2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "hw/sysbus.h"
12 #include "hw/arm/arm.h"
13 #include "hw/devices.h"
14 #include "qemu/timer.h"
15 #include "hw/i2c/i2c.h"
17 #include "hw/boards.h"
18 #include "exec/address-spaces.h"
19 #include "sysemu/sysemu.h"
29 #define BP_OLED_I2C 0x01
30 #define BP_OLED_SSI 0x02
31 #define BP_GAMEPAD 0x04
33 #define NUM_IRQ_LINES 64
35 typedef const struct {
45 } stellaris_board_info;
47 /* General purpose timer module. */
49 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
50 #define STELLARIS_GPTM(obj) \
51 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
53 typedef struct gptm_state {
54 SysBusDevice parent_obj;
65 uint32_t match_prescale[2];
68 struct gptm_state *opaque[2];
70 /* The timers have an alternate output used to trigger the ADC. */
75 static void gptm_update_irq(gptm_state *s)
78 level = (s->state & s->mask) != 0;
79 qemu_set_irq(s->irq, level);
82 static void gptm_stop(gptm_state *s, int n)
84 timer_del(s->timer[n]);
87 static void gptm_reload(gptm_state *s, int n, int reset)
91 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
96 /* 32-bit CountDown. */
98 count = s->load[0] | (s->load[1] << 16);
99 tick += (int64_t)count * system_clock_scale;
100 } else if (s->config == 1) {
101 /* 32-bit RTC. 1Hz tick. */
102 tick += get_ticks_per_sec();
103 } else if (s->mode[n] == 0xa) {
104 /* PWM mode. Not implemented. */
106 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
109 timer_mod(s->timer[n], tick);
112 static void gptm_tick(void *opaque)
114 gptm_state **p = (gptm_state **)opaque;
120 if (s->config == 0) {
122 if ((s->control & 0x20)) {
123 /* Output trigger. */
124 qemu_irq_pulse(s->trigger);
126 if (s->mode[0] & 1) {
131 gptm_reload(s, 0, 0);
133 } else if (s->config == 1) {
137 match = s->match[0] | (s->match[1] << 16);
143 gptm_reload(s, 0, 0);
144 } else if (s->mode[n] == 0xa) {
145 /* PWM mode. Not implemented. */
147 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
152 static uint64_t gptm_read(void *opaque, hwaddr offset,
155 gptm_state *s = (gptm_state *)opaque;
160 case 0x04: /* TAMR */
162 case 0x08: /* TBMR */
171 return s->state & s->mask;
174 case 0x28: /* TAILR */
175 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
176 case 0x2c: /* TBILR */
178 case 0x30: /* TAMARCHR */
179 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
180 case 0x34: /* TBMATCHR */
182 case 0x38: /* TAPR */
183 return s->prescale[0];
184 case 0x3c: /* TBPR */
185 return s->prescale[1];
186 case 0x40: /* TAPMR */
187 return s->match_prescale[0];
188 case 0x44: /* TBPMR */
189 return s->match_prescale[1];
191 if (s->config == 1) {
194 qemu_log_mask(LOG_UNIMP,
195 "GPTM: read of TAR but timer read not supported");
198 qemu_log_mask(LOG_UNIMP,
199 "GPTM: read of TBR but timer read not supported");
202 qemu_log_mask(LOG_GUEST_ERROR,
203 "GPTM: read at bad offset 0x%x\n", (int)offset);
208 static void gptm_write(void *opaque, hwaddr offset,
209 uint64_t value, unsigned size)
211 gptm_state *s = (gptm_state *)opaque;
214 /* The timers should be disabled before changing the configuration.
