4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/ctype.h"
25 #include "qemu/cutils.h"
26 #include "qemu/module.h"
27 #include "trace-root.h"
28 #ifdef CONFIG_USER_ONLY
31 #include "monitor/monitor.h"
32 #include "chardev/char.h"
33 #include "chardev/char-fe.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #include "hw/cpu/cluster.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu/sockets.h"
42 #include "sysemu/hw_accel.h"
43 #include "sysemu/kvm.h"
44 #include "hw/semihosting/semihost.h"
45 #include "exec/exec-all.h"
47 #ifdef CONFIG_USER_ONLY
48 #define GDB_ATTACHED "0"
50 #define GDB_ATTACHED "1"
53 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
54 uint8_t *buf, int len, bool is_write)
56 CPUClass *cc = CPU_GET_CLASS(cpu);
58 if (cc->memory_rw_debug) {
59 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
61 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
64 /* Return the GDB index for a given vCPU state.
66 * For user mode this is simply the thread id. In system mode GDB
67 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
69 static inline int cpu_gdb_index(CPUState *cpu)
71 #if defined(CONFIG_USER_ONLY)
72 TaskState *ts = (TaskState *) cpu->opaque;
75 return cpu->cpu_index + 1;
88 GDB_SIGNAL_UNKNOWN = 143
91 #ifdef CONFIG_USER_ONLY
93 /* Map target signal numbers to GDB protocol signal numbers and vice
94 * versa. For user emulation's currently supported systems, we can
95 * assume most signals are defined.
98 static int gdb_signal_table[] = {
258 /* In system mode we only need SIGINT and SIGTRAP; other signals
259 are not yet supported. */
266 static int gdb_signal_table[] = {
276 #ifdef CONFIG_USER_ONLY
277 static int target_signal_to_gdb (int sig)
280 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
281 if (gdb_signal_table[i] == sig)
283 return GDB_SIGNAL_UNKNOWN;
287 static int gdb_signal_to_target (int sig)
289 if (sig < ARRAY_SIZE (gdb_signal_table))
290 return gdb_signal_table[sig];
295 typedef struct GDBRegisterState {
301 struct GDBRegisterState *next;
304 typedef struct GDBProcess {
308 char target_xml[1024];
320 typedef struct GDBState {
321 CPUState *c_cpu; /* current CPU for step/continue ops */
322 CPUState *g_cpu; /* current CPU for other ops */
323 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
324 enum RSState state; /* parsing state */
325 char line_buf[MAX_PACKET_LENGTH];
327 int line_sum; /* running checksum */
328 int line_csum; /* checksum at the end of the packet */
329 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
332 #ifdef CONFIG_USER_ONLY
340 GDBProcess *processes;
342 char syscall_buf[256];
343 gdb_syscall_complete_cb current_syscall_cb;
346 /* By default use no IRQs and no timers while single stepping so as to
347 * make single stepping like an ICE HW step.
349 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
351 static GDBState *gdbserver_state;
355 #ifdef CONFIG_USER_ONLY
356 /* XXX: This is not thread safe. Do we care? */
357 static int gdbserver_fd = -1;
359 static int get_char(GDBState *s)
365 ret = qemu_recv(s->fd, &ch, 1, 0);
367 if (errno == ECONNRESET)
371 } else if (ret == 0) {
389 /* Decide if either remote gdb syscalls or native file IO should be used. */
390 int use_gdb_syscalls(void)
392 SemihostingTarget target = semihosting_get_target();
393 if (target == SEMIHOSTING_TARGET_NATIVE) {
394 /* -semihosting-config target=native */
396 } else if (target == SEMIHOSTING_TARGET_GDB) {
397 /* -semihosting-config target=gdb */
401 /* -semihosting-config target=auto */
402 /* On the first call check if gdb is connected and remember. */
403 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
404 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
407 return gdb_syscall_mode == GDB_SYS_ENABLED;
410 /* Resume execution. */
411 static inline void gdb_continue(GDBState *s)
414 #ifdef CONFIG_USER_ONLY
415 s->running_state = 1;
416 trace_gdbstub_op_continue();
418 if (!runstate_needs_reset()) {
419 trace_gdbstub_op_continue();
426 * Resume execution, per CPU actions. For user-mode emulation it's
427 * equivalent to gdb_continue.
429 static int gdb_continue_partial(GDBState *s, char *newstates)
433 #ifdef CONFIG_USER_ONLY
435 * This is not exactly accurate, but it's an improvement compared to the
436 * previous situation, where only one CPU would be single-stepped.
439 if (newstates[cpu->cpu_index] == 's') {
440 trace_gdbstub_op_stepping(cpu->cpu_index);
441 cpu_single_step(cpu, sstep_flags);
444 s->running_state = 1;
448 if (!runstate_needs_reset()) {
449 if (vm_prepare_start()) {
454 switch (newstates[cpu->cpu_index]) {
457 break; /* nothing to do here */
459 trace_gdbstub_op_stepping(cpu->cpu_index);
460 cpu_single_step(cpu, sstep_flags);
465 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
476 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
482 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
484 #ifdef CONFIG_USER_ONLY
488 ret = send(s->fd, buf, len, 0);
498 /* XXX this blocks entire thread. Rewrite to use
499 * qemu_chr_fe_write and background I/O callbacks */
500 qemu_chr_fe_write_all(&s->chr, buf, len);
504 static inline int fromhex(int v)
506 if (v >= '0' && v <= '9')
508 else if (v >= 'A' && v <= 'F')
510 else if (v >= 'a' && v <= 'f')
516 static inline int tohex(int v)
524 /* writes 2*len+1 bytes in buf */
525 static void memtohex(char *buf, const uint8_t *mem, int len)
530 for(i = 0; i < len; i++) {
532 *q++ = tohex(c >> 4);
533 *q++ = tohex(c & 0xf);
538 static void hextomem(uint8_t *mem, const char *buf, int len)
542 for(i = 0; i < len; i++) {
543 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
548 static void hexdump(const char *buf, int len,
549 void (*trace_fn)(size_t ofs, char const *text))
551 char line_buffer[3 * 16 + 4 + 16 + 1];
554 for (i = 0; i < len || (i & 0xF); ++i) {
555 size_t byte_ofs = i & 15;
558 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
559 line_buffer[3 * 16 + 4 + 16] = 0;
562 size_t col_group = (i >> 2) & 3;
563 size_t hex_col = byte_ofs * 3 + col_group;
564 size_t txt_col = 3 * 16 + 4 + byte_ofs;
569 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
570 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
571 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
577 trace_fn(i & -16, line_buffer);
581 /* return -1 if error, 0 if OK */
