clk_update(void *opaque, int line, int on)
3641 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3647 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3648 hwaddr base, omap_clk clk)
3650 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3652 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3656 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3657 memory_region_add_subregion(system_memory, base, &s->iomem);
3659 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3664 /* MPUI Peripheral Bridge configuration */
3665 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3669 return omap_badwidth_read16(opaque, addr);
3672 if (addr == OMAP_MPUI_BASE) /* CMR */
3679 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3680 uint64_t value, unsigned size)
3682 /* FIXME: infinite loop */
3683 omap_badwidth_write16(opaque, addr, value);
3686 static const MemoryRegionOps omap_mpui_io_ops = {
3687 .read = omap_mpui_io_read,
3688 .write = omap_mpui_io_write,
3689 .endianness = DEVICE_NATIVE_ENDIAN,
3692 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3693 struct omap_mpu_state_s *mpu)
3695 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3696 "omap-mpui-io", 0x7fff);
3697 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3698 &mpu->mpui_io_iomem);
3701 /* General chip reset */
3702 static void omap1_mpu_reset(void *opaque)
3704 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3706 omap_dma_reset(mpu->dma);
3707 omap_mpu_timer_reset(mpu->timer[0]);
3708 omap_mpu_timer_reset(mpu->timer[1]);
3709 omap_mpu_timer_reset(mpu->timer[2]);
3710 omap_wd_timer_reset(mpu->wdt);
3711 omap_os_timer_reset(mpu->os_timer);
3712 omap_lcdc_reset(mpu->lcd);
3713 omap_ulpd_pm_reset(mpu);
3714 omap_pin_cfg_reset(mpu);
3715 omap_mpui_reset(mpu);
3716 omap_tipb_bridge_reset(mpu->private_tipb);
3717 omap_tipb_bridge_reset(mpu->public_tipb);
3718 omap_dpll_reset(mpu->dpll[0]);
3719 omap_dpll_reset(mpu->dpll[1]);
3720 omap_dpll_reset(mpu->dpll[2]);
3721 omap_uart_reset(mpu->uart[0]);
3722 omap_uart_reset(mpu->uart[1]);
3723 omap_uart_reset(mpu->uart[2]);
3724 omap_mmc_reset(mpu->mmc);
3725 omap_mpuio_reset(mpu->mpuio);
3726 omap_uwire_reset(mpu->microwire);
3727 omap_pwl_reset(mpu->pwl);
3728 omap_pwt_reset(mpu->pwt);
3729 omap_rtc_reset(mpu->rtc);
3730 omap_mcbsp_reset(mpu->mcbsp1);
3731 omap_mcbsp_reset(mpu->mcbsp2);
3732 omap_mcbsp_reset(mpu->mcbsp3);
3733 omap_lpg_reset(mpu->led[0]);
3734 omap_lpg_reset(mpu->led[1]);
3735 omap_clkm_reset(mpu);
3736 cpu_reset(CPU(mpu->cpu));
3739 static const struct omap_map_s {
3744 } omap15xx_dsp_mm[] = {
3746 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3747 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3748 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3749 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3750 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3751 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3752 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3753 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3754 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3755 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3756 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3757 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3758 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3759 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3760 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3761 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3762 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3764 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3769 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3770 const struct omap_map_s *map)
3774 for (; map->phys_dsp; map ++) {
3775 io = g_new(MemoryRegion, 1);
3776 memory_region_init_alias(io, NULL, map->name,
3777 system_memory, map->phys_mpu, map->size);
3778 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3782 void omap_mpu_wakeup(void *opaque, int irq, int req)
3784 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3785 CPUState *cpu = CPU(mpu->cpu);
3788 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3792 static const struct dma_irq_map omap1_dma_irq_map[] = {
3793 { 0, OMAP_INT_DMA_CH0_6 },
3794 { 0, OMAP_INT_DMA_CH1_7 },
3795 { 0, OMAP_INT_DMA_CH2_8 },
3796 { 0, OMAP_INT_DMA_CH3 },
3797 { 0, OMAP_INT_DMA_CH4 },
3798 { 0, OMAP_INT_DMA_CH5 },
3799 { 1, OMAP_INT_1610_DMA_CH6 },
3800 { 1, OMAP_INT_1610_DMA_CH7 },
3801 { 1, OMAP_INT_1610_DMA_CH8 },
3802 { 1, OMAP_INT_1610_DMA_CH9 },
3803 { 1, OMAP_INT_1610_DMA_CH10 },
3804 { 1, OMAP_INT_1610_DMA_CH11 },
3805 { 1, OMAP_INT_1610_DMA_CH12 },
3806 { 1, OMAP_INT_1610_DMA_CH13 },
3807 { 1, OMAP_INT_1610_DMA_CH14 },
3808 { 1, OMAP_INT_1610_DMA_CH15 }
3811 /* DMA ports for OMAP1 */
3812 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3818 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3825 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3831 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3837 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3843 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3849 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3850 unsigned long sdram_size,
3854 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3855 qemu_irq dma_irqs[6];
3857 SysBusDevice *busdev;
3863 s->mpu_model = omap310;
3864 s->cpu = cpu_arm_init(core);
3865 if (s->cpu == NULL) {
3866 fprintf(stderr, "Unable to find CPU definition\n");
3869 s->sdram_size = sdram_size;
3870 s->sram_size = OMAP15XX_SRAM_SIZE;
3872 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3877 /* Memory-mapped stuff */
3878 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3880 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3881 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3883 vmstate_register_ram_global(&s->imif_ram);
3884 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3886 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3888 s->ih[0] = qdev_create(NULL, "omap-intc");
3889 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3890 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3891 qdev_init_nofail(s->ih[0]);
3892 busdev = SYS_BUS_DEVICE(s->ih[0]);
3893 sysbus_connect_irq(busdev, 0,
3894 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3895 sysbus_connect_irq(busdev, 1,
3896 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3897 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3898 s->ih[1] = qdev_create(NULL, "omap-intc");
3899 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3900 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3901 qdev_init_nofail(s->ih[1]);
3902 busdev = SYS_BUS_DEVICE(s->ih[1]);
3903 sysbus_connect_irq(busdev, 0,
3904 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3905 /* The second interrupt controller's FIQ output is not wired up */
3906 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3908 for (i = 0; i < 6; i++) {