215 We take advantage of this and defer everything until the timer
221 case 0x04: /* TAMR */
224 case 0x08: /* TBMR */
230 /* TODO: Implement pause. */
231 if ((oldval ^ value) & 1) {
233 gptm_reload(s, 0, 1);
238 if (((oldval ^ value) & 0x100) && s->config >= 4) {
240 gptm_reload(s, 1, 1);
247 s->mask = value & 0x77;
253 case 0x28: /* TAILR */
254 s->load[0] = value & 0xffff;
256 s->load[1] = value >> 16;
259 case 0x2c: /* TBILR */
260 s->load[1] = value & 0xffff;
262 case 0x30: /* TAMARCHR */
263 s->match[0] = value & 0xffff;
265 s->match[1] = value >> 16;
268 case 0x34: /* TBMATCHR */
269 s->match[1] = value >> 16;
271 case 0x38: /* TAPR */
272 s->prescale[0] = value;
274 case 0x3c: /* TBPR */
275 s->prescale[1] = value;
277 case 0x40: /* TAPMR */
278 s->match_prescale[0] = value;
280 case 0x44: /* TBPMR */
281 s->match_prescale[0] = value;
284 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
289 static const MemoryRegionOps gptm_ops = {
292 .endianness = DEVICE_NATIVE_ENDIAN,
295 static const VMStateDescription vmstate_stellaris_gptm = {
296 .name = "stellaris_gptm",
298 .minimum_version_id = 1,
299 .fields = (VMStateField[]) {
300 VMSTATE_UINT32(config, gptm_state),
301 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
302 VMSTATE_UINT32(control, gptm_state),
303 VMSTATE_UINT32(state, gptm_state),
304 VMSTATE_UINT32(mask, gptm_state),
306 VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
307 VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
308 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
309 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
310 VMSTATE_UINT32(rtc, gptm_state),
311 VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
312 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
313 VMSTATE_END_OF_LIST()
317 static int stellaris_gptm_init(SysBusDevice *sbd)
319 DeviceState *dev = DEVICE(sbd);
320 gptm_state *s = STELLARIS_GPTM(dev);
322 sysbus_init_irq(sbd, &s->irq);
323 qdev_init_gpio_out(dev, &s->trigger, 1);
325 memory_region_init_io(&s->iomem, OBJECT(s), &gptm_ops, s,
327 sysbus_init_mmio(sbd, &s->iomem);
329 s->opaque[0] = s->opaque[1] = s;
330 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
331 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
332 vmstate_register(dev, -1, &vmstate_stellaris_gptm, s);
337 /* System controller. */
356 stellaris_board_info *board;
359 static void ssys_update(ssys_state *s)
361 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
364 static uint32_t pllcfg_sandstorm[16] = {
366 0x1ae0, /* 1.8432 Mhz */
368 0xd573, /* 2.4576 Mhz */
369 0x37a6, /* 3.57954 Mhz */
370 0x1ae2, /* 3.6864 Mhz */
372 0x98bc, /* 4.906 Mhz */
373 0x935b, /* 4.9152 Mhz */
375 0x4dee, /* 5.12 Mhz */
377 0x75db, /* 6.144 Mhz */
378 0x1ae6, /* 7.3728 Mhz */
380 0x585b /* 8.192 Mhz */
383 static uint32_t pllcfg_fury[16] = {
385 0x1b20, /* 1.8432 Mhz */
387 0xf42b, /* 2.4576 Mhz */
388 0x37e3, /* 3.57954 Mhz */
389 0x1b21, /* 3.6864 Mhz */
391 0x98ee, /* 4.906 Mhz */
392 0xd5b4, /* 4.9152 Mhz */
394 0x4e27, /* 5.12 Mhz */
396 0xec1c, /* 6.144 Mhz */
397 0x1b23, /* 7.3728 Mhz */
399 0xb11c /* 8.192 Mhz */
402 #define DID0_VER_MASK 0x70000000
403 #define DID0_VER_0 0x00000000
404 #define DID0_VER_1 0x10000000
406 #define DID0_CLASS_MASK 0x00FF0000
407 #define DID0_CLASS_SANDSTORM 0x00000000
408 #define DID0_CLASS_FURY 0x00010000
410 static int ssys_board_class(const ssys_state *s)
412 uint32_t did0 = s->board->did0;
413 switch (did0 & DID0_VER_MASK) {
415 return DID0_CLASS_SANDSTORM;
417 switch (did0 & DID0_CLASS_MASK) {
418 case DID0_CLASS_SANDSTORM:
419 case DID0_CLASS_FURY:
420 return did0 & DID0_CLASS_MASK;
422 /* for unknown classes, fall through */
424 hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
428 static uint64_t ssys_read(void *opaque, hwaddr offset,