582 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
587 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
588 hexdump(buf, len, trace_gdbstub_io_binaryreply);
597 for(i = 0; i < len; i++) {
601 *(p++) = tohex((csum >> 4) & 0xf);
602 *(p++) = tohex((csum) & 0xf);
604 s->last_packet_len = p - s->last_packet;
605 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
607 #ifdef CONFIG_USER_ONLY
620 /* return -1 if error, 0 if OK */
621 static int put_packet(GDBState *s, const char *buf)
623 trace_gdbstub_io_reply(buf);
625 return put_packet_binary(s, buf, strlen(buf), false);
628 /* Encode data using the encoding for 'x' packets. */
629 static int memtox(char *buf, const char *mem, int len)
637 case '#': case '$': case '*': case '}':
649 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
651 /* TODO: In user mode, we should use the task state PID */
652 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
653 /* Return the default process' PID */
654 return s->processes[s->process_num - 1].pid;
656 return cpu->cluster_index + 1;
659 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
664 /* 0 means any process, we take the first one */
665 return &s->processes[0];
668 for (i = 0; i < s->process_num; i++) {
669 if (s->processes[i].pid == pid) {
670 return &s->processes[i];
677 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
679 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
682 static CPUState *find_cpu(uint32_t thread_id)
687 if (cpu_gdb_index(cpu) == thread_id) {
695 static CPUState *get_first_cpu_in_process(const GDBState *s,
701 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
709 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
711 uint32_t pid = gdb_get_cpu_pid(s, cpu);
715 if (gdb_get_cpu_pid(s, cpu) == pid) {
725 /* Return the cpu following @cpu, while ignoring unattached processes. */
726 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
731 if (gdb_get_cpu_process(s, cpu)->attached) {
741 /* Return the first attached cpu */
742 static CPUState *gdb_first_attached_cpu(const GDBState *s)
744 CPUState *cpu = first_cpu;
745 GDBProcess *process = gdb_get_cpu_process(s, cpu);
747 if (!process->attached) {
748 return gdb_next_attached_cpu(s, cpu);
754 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
760 /* 0 means any process/thread, we take the first attached one */
761 return gdb_first_attached_cpu(s);
762 } else if (pid && !tid) {
763 /* any thread in a specific process */
764 process = gdb_get_process(s, pid);
766 if (process == NULL) {
770 if (!process->attached) {
774 return get_first_cpu_in_process(s, process);
776 /* a specific thread */
783 process = gdb_get_cpu_process(s, cpu);
785 if (pid && process->pid != pid) {
789 if (!process->attached) {
797 static const char *get_feature_xml(const GDBState *s, const char *p,
798 const char **newp, GDBProcess *process)
803 CPUState *cpu = get_first_cpu_in_process(s, process);
804 CPUClass *cc = CPU_GET_CLASS(cpu);
807 while (p[len] && p[len] != ':')
812 if (strncmp(p, "target.xml", len) == 0) {
813 char *buf = process->target_xml;
814 const size_t buf_sz = sizeof(process->target_xml);
816 /* Generate the XML description for this CPU. */
821 "<?xml version=\"1.0\"?>"
822 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
824 if (cc->gdb_arch_name) {
825 gchar *arch = cc->gdb_arch_name(cpu);
826 pstrcat(buf, buf_sz, "<architecture>");
827 pstrcat(buf, buf_sz, arch);
828 pstrcat(buf, buf_sz, "</architecture>");
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
833 pstrcat(buf, buf_sz, "\"/>");
834 for (r = cpu->gdb_regs; r; r = r->next) {
835 pstrcat(buf, buf_sz, "<xi:include href=\"");
836 pstrcat(buf, buf_sz, r->xml);
837 pstrcat(buf, buf_sz, "\"/>");
839 pstrcat(buf, buf_sz, "</target>");
843 if (cc->gdb_get_dynamic_xml) {
844 char *xmlname = g_strndup(p, len);
845 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
853 name = xml_builtin[i][0];
854 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
857 return name ? xml_builtin[i][1] : NULL;
860 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
862 CPUClass *cc = CPU_GET_CLASS(cpu);
863 CPUArchState *env = cpu->env_ptr;
866 if (reg < cc->gdb_num_core_regs) {
867 return cc->gdb_read_register(cpu, mem_buf, reg);
870 for (r = cpu->gdb_regs; r; r = r->next) {
871 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
872 return r->get_reg(env, mem_buf, reg - r->base_reg);
878 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
880 CPUClass *cc = CPU_GET_CLASS(cpu);
881 CPUArchState *env = cpu->env_ptr;
884 if (reg < cc->gdb_num_core_regs) {
885 return cc->gdb_write_register(cpu, mem_buf, reg);
888 for (r = cpu->gdb_regs; r; r = r->next) {
889 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
890 return r->set_reg(env, mem_buf, reg - r->base_reg);
896 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
897 specifies the first register number and these registers are included in
898 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
899 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
902 void gdb_register_coprocessor(CPUState *cpu,
903 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
904 int num_regs, const char *xml, int g_pos)
907 GDBRegisterState **p;
911 /* Check for duplicates. */
912 if (strcmp((*p)->xml, xml) == 0)
917 s = g_new0(GDBRegisterState, 1);
918 s->base_reg = cpu->gdb_num_regs;
919 s->num_regs = num_regs;
920 s->get_reg = get_reg;
921 s->set_reg = set_reg;
924 /* Add to end of list. */
925 cpu->gdb_num_regs += num_regs;
928 if (g_pos != s->base_reg) {
929 error_report("Error: Bad gdb register numbering for '%s', "
930 "expected %d got %d", xml, g_pos, s->base_reg);
932 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
937 #ifndef CONFIG_USER_ONLY
938 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
939 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
941 static const int xlat[] = {
942 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
943 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
944 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
947 CPUClass *cc = CPU_GET_CLASS(cpu);
948 int cputype = xlat[gdbtype];
950 if (cc->gdb_stop_before_watchpoint) {
951 cputype |= BP_STOP_BEFORE_ACCESS;
957 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