3909 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3910 omap1_dma_irq_map[i].intr);
3912 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3913 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3914 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3916 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3917 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3918 s->port[imif ].addr_valid = omap_validate_imif_addr;
3919 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3920 s->port[local ].addr_valid = omap_validate_local_addr;
3921 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3923 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3924 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3925 OMAP_EMIFF_BASE, s->sdram_size);
3926 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3927 OMAP_IMIF_BASE, s->sram_size);
3929 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3930 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3931 omap_findclk(s, "mputim_ck"));
3932 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3934 omap_findclk(s, "mputim_ck"));
3935 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3936 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3937 omap_findclk(s, "mputim_ck"));
3939 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3940 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3941 omap_findclk(s, "armwdt_ck"));
3943 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3944 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3945 omap_findclk(s, "clk32-kHz"));
3947 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3948 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3949 omap_dma_get_lcdch(s->dma),
3950 omap_findclk(s, "lcd_ck"));
3952 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3953 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3954 omap_id_init(system_memory, s);
3956 omap_mpui_init(system_memory, 0xfffec900, s);
3958 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3959 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3960 omap_findclk(s, "tipb_ck"));
3961 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3962 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3963 omap_findclk(s, "tipb_ck"));
3965 omap_tcmi_init(system_memory, 0xfffecc00, s);
3967 s->uart[0] = omap_uart_init(0xfffb0000,
3968 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3969 omap_findclk(s, "uart1_ck"),
3970 omap_findclk(s, "uart1_ck"),
3971 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3974 s->uart[1] = omap_uart_init(0xfffb0800,
3975 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3976 omap_findclk(s, "uart2_ck"),
3977 omap_findclk(s, "uart2_ck"),
3978 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3980 serial_hds[0] ? serial_hds[1] : NULL);
3981 s->uart[2] = omap_uart_init(0xfffb9800,
3982 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3983 omap_findclk(s, "uart3_ck"),
3984 omap_findclk(s, "uart3_ck"),
3985 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3987 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3989 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3990 omap_findclk(s, "dpll1"));
3991 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3992 omap_findclk(s, "dpll2"));
3993 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3994 omap_findclk(s, "dpll3"));
3996 dinfo = drive_get(IF_SD, 0, 0);
3998 fprintf(stderr, "qemu: missing SecureDigital device\n");
4001 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4002 blk_by_legacy_dinfo(dinfo),
4003 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4004 &s->drq[OMAP_DMA_MMC_TX],
4005 omap_findclk(s, "mmc_ck"));
4007 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4008 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4009 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4010 s->wakeup, omap_findclk(s, "clk32-kHz"));
4012 s->gpio = qdev_create(NULL, "omap-gpio");
4013 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4014 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4015 qdev_init_nofail(s->gpio);
4016 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4017 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4018 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4020 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4021 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4022 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4023 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4025 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4026 omap_findclk(s, "armxor_ck"));
4027 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4028 omap_findclk(s, "armxor_ck"));
4030 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4031 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4032 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4033 qdev_init_nofail(s->i2c[0]);
4034 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4035 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4036 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4037 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4038 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4040 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4041 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4043 omap_findclk(s, "clk32-kHz"));
4045 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4046 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4047 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4048 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4049 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4050 qdev_get_gpio_in(s->ih[0],
4051 OMAP_INT_310_McBSP2_TX),
4052 qdev_get_gpio_in(s->ih[0],
4053 OMAP_INT_310_McBSP2_RX),
4054 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4055 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4056 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4057 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4058 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4060 s->led[0] = omap_lpg_init(system_memory,
4061 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4062 s->led[1] = omap_lpg_init(system_memory,
4063 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4065 /* Register mappings not currenlty implemented:
4066 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4067 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4068 * USB W2FC fffb4000 - fffb47ff
4069 * Camera Interface fffb6800 - fffb6fff
4070 * USB Host fffba000 - fffba7ff
4071 * FAC fffba800 - fffbafff
4072 * HDQ/1-Wire fffbc000 - fffbc7ff
4073 * TIPB switches fffbc800 - fffbcfff
4074 * Mailbox fffcf000 - fffcf7ff
4075 * Local bus IF fffec100 - fffec1ff
4076 * Local bus MMU fffec200 - fffec2ff
4077 * DSP MMU fffed200 - fffed2ff
4080 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4081 omap_setup_mpui_io(system_memory, s);
4083 qemu_register_reset(omap1_mpu_reset, s);