431 ssys_state *s = (ssys_state *)opaque;
434 case 0x000: /* DID0 */
435 return s->board->did0;
436 case 0x004: /* DID1 */
437 return s->board->did1;
438 case 0x008: /* DC0 */
439 return s->board->dc0;
440 case 0x010: /* DC1 */
441 return s->board->dc1;
442 case 0x014: /* DC2 */
443 return s->board->dc2;
444 case 0x018: /* DC3 */
445 return s->board->dc3;
446 case 0x01c: /* DC4 */
447 return s->board->dc4;
448 case 0x030: /* PBORCTL */
450 case 0x034: /* LDOPCTL */
452 case 0x040: /* SRCR0 */
454 case 0x044: /* SRCR1 */
456 case 0x048: /* SRCR2 */
458 case 0x050: /* RIS */
459 return s->int_status;
460 case 0x054: /* IMC */
462 case 0x058: /* MISC */
463 return s->int_status & s->int_mask;
464 case 0x05c: /* RESC */
466 case 0x060: /* RCC */
468 case 0x064: /* PLLCFG */
471 xtal = (s->rcc >> 6) & 0xf;
472 switch (ssys_board_class(s)) {
473 case DID0_CLASS_FURY:
474 return pllcfg_fury[xtal];
475 case DID0_CLASS_SANDSTORM:
476 return pllcfg_sandstorm[xtal];
478 hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
482 case 0x070: /* RCC2 */
484 case 0x100: /* RCGC0 */
486 case 0x104: /* RCGC1 */
488 case 0x108: /* RCGC2 */
490 case 0x110: /* SCGC0 */
492 case 0x114: /* SCGC1 */
494 case 0x118: /* SCGC2 */
496 case 0x120: /* DCGC0 */
498 case 0x124: /* DCGC1 */
500 case 0x128: /* DCGC2 */
502 case 0x150: /* CLKVCLR */
504 case 0x160: /* LDOARST */
506 case 0x1e0: /* USER0 */
508 case 0x1e4: /* USER1 */
511 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
516 static bool ssys_use_rcc2(ssys_state *s)
518 return (s->rcc2 >> 31) & 0x1;
522 * Caculate the sys. clock period in ms.
524 static void ssys_calculate_system_clock(ssys_state *s)
526 if (ssys_use_rcc2(s)) {
527 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
529 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
533 static void ssys_write(void *opaque, hwaddr offset,
534 uint64_t value, unsigned size)
536 ssys_state *s = (ssys_state *)opaque;
539 case 0x030: /* PBORCTL */
540 s->pborctl = value & 0xffff;
542 case 0x034: /* LDOPCTL */
543 s->ldopctl = value & 0x1f;
545 case 0x040: /* SRCR0 */
546 case 0x044: /* SRCR1 */
547 case 0x048: /* SRCR2 */
548 fprintf(stderr, "Peripheral reset not implemented\n");
550 case 0x054: /* IMC */
551 s->int_mask = value & 0x7f;
553 case 0x058: /* MISC */
554 s->int_status &= ~value;
556 case 0x05c: /* RESC */
557 s->resc = value & 0x3f;
559 case 0x060: /* RCC */
560 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
562 s->int_status |= (1 << 6);
565 ssys_calculate_system_clock(s);
567 case 0x070: /* RCC2 */
568 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
572 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
574 s->int_status |= (1 << 6);
577 ssys_calculate_system_clock(s);
579 case 0x100: /* RCGC0 */
582 case 0x104: /* RCGC1 */
585 case 0x108: /* RCGC2 */
588 case 0x110: /* SCGC0 */
591 case 0x114: /* SCGC1 */
594 case 0x118: /* SCGC2 */
597 case 0x120: /* DCGC0 */
600 case 0x124: /* DCGC1 */
603 case 0x128: /* DCGC2 */
606 case 0x150: /* CLKVCLR */
609 case 0x160: /* LDOARST */
613 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
618 static const MemoryRegionOps ssys_ops = {
621 .endianness = DEVICE_NATIVE_ENDIAN,
624 static void ssys_reset(void *opaque)
626 ssys_state *s = (ssys_state *)opaque;
631 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
634 s->rcc2 = 0x07802810;
639 ssys_calculate_system_clock(s);
642 static int stellaris_sys_post_load(void *opaque, int version_id)
644 ssys_state *s = opaque;
646 ssys_calculate_system_clock(s);
651 static const VMStateDescription vmstate_stellaris_sys = {
652 .name = "stellaris_sys",
654 .minimum_version_id = 1,
655 .post_load = stellaris_sys_post_load,
656 .fields = (VMStateField[]) {
657 VMSTATE_UINT32(pborctl, ssys_state),
658 VMSTATE_UINT32(ldopctl, ssys_state),