963 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
967 case GDB_BREAKPOINT_SW:
968 case GDB_BREAKPOINT_HW:
970 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
976 #ifndef CONFIG_USER_ONLY
977 case GDB_WATCHPOINT_WRITE:
978 case GDB_WATCHPOINT_READ:
979 case GDB_WATCHPOINT_ACCESS:
981 err = cpu_watchpoint_insert(cpu, addr, len,
982 xlat_gdb_type(cpu, type), NULL);
994 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1000 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1004 case GDB_BREAKPOINT_SW:
1005 case GDB_BREAKPOINT_HW:
1007 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1013 #ifndef CONFIG_USER_ONLY
1014 case GDB_WATCHPOINT_WRITE:
1015 case GDB_WATCHPOINT_READ:
1016 case GDB_WATCHPOINT_ACCESS:
1018 err = cpu_watchpoint_remove(cpu, addr, len,
1019 xlat_gdb_type(cpu, type));
1030 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1032 cpu_breakpoint_remove_all(cpu, BP_GDB);
1033 #ifndef CONFIG_USER_ONLY
1034 cpu_watchpoint_remove_all(cpu, BP_GDB);
1038 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1040 CPUState *cpu = get_first_cpu_in_process(s, p);
1043 gdb_cpu_breakpoint_remove_all(cpu);
1044 cpu = gdb_next_cpu_in_process(s, cpu);
1048 static void gdb_breakpoint_remove_all(void)
1052 if (kvm_enabled()) {
1053 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1058 gdb_cpu_breakpoint_remove_all(cpu);
1062 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1064 CPUState *cpu = s->c_cpu;
1066 cpu_synchronize_state(cpu);
1067 cpu_set_pc(cpu, pc);
1070 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1071 char *buf, size_t buf_size)
1073 if (s->multiprocess) {
1074 snprintf(buf, buf_size, "p%02x.%02x",
1075 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1077 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1083 typedef enum GDBThreadIdKind {
1085 GDB_ALL_THREADS, /* One process, all threads */
1090 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1091 uint32_t *pid, uint32_t *tid)
1098 ret = qemu_strtoul(buf, &buf, 16, &p);
1101 return GDB_READ_THREAD_ERR;
1110 ret = qemu_strtoul(buf, &buf, 16, &t);
1113 return GDB_READ_THREAD_ERR;
1119 return GDB_ALL_PROCESSES;
1127 return GDB_ALL_THREADS;
1134 return GDB_ONE_THREAD;
1137 static int is_query_packet(const char *p, const char *query, char separator)
1139 unsigned int query_len = strlen(query);
1141 return strncmp(p, query, query_len) == 0 &&
1142 (p[query_len] == '\0' || p[query_len] == separator);
1146 * gdb_handle_vcont - Parses and handles a vCont packet.
1147 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1148 * a format error, 0 on success.
1150 static int gdb_handle_vcont(GDBState *s, const char *p)
1152 int res, signal = 0;
1157 GDBProcess *process;
1159 GDBThreadIdKind kind;
1160 #ifdef CONFIG_USER_ONLY
1161 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1164 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1167 /* uninitialised CPUs stay 0 */
1168 newstates = g_new0(char, max_cpus);
1170 /* mark valid CPUs with 1 */
1172 newstates[cpu->cpu_index] = 1;
1176 * res keeps track of what error we are returning, with -ENOTSUP meaning
1177 * that the command is unknown or unsupported, thus returning an empty
1178 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1179 * or incorrect parameters passed.
1189 if (cur_action == 'C' || cur_action == 'S') {
1190 cur_action = qemu_tolower(cur_action);
1191 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1195 signal = gdb_signal_to_target(tmp);
1196 } else if (cur_action != 'c' && cur_action != 's') {
1197 /* unknown/invalid/unsupported command */
1202 if (*p == '\0' || *p == ';') {
1204 * No thread specifier, action is on "all threads". The
1205 * specification is unclear regarding the process to act on. We
1206 * choose all processes.
1208 kind = GDB_ALL_PROCESSES;
1209 } else if (*p++ == ':') {
1210 kind = read_thread_id(p, &p, &pid, &tid);
1217 case GDB_READ_THREAD_ERR:
1221 case GDB_ALL_PROCESSES:
1222 cpu = gdb_first_attached_cpu(s);
1224 if (newstates[cpu->cpu_index] == 1) {
1225 newstates[cpu->cpu_index] = cur_action;
1228 cpu = gdb_next_attached_cpu(s, cpu);
1232 case GDB_ALL_THREADS:
1233 process = gdb_get_process(s, pid);
1235 if (!process->attached) {
1240 cpu = get_first_cpu_in_process(s, process);
1242 if (newstates[cpu->cpu_index] == 1) {
1243 newstates[cpu->cpu_index] = cur_action;
1246 cpu = gdb_next_cpu_in_process(s, cpu);
1250 case GDB_ONE_THREAD:
1251 cpu = gdb_get_cpu(s, pid, tid);
1253 /* invalid CPU/thread specified */
1259 /* only use if no previous match occourred */
1260 if (newstates[cpu->cpu_index] == 1) {
1261 newstates[cpu->cpu_index] = cur_action;
1267 gdb_continue_partial(s, newstates);
1275 typedef union GdbCmdVariant {
1278 unsigned long val_ul;
1279 unsigned long long val_ull;
1281 GDBThreadIdKind kind;
1287 static const char *cmd_next_param(const char *param, const char delimiter)
1289 static const char all_delimiters[] = ",;:=";
1290 char curr_delimiters[2] = {0};
1291 const char *delimiters;
1293 if (delimiter == '?') {
1294 delimiters = all_delimiters;
1295 } else if (delimiter == '0') {
1296 return strchr(param, '\0');
1297 } else if (delimiter == '.' && *param) {
1300 curr_delimiters[0] = delimiter;
1301 delimiters = curr_delimiters;
1304 param += strcspn(param, delimiters);
1311 static int cmd_parse_params(const char *data, const char *schema,
1312 GdbCmdVariant *params, int *num_params)
1315 const char *curr_schema, *curr_data;
1323 curr_schema = schema;
1326 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1327 switch (curr_schema[0]) {
1329 if (qemu_strtoul(curr_data, &curr_data, 16,
1330 ¶ms[curr_param].val_ul)) {
1334 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1337 if (qemu_strtou64(curr_data, &curr_data, 16,
1338 (uint64_t *)¶ms[curr_param].val_ull)) {
1342 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1345 params[curr_param].data = curr_data;
1347 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1350 params[curr_param].opcode = *(uint8_t *)curr_data;
1352 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1355 params[curr_param].thread_id.kind =
1356 read_thread_id(curr_data, &curr_data,
1357 ¶ms[curr_param].thread_id.pid,
1358 ¶ms[curr_param].thread_id.tid);
1360 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1363 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1371 *num_params = curr_param;