659 VMSTATE_UINT32(int_mask, ssys_state),
660 VMSTATE_UINT32(int_status, ssys_state),
661 VMSTATE_UINT32(resc, ssys_state),
662 VMSTATE_UINT32(rcc, ssys_state),
663 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
664 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
665 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
666 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
667 VMSTATE_UINT32(clkvclr, ssys_state),
668 VMSTATE_UINT32(ldoarst, ssys_state),
669 VMSTATE_END_OF_LIST()
673 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
674 stellaris_board_info * board,
679 s = g_new0(ssys_state, 1);
682 /* Most devices come preprogrammed with a MAC address in the user data. */
683 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
684 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
686 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
687 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
689 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
694 /* I2C controller. */
696 #define TYPE_STELLARIS_I2C "stellaris-i2c"
697 #define STELLARIS_I2C(obj) \
698 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
701 SysBusDevice parent_obj;
713 } stellaris_i2c_state;
715 #define STELLARIS_I2C_MCS_BUSY 0x01
716 #define STELLARIS_I2C_MCS_ERROR 0x02
717 #define STELLARIS_I2C_MCS_ADRACK 0x04
718 #define STELLARIS_I2C_MCS_DATACK 0x08
719 #define STELLARIS_I2C_MCS_ARBLST 0x10
720 #define STELLARIS_I2C_MCS_IDLE 0x20
721 #define STELLARIS_I2C_MCS_BUSBSY 0x40
723 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
726 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
732 /* We don't emulate timing, so the controller is never busy. */
733 return s->mcs | STELLARIS_I2C_MCS_IDLE;
736 case 0x0c: /* MTPR */
738 case 0x10: /* MIMR */
740 case 0x14: /* MRIS */
742 case 0x18: /* MMIS */
743 return s->mris & s->mimr;
747 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
752 static void stellaris_i2c_update(stellaris_i2c_state *s)
756 level = (s->mris & s->mimr) != 0;
757 qemu_set_irq(s->irq, level);
760 static void stellaris_i2c_write(void *opaque, hwaddr offset,
761 uint64_t value, unsigned size)
763 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
767 s->msa = value & 0xff;
770 if ((s->mcr & 0x10) == 0) {
771 /* Disabled. Do nothing. */
774 /* Grab the bus if this is starting a transfer. */
775 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
776 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
777 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
779 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
780 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
783 /* If we don't have the bus then indicate an error. */
784 if (!i2c_bus_busy(s->bus)
785 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
786 s->mcs |= STELLARIS_I2C_MCS_ERROR;
789 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
791 /* Transfer a byte. */
792 /* TODO: Handle errors. */
795 s->mdr = i2c_recv(s->bus) & 0xff;
798 i2c_send(s->bus, s->mdr);
800 /* Raise an interrupt. */
804 /* Finish transfer. */
805 i2c_end_transfer(s->bus);
806 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
810 s->mdr = value & 0xff;
812 case 0x0c: /* MTPR */
813 s->mtpr = value & 0xff;
815 case 0x10: /* MIMR */
818 case 0x1c: /* MICR */
824 "stellaris_i2c_write: Loopback not implemented\n");
827 "stellaris_i2c_write: Slave mode not implemented\n");
828 s->mcr = value & 0x31;
831 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
834 stellaris_i2c_update(s);
837 static void stellaris_i2c_reset(stellaris_i2c_state *s)
839 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
840 i2c_end_transfer(s->bus);
849 stellaris_i2c_update(s);
852 static const MemoryRegionOps stellaris_i2c_ops = {
853 .read = stellaris_i2c_read,
854 .write = stellaris_i2c_write,
855 .endianness = DEVICE_NATIVE_ENDIAN,
858 static const VMStateDescription vmstate_stellaris_i2c = {
859 .name = "stellaris_i2c",
861 .minimum_version_id = 1,
862 .fields = (VMStateField[]) {
863 VMSTATE_UINT32(msa, stellaris_i2c_state),
864 VMSTATE_UINT32(mcs, stellaris_i2c_state),
865 VMSTATE_UINT32(mdr, stellaris_i2c_state),
866 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
867 VMSTATE_UINT32(mimr, stellaris_i2c_state),
868 VMSTATE_UINT32(mris, stellaris_i2c_state),
869 VMSTATE_UINT32(mcr, stellaris_i2c_state),
870 VMSTATE_END_OF_LIST()
874 static int stellaris_i2c_init(SysBusDevice *sbd)
876 DeviceState *dev = DEVICE(sbd);
877 stellaris_i2c_state *s = STELLARIS_I2C(dev);
880 sysbus_init_irq(sbd, &s->irq);
881 bus = i2c_init_bus(dev, "i2c");
884 memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_i2c_ops, s,
886 sysbus_init_mmio(sbd, &s->iomem);
887 /* ??? For now we only implement the master interface. */
888 stellaris_i2c_reset(s);
889 vmstate_register(dev, -1, &vmstate_stellaris_i2c, s);
893 /* Analogue to Digital Converter. This is only partially implemented,
894 enough for applications that use a combined ADC and timer tick. */
896 #define STELLARIS_ADC_EM_CONTROLLER 0
897 #define STELLARIS_ADC_EM_COMP 1
898 #define STELLARIS_ADC_EM_EXTERNAL 4
899 #define STELLARIS_ADC_EM_TIMER 5
900 #define STELLARIS_ADC_EM_PWM0 6
901 #define STELLARIS_ADC_EM_PWM1 7
902 #define STELLARIS_ADC_EM_PWM2 8
904 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
905 #define STELLARIS_ADC_FIFO_FULL 0x1000
907 #define TYPE_STELLARIS_ADC "stellaris-adc"
908 #define STELLARIS_ADC(obj) \
909 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
911 typedef struct StellarisADCState {
912 SysBusDevice parent_obj;
931 } stellaris_adc_state;
933 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
937 tail = s->fifo[n].state & 0xf;
938 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
941 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
942 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
943 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
944 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
946 return s->fifo[n].data[tail];
949 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
954 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
955 FIFO fir each sequencer. */
956 head = (s->fifo[n].state >> 4) & 0xf;
957 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
961 s->fifo[n].data[head] = value;
962 head = (head + 1) & 0xf;
963 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
964 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
965 if ((s->fifo[n].state & 0xf) == head)
966 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
969 static void stellaris_adc_update(stellaris_adc_state *s)
974 for (n = 0; n < 4; n++) {
975 level = (s->ris & s->im & (1 << n)) != 0;
976 qemu_set_irq(s->irq[n], level);
980 static void stellaris_adc_trigger(void *opaque, int irq, int level)
982 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
985 for (n = 0; n < 4; n++) {
986 if ((s->actss & (1 << n)) == 0) {
990 if (((s->emux >> (n * 4)) & 0xff) != 5) {
994 /* Some applications use the ADC as a random number source, so introduce
995 some variation into the signal. */
996 s->noise = s->noise * 314159 + 1;
997 /* ??? actual inputs not implemented. Return an arbitrary value. */
998 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1000 stellaris_adc_update(s);
1004 static void stellaris_adc_reset(stellaris_adc_state *s)
1008 for (n = 0; n < 4; n++) {
1011 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1015 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1018 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1020 /* TODO: Implement this. */
1021 if (offset >= 0x40 && offset < 0xc0) {