1375 typedef struct GdbCmdContext {
1377 GdbCmdVariant *params;
1379 uint8_t mem_buf[MAX_PACKET_LENGTH];
1380 char str_buf[MAX_PACKET_LENGTH + 1];
1383 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1386 * cmd_startswith -> cmd is compared using startswith
1389 * schema definitions:
1390 * Each schema parameter entry consists of 2 chars,
1391 * the first char represents the parameter type handling
1392 * the second char represents the delimiter for the next parameter
1394 * Currently supported schema types:
1395 * 'l' -> unsigned long (stored in .val_ul)
1396 * 'L' -> unsigned long long (stored in .val_ull)
1397 * 's' -> string (stored in .data)
1398 * 'o' -> single char (stored in .opcode)
1399 * 't' -> thread id (stored in .thread_id)
1400 * '?' -> skip according to delimiter
1402 * Currently supported delimiters:
1403 * '?' -> Stop at any delimiter (",;:=\0")
1404 * '0' -> Stop at "\0"
1405 * '.' -> Skip 1 char unless reached "\0"
1406 * Any other value is treated as the delimiter value itself
1408 typedef struct GdbCmdParseEntry {
1409 GdbCmdHandler handler;
1411 bool cmd_startswith;
1415 static inline int startswith(const char *string, const char *pattern)
1417 return !strncmp(string, pattern, strlen(pattern));
1420 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1421 const GdbCmdParseEntry *cmds, int num_cmds)
1423 int i, schema_len, max_num_params = 0;
1424 GdbCmdContext gdb_ctx;
1430 for (i = 0; i < num_cmds; i++) {
1431 const GdbCmdParseEntry *cmd = &cmds[i];
1432 g_assert(cmd->handler && cmd->cmd);
1434 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1435 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1440 schema_len = strlen(cmd->schema);
1441 if (schema_len % 2) {
1445 max_num_params = schema_len / 2;
1449 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1450 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1452 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1453 gdb_ctx.params, &gdb_ctx.num_params)) {
1458 cmd->handler(&gdb_ctx, user_ctx);
1465 static void run_cmd_parser(GDBState *s, const char *data,
1466 const GdbCmdParseEntry *cmd)
1472 /* In case there was an error during the command parsing we must
1473 * send a NULL packet to indicate the command is not supported */
1474 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1479 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1481 GDBProcess *process;
1482 GDBState *s = gdb_ctx->s;
1485 if (s->multiprocess) {
1486 if (!gdb_ctx->num_params) {
1487 put_packet(s, "E22");
1491 pid = gdb_ctx->params[0].val_ul;
1494 process = gdb_get_process(s, pid);
1495 gdb_process_breakpoint_remove_all(s, process);
1496 process->attached = false;
1498 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1499 s->c_cpu = gdb_first_attached_cpu(s);
1502 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1503 s->g_cpu = gdb_first_attached_cpu(s);
1507 /* No more process attached */
1508 gdb_syscall_mode = GDB_SYS_DISABLED;
1511 put_packet(s, "OK");
1514 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1518 if (!gdb_ctx->num_params) {
1519 put_packet(gdb_ctx->s, "E22");
1523 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1524 put_packet(gdb_ctx->s, "E22");
1528 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1529 gdb_ctx->params[0].thread_id.tid);
1531 put_packet(gdb_ctx->s, "E22");
1535 put_packet(gdb_ctx->s, "OK");
1538 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1540 if (gdb_ctx->num_params) {
1541 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1544 gdb_ctx->s->signal = 0;
1545 gdb_continue(gdb_ctx->s);
1548 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1550 unsigned long signal = 0;
1553 * Note: C sig;[addr] is currently unsupported and we simply
1554 * omit the addr parameter
1556 if (gdb_ctx->num_params) {
1557 signal = gdb_ctx->params[0].val_ul;
1560 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1561 if (gdb_ctx->s->signal == -1) {
1562 gdb_ctx->s->signal = 0;
1564 gdb_continue(gdb_ctx->s);
1567 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1571 if (gdb_ctx->num_params != 2) {
1572 put_packet(gdb_ctx->s, "E22");
1576 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1577 put_packet(gdb_ctx->s, "E22");
1581 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1582 put_packet(gdb_ctx->s, "OK");
1586 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1587 gdb_ctx->params[1].thread_id.tid);
1589 put_packet(gdb_ctx->s, "E22");
1594 * Note: This command is deprecated and modern gdb's will be using the
1595 * vCont command instead.
1597 switch (gdb_ctx->params[0].opcode) {
1599 gdb_ctx->s->c_cpu = cpu;
1600 put_packet(gdb_ctx->s, "OK");
1603 gdb_ctx->s->g_cpu = cpu;
1604 put_packet(gdb_ctx->s, "OK");
1607 put_packet(gdb_ctx->s, "E22");
1612 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1616 if (gdb_ctx->num_params != 3) {
1617 put_packet(gdb_ctx->s, "E22");
1621 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1622 gdb_ctx->params[1].val_ull,
1623 gdb_ctx->params[2].val_ull);
1625 put_packet(gdb_ctx->s, "OK");
1627 } else if (res == -ENOSYS) {
1628 put_packet(gdb_ctx->s, "");
1632 put_packet(gdb_ctx->s, "E22");
1635 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1639 if (gdb_ctx->num_params != 3) {
1640 put_packet(gdb_ctx->s, "E22");
1644 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1645 gdb_ctx->params[1].val_ull,
1646 gdb_ctx->params[2].val_ull);
1648 put_packet(gdb_ctx->s, "OK");
1650 } else if (res == -ENOSYS) {
1651 put_packet(gdb_ctx->s, "");
1655 put_packet(gdb_ctx->s, "E22");
1658 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1661 GDBProcess *process;
1665 int ch, reg_size, type, res;
1666 uint8_t mem_buf[MAX_PACKET_LENGTH];
1667 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1670 target_ulong addr, len;
1671 const GdbCmdParseEntry *cmd_parser = NULL;
1673 trace_gdbstub_io_command(line_buf);
1679 put_packet(s, "OK");
1682 /* TODO: Make this return the correct value for user-mode. */
1683 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1684 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1686 /* Remove all the breakpoints when this query is issued,
1687 * because gdb is doing and initial connect and the state
1688 * should be cleaned up.