1023 n = (offset - 0x40) >> 5;
1024 switch (offset & 0x1f) {
1025 case 0x00: /* SSMUX */
1027 case 0x04: /* SSCTL */
1029 case 0x08: /* SSFIFO */
1030 return stellaris_adc_fifo_read(s, n);
1031 case 0x0c: /* SSFSTAT */
1032 return s->fifo[n].state;
1038 case 0x00: /* ACTSS */
1040 case 0x04: /* RIS */
1044 case 0x0c: /* ISC */
1045 return s->ris & s->im;
1046 case 0x10: /* OSTAT */
1048 case 0x14: /* EMUX */
1050 case 0x18: /* USTAT */
1052 case 0x20: /* SSPRI */
1054 case 0x30: /* SAC */
1057 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1063 static void stellaris_adc_write(void *opaque, hwaddr offset,
1064 uint64_t value, unsigned size)
1066 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1068 /* TODO: Implement this. */
1069 if (offset >= 0x40 && offset < 0xc0) {
1071 n = (offset - 0x40) >> 5;
1072 switch (offset & 0x1f) {
1073 case 0x00: /* SSMUX */
1074 s->ssmux[n] = value & 0x33333333;
1076 case 0x04: /* SSCTL */
1078 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1081 s->ssctl[n] = value;
1088 case 0x00: /* ACTSS */
1089 s->actss = value & 0xf;
1094 case 0x0c: /* ISC */
1097 case 0x10: /* OSTAT */
1100 case 0x14: /* EMUX */
1103 case 0x18: /* USTAT */
1106 case 0x20: /* SSPRI */
1109 case 0x28: /* PSSI */
1110 hw_error("Not implemented: ADC sample initiate\n");
1112 case 0x30: /* SAC */
1116 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1118 stellaris_adc_update(s);
1121 static const MemoryRegionOps stellaris_adc_ops = {
1122 .read = stellaris_adc_read,
1123 .write = stellaris_adc_write,
1124 .endianness = DEVICE_NATIVE_ENDIAN,
1127 static const VMStateDescription vmstate_stellaris_adc = {
1128 .name = "stellaris_adc",
1130 .minimum_version_id = 1,
1131 .fields = (VMStateField[]) {
1132 VMSTATE_UINT32(actss, stellaris_adc_state),
1133 VMSTATE_UINT32(ris, stellaris_adc_state),
1134 VMSTATE_UINT32(im, stellaris_adc_state),
1135 VMSTATE_UINT32(emux, stellaris_adc_state),
1136 VMSTATE_UINT32(ostat, stellaris_adc_state),
1137 VMSTATE_UINT32(ustat, stellaris_adc_state),
1138 VMSTATE_UINT32(sspri, stellaris_adc_state),
1139 VMSTATE_UINT32(sac, stellaris_adc_state),
1140 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1141 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1142 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1143 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1144 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1145 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1146 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1147 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1148 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1149 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1150 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1151 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1152 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1153 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1154 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1155 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1156 VMSTATE_UINT32(noise, stellaris_adc_state),
1157 VMSTATE_END_OF_LIST()
1161 static int stellaris_adc_init(SysBusDevice *sbd)
1163 DeviceState *dev = DEVICE(sbd);
1164 stellaris_adc_state *s = STELLARIS_ADC(dev);
1167 for (n = 0; n < 4; n++) {
1168 sysbus_init_irq(sbd, &s->irq[n]);
1171 memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_adc_ops, s,
1173 sysbus_init_mmio(sbd, &s->iomem);
1174 stellaris_adc_reset(s);
1175 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1176 vmstate_register(dev, -1, &vmstate_stellaris_adc, s);
1181 void do_sys_reset(void *opaque, int n, int level)
1184 qemu_system_reset_request();
1189 static stellaris_board_info stellaris_boards[] = {
1193 0x001f001f, /* dc0 */
1203 0x00ff007f, /* dc0 */
1208 BP_OLED_SSI | BP_GAMEPAD