1690 gdb_breakpoint_remove_all();
1694 static const GdbCmdParseEntry continue_cmd_desc = {
1695 .handler = handle_continue,
1697 .cmd_startswith = 1,
1700 cmd_parser = &continue_cmd_desc;
1705 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
1706 .handler = handle_cont_with_sig,
1708 .cmd_startswith = 1,
1711 cmd_parser = &cont_with_sig_cmd_desc;
1715 if (strncmp(p, "Cont", 4) == 0) {
1718 put_packet(s, "vCont;c;C;s;S");
1722 res = gdb_handle_vcont(s, p);
1725 if ((res == -EINVAL) || (res == -ERANGE)) {
1726 put_packet(s, "E22");
1729 goto unknown_command;
1732 } else if (strncmp(p, "Attach;", 7) == 0) {
1737 if (qemu_strtoul(p, &p, 16, &pid)) {
1738 put_packet(s, "E22");
1742 process = gdb_get_process(s, pid);
1744 if (process == NULL) {
1745 put_packet(s, "E22");
1749 cpu = get_first_cpu_in_process(s, process);
1752 /* Refuse to attach an empty process */
1753 put_packet(s, "E22");
1757 process->attached = true;
1762 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1763 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1767 } else if (strncmp(p, "Kill;", 5) == 0) {
1768 /* Kill the target */
1769 put_packet(s, "OK");
1770 error_report("QEMU: Terminated via GDBstub");
1773 goto unknown_command;
1776 /* Kill the target */
1777 error_report("QEMU: Terminated via GDBstub");
1781 static const GdbCmdParseEntry detach_cmd_desc = {
1782 .handler = handle_detach,
1784 .cmd_startswith = 1,
1787 cmd_parser = &detach_cmd_desc;
1792 addr = strtoull(p, (char **)&p, 16);
1793 gdb_set_cpu_pc(s, addr);
1795 cpu_single_step(s->c_cpu, sstep_flags);
1803 ret = strtoull(p, (char **)&p, 16);
1806 err = strtoull(p, (char **)&p, 16);
1813 if (s->current_syscall_cb) {
1814 s->current_syscall_cb(s->c_cpu, ret, err);
1815 s->current_syscall_cb = NULL;
1818 put_packet(s, "T02");
1825 cpu_synchronize_state(s->g_cpu);
1827 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1828 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1831 memtohex(buf, mem_buf, len);
1835 cpu_synchronize_state(s->g_cpu);
1836 registers = mem_buf;
1837 len = strlen(p) / 2;
1838 hextomem((uint8_t *)registers, p, len);
1839 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1840 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1842 registers += reg_size;
1844 put_packet(s, "OK");
1847 addr = strtoull(p, (char **)&p, 16);
1850 len = strtoull(p, NULL, 16);
1852 /* memtohex() doubles the required space */
1853 if (len > MAX_PACKET_LENGTH / 2) {
1854 put_packet (s, "E22");
1858 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1859 put_packet (s, "E14");
1861 memtohex(buf, mem_buf, len);
1866 addr = strtoull(p, (char **)&p, 16);
1869 len = strtoull(p, (char **)&p, 16);
1873 /* hextomem() reads 2*len bytes */
1874 if (len > strlen(p) / 2) {
1875 put_packet (s, "E22");
1878 hextomem(mem_buf, p, len);
1879 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1881 put_packet(s, "E14");
1883 put_packet(s, "OK");
1887 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1888 This works, but can be very slow. Anything new enough to
1889 understand XML also knows how to use this properly. */
1891 goto unknown_command;
1892 addr = strtoull(p, (char **)&p, 16);
1893 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1895 memtohex(buf, mem_buf, reg_size);
1898 put_packet(s, "E14");
1903 goto unknown_command;
1904 addr = strtoull(p, (char **)&p, 16);
1907 reg_size = strlen(p) / 2;
1908 hextomem(mem_buf, p, reg_size);
1909 gdb_write_register(s->g_cpu, mem_buf, addr);
1910 put_packet(s, "OK");
1914 static const GdbCmdParseEntry insert_bp_cmd_desc = {
1915 .handler = handle_insert_bp,
1917 .cmd_startswith = 1,
1920 cmd_parser = &insert_bp_cmd_desc;
1925 static const GdbCmdParseEntry remove_bp_cmd_desc = {
1926 .handler = handle_remove_bp,
1928 .cmd_startswith = 1,
1931 cmd_parser = &remove_bp_cmd_desc;
1936 static const GdbCmdParseEntry set_thread_cmd_desc = {
1937 .handler = handle_set_thread,
1939 .cmd_startswith = 1,
1942 cmd_parser = &set_thread_cmd_desc;
1947 static const GdbCmdParseEntry thread_alive_cmd_desc = {
1948 .handler = handle_thread_alive,
1950 .cmd_startswith = 1,
1953 cmd_parser = &thread_alive_cmd_desc;
1958 /* parse any 'q' packets here */
1959 if (!strcmp(p,"qemu.sstepbits")) {
1960 /* Query Breakpoint bit definitions */
1961 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1967 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1968 /* Display or change the sstep_flags */
1971 /* Display current setting */
1972 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1977 type = strtoul(p, (char **)&p, 16);
1979 put_packet(s, "OK");
1981 } else if (strcmp(p,"C") == 0) {
1983 * "Current thread" remains vague in the spec, so always return
1984 * the first thread of the current process (gdb returns the
1987 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1988 snprintf(buf, sizeof(buf), "QC%s",
1989 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1992 } else if (strcmp(p,"fThreadInfo") == 0) {
1993 s->query_cpu = gdb_first_attached_cpu(s);
1994 goto report_cpuinfo;
1995 } else if (strcmp(p,"sThreadInfo") == 0) {
1998 snprintf(buf, sizeof(buf), "m%s",
1999 gdb_fmt_thread_id(s, s->query_cpu,
2000 thread_id, sizeof(thread_id)));
2002 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
2006 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2007 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
2008 put_packet(s, "E22");
2011 cpu = gdb_get_cpu(s, pid, tid);
2013 cpu_synchronize_state(cpu);
2015 if (s->multiprocess && (s->process_num > 1)) {
2016 /* Print the CPU model and name in multiprocess mode */
2017 ObjectClass *oc = object_get_class(OBJECT(cpu));
2018 const char *cpu_model = object_class_get_name(oc);
2020 object_get_canonical_path_component(OBJECT(cpu));
2021 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
2022 "%s %s [%s]", cpu_model, cpu_name,
2023 cpu->halted ? "halted " : "running");
2026 /* memtohex() doubles the required space */
2027 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
2028 "CPU#%d [%s]", cpu->cpu_index,
2029 cpu->halted ? "halted " : "running");
2031 trace_gdbstub_op_extra_info((char *)mem_buf);
2032 memtohex(buf, mem_buf, len);
2037 #ifdef CONFIG_USER_ONLY
2038 else if (strcmp(p, "Offsets") == 0) {
2039 TaskState *ts = s->c_cpu->opaque;
2041 snprintf(buf, sizeof(buf),
2042 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2043 ";Bss=" TARGET_ABI_FMT_lx,
2044 ts->info->code_offset,
2045 ts->info->data_offset,
2046 ts->info->data_offset);
2050 #else /* !CONFIG_USER_ONLY */
2051 else if (strncmp(p, "Rcmd,", 5) == 0) {
2052 int len = strlen(p + 5);
2054 if ((len % 2) != 0) {
2055 put_packet(s, "E01");
2059 hextomem(mem_buf, p + 5, len);
2061 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2062 put_packet(s, "OK");
2065 #endif /* !CONFIG_USER_ONLY */
2066 if (is_query_packet(p, "Supported", ':')) {
2067 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2068 cc = CPU_GET_CLASS(first_cpu);
2069 if (cc->gdb_core_xml_file != NULL) {
2070 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2073 if (strstr(p, "multiprocess+")) {
2074 s->multiprocess = true;
2076 pstrcat(buf, sizeof(buf), ";multiprocess+");
2081 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2083 target_ulong total_len;
2085 process = gdb_get_cpu_process(s, s->g_cpu);
2086 cc = CPU_GET_CLASS(s->g_cpu);
2087 if (cc->gdb_core_xml_file == NULL) {
2088 goto unknown_command;
2093 xml = get_feature_xml(s, p, &p, process);
2095 snprintf(buf, sizeof(buf), "E00");
2102 addr = strtoul(p, (char **)&p, 16);
2105 len = strtoul(p, (char **)&p, 16);
2107 total_len = strlen(xml);
2108 if (addr > total_len) {
2109 snprintf(buf, sizeof(buf), "E00");
2113 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2114 len = (MAX_PACKET_LENGTH - 5) / 2;
2115 if (len < total_len - addr) {
2117 len = memtox(buf + 1, xml + addr, len);
2120 len = memtox(buf + 1, xml + addr, total_len - addr);
2122 put_packet_binary(s, buf, len + 1, true);
2125 if (is_query_packet(p, "Attached", ':')) {
2126 put_packet(s, GDB_ATTACHED);
2129 /* Unrecognised 'q' command. */
2130 goto unknown_command;
2134 /* put empty packet */
2140 run_cmd_parser(s, line_buf, cmd_parser);
2145 void gdb_set_stop_cpu(CPUState *cpu)
2147 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2151 * Having a stop CPU corresponding to a process that is not attached
2152 * confuses GDB. So we ignore the request.
2157 gdbserver_state->c_cpu = cpu;
2158 gdbserver_state->g_cpu = cpu;
2161 #ifndef CONFIG_USER_ONLY
2162 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2164 GDBState *s = gdbserver_state;
2165 CPUState *cpu = s->c_cpu;
2171 if (running || s->state == RS_INACTIVE) {
2174 /* Is there a GDB syscall waiting to be sent? */
2175 if (s->current_syscall_cb) {
2176 put_packet(s, s->syscall_buf);
2181 /* No process attached */
2185 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2188 case RUN_STATE_DEBUG:
2189 if (cpu->watchpoint_hit) {
2190 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2201 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2202 (target_ulong)cpu->watchpoint_hit->vaddr);
2203 snprintf(buf, sizeof(buf),
2204 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2205 GDB_SIGNAL_TRAP, thread_id, type,
2206 (target_ulong)cpu->watchpoint_hit->vaddr);
2207 cpu->watchpoint_hit = NULL;
2210 trace_gdbstub_hit_break();
2213 ret = GDB_SIGNAL_TRAP;
2215 case RUN_STATE_PAUSED:
2216 trace_gdbstub_hit_paused();
2217 ret = GDB_SIGNAL_INT;
2219 case RUN_STATE_SHUTDOWN:
2220 trace_gdbstub_hit_shutdown();
2221 ret = GDB_SIGNAL_QUIT;
2223 case RUN_STATE_IO_ERROR:
2224 trace_gdbstub_hit_io_error();
2225 ret = GDB_SIGNAL_IO;
2227 case RUN_STATE_WATCHDOG:
2228 trace_gdbstub_hit_watchdog();
2229 ret = GDB_SIGNAL_ALRM;
2231 case RUN_STATE_INTERNAL_ERROR:
2232 trace_gdbstub_hit_internal_error();
2233 ret = GDB_SIGNAL_ABRT;
2235 case RUN_STATE_SAVE_VM:
2236 case RUN_STATE_RESTORE_VM:
2238 case RUN_STATE_FINISH_MIGRATE:
2239 ret = GDB_SIGNAL_XCPU;
2242 trace_gdbstub_hit_unknown(state);
2243 ret = GDB_SIGNAL_UNKNOWN;
2246 gdb_set_stop_cpu(cpu);
2247 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2252 /* disable single step if it was enabled */
2253 cpu_single_step(cpu, 0);
2257 /* Send a gdb syscall request.
2258 This accepts limited printf-style format specifiers, specifically:
2259 %x - target_ulong argument printed in hex.
2260 %lx - 64-bit argument printed in hex.
2261 %s - string pointer (target_ulong) and length (int) pair. */
2262 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2270 s = gdbserver_state;
2273 s->current_syscall_cb = cb;
2274 #ifndef CONFIG_USER_ONLY
2275 vm_stop(RUN_STATE_DEBUG);
2278 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2285 addr = va_arg(va, target_ulong);
2286 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2289 if (*(fmt++) != 'x')
2291 i64 = va_arg(va, uint64_t);
2292 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2295 addr = va_arg(va, target_ulong);
2296 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2297 addr, va_arg(va, int));
2301 error_report("gdbstub: Bad syscall format string '%s'",
2310 #ifdef CONFIG_USER_ONLY
2311 put_packet(s, s->syscall_buf);
2312 /* Return control to gdb for it to process the syscall request.
2313 * Since the protocol requires that gdb hands control back to us
2314 * using a "here are the results" F packet, we don't need to check
2315 * gdb_handlesig's return value (which is the signal to deliver if
2316 * execution was resumed via a continue packet).