1212 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1213 stellaris_board_info *board)
1215 static const int uart_irq[] = {5, 6, 33, 34};
1216 static const int timer_irq[] = {19, 21, 23, 35};
1217 static const uint32_t gpio_addr[7] =
1218 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1219 0x40024000, 0x40025000, 0x40026000};
1220 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1222 DeviceState *gpio_dev[7], *nvic;
1223 qemu_irq gpio_in[7][8];
1224 qemu_irq gpio_out[7][8];
1233 MemoryRegion *sram = g_new(MemoryRegion, 1);
1234 MemoryRegion *flash = g_new(MemoryRegion, 1);
1235 MemoryRegion *system_memory = get_system_memory();
1237 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1238 sram_size = ((board->dc0 >> 18) + 1) * 1024;
1240 /* Flash programming is done via the SCU, so pretend it is ROM. */
1241 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1243 vmstate_register_ram_global(flash);
1244 memory_region_set_readonly(flash, true);
1245 memory_region_add_subregion(system_memory, 0, flash);
1247 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1249 vmstate_register_ram_global(sram);
1250 memory_region_add_subregion(system_memory, 0x20000000, sram);
1252 nvic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES,
1253 kernel_filename, cpu_model);
1255 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1256 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1258 if (board->dc1 & (1 << 16)) {
1259 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1260 qdev_get_gpio_in(nvic, 14),
1261 qdev_get_gpio_in(nvic, 15),
1262 qdev_get_gpio_in(nvic, 16),
1263 qdev_get_gpio_in(nvic, 17),
1265 adc = qdev_get_gpio_in(dev, 0);
1269 for (i = 0; i < 4; i++) {
1270 if (board->dc2 & (0x10000 << i)) {
1271 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1272 0x40030000 + i * 0x1000,
1273 qdev_get_gpio_in(nvic, timer_irq[i]));
1274 /* TODO: This is incorrect, but we get away with it because
1275 the ADC output is only ever pulsed. */
1276 qdev_connect_gpio_out(dev, 0, adc);
1280 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1281 board, nd_table[0].macaddr.a);
1283 for (i = 0; i < 7; i++) {
1284 if (board->dc4 & (1 << i)) {
1285 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1286 qdev_get_gpio_in(nvic,
1288 for (j = 0; j < 8; j++) {
1289 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1290 gpio_out[i][j] = NULL;
1295 if (board->dc2 & (1 << 12)) {
1296 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1297 qdev_get_gpio_in(nvic, 8));
1298 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1299 if (board->peripherals & BP_OLED_I2C) {
1300 i2c_create_slave(i2c, "ssd0303", 0x3d);
1304 for (i = 0; i < 4; i++) {
1305 if (board->dc2 & (1 << i)) {
1306 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1307 qdev_get_gpio_in(nvic, uart_irq[i]));
1310 if (board->dc2 & (1 << 4)) {
1311 dev = sysbus_create_simple("pl022", 0x40008000,
1312 qdev_get_gpio_in(nvic, 7));
1313 if (board->peripherals & BP_OLED_SSI) {
1316 DeviceState *ssddev;
1318 /* Some boards have both an OLED controller and SD card connected to
1319 * the same SSI port, with the SD card chip select connected to a
1320 * GPIO pin. Technically the OLED chip select is connected to the
1321 * SSI Fss pin. We do not bother emulating that as both devices
1322 * should never be selected simultaneously, and our OLED controller
1323 * ignores stray 0xff commands that occur when deselecting the SD
1326 bus = qdev_get_child_bus(dev, "ssi");
1328 sddev = ssi_create_slave(bus, "ssi-sd");
1329 ssddev = ssi_create_slave(bus, "ssd0323");
1330 gpio_out[GPIO_D][0] = qemu_irq_split(
1331 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1332 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1333 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1335 /* Make sure the select pin is high. */