2318 gdb_handlesig(s->c_cpu, 0);
2320 /* In this case wait to send the syscall packet until notification that
2321 the CPU has stopped. This must be done because if the packet is sent
2322 now the reply from the syscall request could be received while the CPU
2323 is still in the running state, which can cause packets to be dropped
2324 and state transition 'T' packets to be sent while the syscall is still
2326 qemu_cpu_kick(s->c_cpu);
2330 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2335 gdb_do_syscallv(cb, fmt, va);
2339 static void gdb_read_byte(GDBState *s, uint8_t ch)
2343 #ifndef CONFIG_USER_ONLY
2344 if (s->last_packet_len) {
2345 /* Waiting for a response to the last packet. If we see the start
2346 of a new command then abandon the previous response. */
2348 trace_gdbstub_err_got_nack();
2349 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2350 } else if (ch == '+') {
2351 trace_gdbstub_io_got_ack();
2353 trace_gdbstub_io_got_unexpected(ch);
2356 if (ch == '+' || ch == '$')
2357 s->last_packet_len = 0;
2361 if (runstate_is_running()) {
2362 /* when the CPU is running, we cannot do anything except stop
2363 it when receiving a char */
2364 vm_stop(RUN_STATE_PAUSED);
2371 /* start of command packet */
2372 s->line_buf_index = 0;
2374 s->state = RS_GETLINE;
2376 trace_gdbstub_err_garbage(ch);
2381 /* start escape sequence */
2382 s->state = RS_GETLINE_ESC;
2384 } else if (ch == '*') {
2385 /* start run length encoding sequence */
2386 s->state = RS_GETLINE_RLE;
2388 } else if (ch == '#') {
2389 /* end of command, start of checksum*/
2390 s->state = RS_CHKSUM1;
2391 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2392 trace_gdbstub_err_overrun();
2395 /* unescaped command character */
2396 s->line_buf[s->line_buf_index++] = ch;
2400 case RS_GETLINE_ESC:
2402 /* unexpected end of command in escape sequence */
2403 s->state = RS_CHKSUM1;
2404 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2405 /* command buffer overrun */
2406 trace_gdbstub_err_overrun();
2409 /* parse escaped character and leave escape state */
2410 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2412 s->state = RS_GETLINE;
2415 case RS_GETLINE_RLE:
2417 * Run-length encoding is explained in "Debugging with GDB /
2418 * Appendix E GDB Remote Serial Protocol / Overview".
2420 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2421 /* invalid RLE count encoding */
2422 trace_gdbstub_err_invalid_repeat(ch);
2423 s->state = RS_GETLINE;
2425 /* decode repeat length */
2426 int repeat = ch - ' ' + 3;
2427 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2428 /* that many repeats would overrun the command buffer */
2429 trace_gdbstub_err_overrun();
2431 } else if (s->line_buf_index < 1) {
2432 /* got a repeat but we have nothing to repeat */
2433 trace_gdbstub_err_invalid_rle();
2434 s->state = RS_GETLINE;
2436 /* repeat the last character */
2437 memset(s->line_buf + s->line_buf_index,
2438 s->line_buf[s->line_buf_index - 1], repeat);
2439 s->line_buf_index += repeat;
2441 s->state = RS_GETLINE;
2446 /* get high hex digit of checksum */
2447 if (!isxdigit(ch)) {
2448 trace_gdbstub_err_checksum_invalid(ch);
2449 s->state = RS_GETLINE;
2452 s->line_buf[s->line_buf_index] = '\0';
2453 s->line_csum = fromhex(ch) << 4;
2454 s->state = RS_CHKSUM2;
2457 /* get low hex digit of checksum */
2458 if (!isxdigit(ch)) {
2459 trace_gdbstub_err_checksum_invalid(ch);
2460 s->state = RS_GETLINE;
2463 s->line_csum |= fromhex(ch);
2465 if (s->line_csum != (s->line_sum & 0xff)) {
2466 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2467 /* send NAK reply */
2469 put_buffer(s, &reply, 1);
2472 /* send ACK reply */
2474 put_buffer(s, &reply, 1);
2475 s->state = gdb_handle_packet(s, s->line_buf);
2484 /* Tell the remote gdb that the process has exited. */
2485 void gdb_exit(CPUArchState *env, int code)
2490 s = gdbserver_state;
2494 #ifdef CONFIG_USER_ONLY
2495 if (gdbserver_fd < 0 || s->fd < 0) {
2500 trace_gdbstub_op_exiting((uint8_t)code);
2502 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2505 #ifndef CONFIG_USER_ONLY
2506 qemu_chr_fe_deinit(&s->chr, true);
2511 * Create the process that will contain all the "orphan" CPUs (that are not
2512 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2513 * be attachable and thus will be invisible to the user.
2515 static void create_default_process(GDBState *s)
2517 GDBProcess *process;
2520 if (s->process_num) {
2521 max_pid = s->processes[s->process_num - 1].pid;
2524 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2525 process = &s->processes[s->process_num - 1];
2527 /* We need an available PID slot for this process */
2528 assert(max_pid < UINT32_MAX);
2530 process->pid = max_pid + 1;
2531 process->attached = false;
2532 process->target_xml[0] = '\0';
2535 #ifdef CONFIG_USER_ONLY
2537 gdb_handlesig(CPUState *cpu, int sig)
2543 s = gdbserver_state;
2544 if (gdbserver_fd < 0 || s->fd < 0) {
2548 /* disable single step if it was enabled */
2549 cpu_single_step(cpu, 0);
2553 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2556 /* put_packet() might have detected that the peer terminated the
2564 s->running_state = 0;
2565 while (s->running_state == 0) {
2566 n = read(s->fd, buf, 256);
2570 for (i = 0; i < n; i++) {
2571 gdb_read_byte(s, buf[i]);
2574 /* XXX: Connection closed. Should probably wait for another
2575 connection before continuing. */
2588 /* Tell the remote gdb that the process has exited due to SIG. */
2589 void gdb_signalled(CPUArchState *env, int sig)
2594 s = gdbserver_state;
2595 if (gdbserver_fd < 0 || s->fd < 0) {
2599 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2603 static bool gdb_accept(void)
2606 struct sockaddr_in sockaddr;
2611 len = sizeof(sockaddr);
2612 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2613 if (fd < 0 && errno != EINTR) {
2616 } else if (fd >= 0) {
2617 qemu_set_cloexec(fd);
2622 /* set short latency */
2623 if (socket_set_nodelay(fd)) {
2624 perror("setsockopt");
2629 s = g_malloc0(sizeof(GDBState));
2630 create_default_process(s);
2631 s->processes[0].attached = true;
2632 s->c_cpu = gdb_first_attached_cpu(s);
2633 s->g_cpu = s->c_cpu;
2635 gdb_has_xml = false;
2637 gdbserver_state = s;
2641 static int gdbserver_open(int port)
2643 struct sockaddr_in sockaddr;
2646 fd = socket(PF_INET, SOCK_STREAM, 0);
2651 qemu_set_cloexec(fd);
2653 socket_set_fast_reuse(fd);
2655 sockaddr.sin_family = AF_INET;
2656 sockaddr.sin_port = htons(port);
2657 sockaddr.sin_addr.s_addr = 0;
2658 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2664 ret = listen(fd, 1);
2673 int gdbserver_start(int port)
2675 gdbserver_fd = gdbserver_open(port);
2676 if (gdbserver_fd < 0)
2678 /* accept connections */
2679 if (!gdb_accept()) {
2680 close(gdbserver_fd);
2687 /* Disable gdb stub for child processes. */
2688 void gdbserver_fork(CPUState *cpu)
2690 GDBState *s = gdbserver_state;
2692 if (gdbserver_fd < 0 || s->fd < 0) {
2697 cpu_breakpoint_remove_all(cpu, BP_GDB);
2698 cpu_watchpoint_remove_all(cpu, BP_GDB);
2701 static int gdb_chr_can_receive(void *opaque)
2703 /* We can handle an arbitrarily large amount of data.
2704 Pick the maximum packet size, which is as good as anything. */
2705 return MAX_PACKET_LENGTH;
2708 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2712 for (i = 0; i < size; i++) {
2713 gdb_read_byte(gdbserver_state, buf[i]);
2717 static void gdb_chr_event(void *opaque, int event)
2720 GDBState *s = (GDBState *) opaque;
2723 case CHR_EVENT_OPENED:
2724 /* Start with first process attached, others detached */
2725 for (i = 0; i < s->process_num; i++) {
2726 s->processes[i].attached = !i;
2729 s->c_cpu = gdb_first_attached_cpu(s);
2730 s->g_cpu = s->c_cpu;
2732 vm_stop(RUN_STATE_PAUSED);
2733 gdb_has_xml = false;
2740 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2742 char buf[MAX_PACKET_LENGTH];
2745 if (len > (MAX_PACKET_LENGTH/2) - 1)
2746 len = (MAX_PACKET_LENGTH/2) - 1;
2747 memtohex(buf + 1, (uint8_t *)msg, len);
2751 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2753 const char *p = (const char *)buf;
2756 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2758 if (len <= max_sz) {
2759 gdb_monitor_output(gdbserver_state, p, len);
2762 gdb_monitor_output(gdbserver_state, p, max_sz);
2770 static void gdb_sigterm_handler(int signal)
2772 if (runstate_is_running()) {
2773 vm_stop(RUN_STATE_PAUSED);
2778 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2779 bool *be_opened, Error **errp)
2784 static void char_gdb_class_init(ObjectClass *oc, void *data)
2786 ChardevClass *cc = CHARDEV_CLASS(oc);
2788 cc->internal = true;
2789 cc->open = gdb_monitor_open;
2790 cc->chr_write = gdb_monitor_write;
2793 #define TYPE_CHARDEV_GDB "chardev-gdb"
2795 static const TypeInfo char_gdb_type_info = {
2796 .name = TYPE_CHARDEV_GDB,
2797 .parent = TYPE_CHARDEV,
2798 .class_init = char_gdb_class_init,
2801 static int find_cpu_clusters(Object *child, void *opaque)
2803 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2804 GDBState *s = (GDBState *) opaque;
2805 CPUClusterState *cluster = CPU_CLUSTER(child);
2806 GDBProcess *process;
2808 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2810 process = &s->processes[s->process_num - 1];
2813 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2814 * runtime, we enforce here that the machine does not use a cluster ID
2815 * that would lead to PID 0.
2817 assert(cluster->cluster_id != UINT32_MAX);
2818 process->pid = cluster->cluster_id + 1;
2819 process->attached = false;
2820 process->target_xml[0] = '\0';
2825 return object_child_foreach(child, find_cpu_clusters, opaque);
2828 static int pid_order(const void *a, const void *b)
2830 GDBProcess *pa = (GDBProcess *) a;
2831 GDBProcess *pb = (GDBProcess *) b;
2833 if (pa->pid < pb->pid) {
2835 } else if (pa->pid > pb->pid) {
2842 static void create_processes(GDBState *s)
2844 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2848 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2851 create_default_process(s);
2854 static void cleanup_processes(GDBState *s)
2856 g_free(s->processes);
2858 s->processes = NULL;
2861 int gdbserver_start(const char *device)
2863 trace_gdbstub_op_start(device);
2866 char gdbstub_device_name[128];
2867 Chardev *chr = NULL;
2871 error_report("gdbstub: meaningless to attach gdb to a "
2872 "machine without any CPU.");
2878 if (strcmp(device, "none") != 0) {
2879 if (strstart(device, "tcp:", NULL)) {
2880 /* enforce required TCP attributes */
2881 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2882 "%s,nowait,nodelay,server", device);
2883 device = gdbstub_device_name;
2886 else if (strcmp(device, "stdio") == 0) {
2887 struct sigaction act;
2889 memset(&act, 0, sizeof(act));
2890 act.sa_handler = gdb_sigterm_handler;
2891 sigaction(SIGINT, &act, NULL);
2895 * FIXME: it's a bit weird to allow using a mux chardev here
2896 * and implicitly setup a monitor. We may want to break this.
2898 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
2903 s = gdbserver_state;
2905 s = g_malloc0(sizeof(GDBState));
2906 gdbserver_state = s;
2908 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2910 /* Initialize a monitor terminal for gdb */
2911 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2912 NULL, NULL, &error_abort);
2913 monitor_init(mon_chr, 0);
2915 qemu_chr_fe_deinit(&s->chr, true);
2916 mon_chr = s->mon_chr;
2917 cleanup_processes(s);
2918 memset(s, 0, sizeof(GDBState));
2919 s->mon_chr = mon_chr;
2922 create_processes(s);
2925 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2926 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2927 gdb_chr_event, NULL, s, NULL, true);
2929 s->state = chr ? RS_IDLE : RS_INACTIVE;
2930 s->mon_chr = mon_chr;
2931 s->current_syscall_cb = NULL;
2936 void gdbserver_cleanup(void)
2938 if (gdbserver_state) {
2939 put_packet(gdbserver_state, "W00");
2943 static void register_types(void)
2945 type_register_static(&char_gdb_type_info);
2948 type_init(register_types);