1336 qemu_irq_raise(gpio_out[GPIO_D][0]);
1339 if (board->dc4 & (1 << 28)) {
1342 qemu_check_nic_model(&nd_table[0], "stellaris");
1344 enet = qdev_create(NULL, "stellaris_enet");
1345 qdev_set_nic_properties(enet, &nd_table[0]);
1346 qdev_init_nofail(enet);
1347 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1348 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1350 if (board->peripherals & BP_GAMEPAD) {
1351 qemu_irq gpad_irq[5];
1352 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1354 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1355 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1356 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1357 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1358 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1360 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1362 for (i = 0; i < 7; i++) {
1363 if (board->dc4 & (1 << i)) {
1364 for (j = 0; j < 8; j++) {
1365 if (gpio_out[i][j]) {
1366 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1373 /* FIXME: Figure out how to generate these from stellaris_boards. */
1374 static void lm3s811evb_init(MachineState *machine)
1376 const char *cpu_model = machine->cpu_model;
1377 const char *kernel_filename = machine->kernel_filename;
1378 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1381 static void lm3s6965evb_init(MachineState *machine)
1383 const char *cpu_model = machine->cpu_model;
1384 const char *kernel_filename = machine->kernel_filename;
1385 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1388 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1390 MachineClass *mc = MACHINE_CLASS(oc);
1392 mc->desc = "Stellaris LM3S811EVB";
1393 mc->init = lm3s811evb_init;
1396 static const TypeInfo lm3s811evb_type = {
1397 .name = MACHINE_TYPE_NAME("lm3s811evb"),
1398 .parent = TYPE_MACHINE,
1399 .class_init = lm3s811evb_class_init,
1402 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1404 MachineClass *mc = MACHINE_CLASS(oc);
1406 mc->desc = "Stellaris LM3S6965EVB";
1407 mc->init = lm3s6965evb_init;
1410 static const TypeInfo lm3s6965evb_type = {
1411 .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1412 .parent = TYPE_MACHINE,
1413 .class_init = lm3s6965evb_class_init,
1416 static void stellaris_machine_init(void)
1418 type_register_static(&lm3s811evb_type);
1419 type_register_static(&lm3s6965evb_type);
1422 machine_init(stellaris_machine_init)
1424 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1426 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1428 sdc->init = stellaris_i2c_init;
1431 static const TypeInfo stellaris_i2c_info = {
1432 .name = TYPE_STELLARIS_I2C,
1433 .parent = TYPE_SYS_BUS_DEVICE,
1434 .instance_size = sizeof(stellaris_i2c_state),
1435 .class_init = stellaris_i2c_class_init,
1438 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1440 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1442 sdc->init = stellaris_gptm_init;
1445 static const TypeInfo stellaris_gptm_info = {
1446 .name = TYPE_STELLARIS_GPTM,
1447 .parent = TYPE_SYS_BUS_DEVICE,
1448 .instance_size = sizeof(gptm_state),
1449 .class_init = stellaris_gptm_class_init,
1452 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1454 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1456 sdc->init = stellaris_adc_init;
1459 static const TypeInfo stellaris_adc_info = {
1460 .name = TYPE_STELLARIS_ADC,
1461 .parent = TYPE_SYS_BUS_DEVICE,
1462 .instance_size = sizeof(stellaris_adc_state),
1463 .class_init = stellaris_adc_class_init,
1466 static void stellaris_register_types(void)
1468 type_register_static(&stellaris_i2c_info);
1469 type_register_static(&stellaris_gptm_info);
1470 type_register_static(&stellaris_adc_info);
1473 type_init(stellaris_register_types)