4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
86 static inline bool no_signaling_nans(float_status *status)
88 #if defined(TARGET_XTENSA)
89 return status->no_signaling_nans;
95 /* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
102 static inline bool snan_bit_is_one(float_status *status)
104 #if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
106 #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
113 /*----------------------------------------------------------------------------
114 | For the deconstructed floating-point with fraction FRAC, return true
115 | if the fraction represents a signalling NaN; otherwise false.
116 *----------------------------------------------------------------------------*/
118 static bool parts_is_snan_frac(uint64_t frac, float_status *status)
120 if (no_signaling_nans(status)) {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
128 /*----------------------------------------------------------------------------
129 | The pattern for a default generated deconstructed floating-point NaN.
130 *----------------------------------------------------------------------------*/
132 static FloatParts parts_default_nan(float_status *status)
137 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
138 /* !snan_bit_is_one, set all bits */
139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
145 #elif defined(TARGET_HPPA)
146 /* snan_bit_is_one, set msb-1. */
147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
149 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
150 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
151 * for Unicore32; the choice from the original commit is unchanged.
152 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
153 * do not have floating-point.
155 if (snan_bit_is_one(status)) {
156 /* set all bits other than msb */
157 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
164 return (FloatParts) {
165 .cls = float_class_qnan,
172 /*----------------------------------------------------------------------------
173 | Returns a quiet NaN from a signalling NaN for the deconstructed
174 | floating-point parts.
175 *----------------------------------------------------------------------------*/
177 static FloatParts parts_silence_nan(FloatParts a, float_status *status)
179 g_assert(!no_signaling_nans(status));
180 #if defined(TARGET_HPPA)
181 a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
182 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
184 if (snan_bit_is_one(status)) {
185 return parts_default_nan(status);
187 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
190 a.cls = float_class_qnan;
194 /*----------------------------------------------------------------------------
195 | The pattern for a default generated extended double-precision NaN.
196 *----------------------------------------------------------------------------*/
197 floatx80 floatx80_default_nan(float_status *status)
201 /* None of the targets that have snan_bit_is_one use floatx80. */
202 assert(!snan_bit_is_one(status));
203 #if defined(TARGET_M68K)
204 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
208 r.low = UINT64_C(0xC000000000000000);
214 /*----------------------------------------------------------------------------
215 | The pattern for a default generated extended double-precision inf.
216 *----------------------------------------------------------------------------*/
218 #define floatx80_infinity_high 0x7FFF
219 #if defined(TARGET_M68K)
220 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
222 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
225 const floatx80 floatx80_infinity
226 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
228 /*----------------------------------------------------------------------------
229 | Raises the exceptions specified by `flags'. Floating-point traps can be
230 | defined here if desired. It is currently not possible for such a trap
231 | to substitute a result value. If traps are not implemented, this routine
232 | should be simply `float_exception_flags |= flags;'.
233 *----------------------------------------------------------------------------*/
235 void float_raise(uint8_t flags, float_status *status)
237 status->float_exception_flags |= flags;
240 /*----------------------------------------------------------------------------
241 | Internal canonical NaN format.
242 *----------------------------------------------------------------------------*/
248 /*----------------------------------------------------------------------------
249 | Returns 1 if the half-precision floating-point value `a' is a quiet
250 | NaN; otherwise returns 0.
251 *----------------------------------------------------------------------------*/
253 bool float16_is_quiet_nan(float16 a_, float_status *status)
255 if (no_signaling_nans(status)) {
256 return float16_is_any_nan(a_);
258 uint16_t a = float16_val(a_);
259 if (snan_bit_is_one(status)) {
260 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
263 return ((a >> 9) & 0x3F) == 0x3F;
268 /*----------------------------------------------------------------------------
269 | Returns 1 if the half-precision floating-point value `a' is a signaling
270 | NaN; otherwise returns 0.
271 *----------------------------------------------------------------------------*/
273 bool float16_is_signaling_nan(float16 a_, float_status *status)
275 if (no_signaling_nans(status)) {
278 uint16_t a = float16_val(a_);
279 if (snan_bit_is_one(status)) {
280 return ((a >> 9) & 0x3F) == 0x3F;
282 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
287 /*----------------------------------------------------------------------------
288 | Returns 1 if the single-precision floating-point value `a' is a quiet
289 | NaN; otherwise returns 0.
290 *----------------------------------------------------------------------------*/
292 bool float32_is_quiet_nan(float32 a_, float_status *status)
294 if (no_signaling_nans(status)) {
295 return float32_is_any_nan(a_);
297 uint32_t a = float32_val(a_);
298 if (snan_bit_is_one(status)) {
299 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
301 return ((uint32_t)(a << 1) >= 0xFF800000);
306 /*----------------------------------------------------------------------------
307 | Returns 1 if the single-precision floating-point value `a' is a signaling
308 | NaN; otherwise returns 0.
309 *----------------------------------------------------------------------------*/
311 bool float32_is_signaling_nan(float32 a_, float_status *status)
313 if (no_signaling_nans(status)) {
316 uint32_t a = float32_val(a_);
317 if (snan_bit_is_one(status)) {
318 return ((uint32_t)(a << 1) >= 0xFF800000);
320 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
325 /*----------------------------------------------------------------------------
326 | Returns the result of converting the single-precision floating-point NaN
327 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
328 | exception is raised.
329 *----------------------------------------------------------------------------*/
331 static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
335 if (float32_is_signaling_nan(a, status)) {
336 float_raise(float_flag_invalid, status);
338 z.sign = float32_val(a) >> 31;
340 z.high = ((uint64_t)float32_val(a)) << 41;
344 /*----------------------------------------------------------------------------
345 | Returns the result of converting the canonical NaN `a' to the single-
346 | precision floating-point format.
347 *----------------------------------------------------------------------------*/
349 static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
351 uint32_t mantissa = a.high >> 41;
353 if (status->default_nan_mode) {
354 return float32_default_nan(status);
359 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
361 return float32_default_nan(status);
365 /*----------------------------------------------------------------------------
366 | Select which NaN to propagate for a two-input operation.
367 | IEEE754 doesn't specify all the details of this, so the
368 | algorithm is target-specific.
369 | The routine is passed various bits of information about the
370 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
371 | Note that signalling NaNs are always squashed to quiet NaNs
372 | by the caller, by calling floatXX_silence_nan() before
375 | aIsLargerSignificand is only valid if both a and b are NaNs
376 | of some kind, and is true if a has the larger significand,
377 | or if both a and b have the same significand but a is
378 | positive but b is negative. It is only needed for the x87
380 *----------------------------------------------------------------------------*/
382 static int pickNaN(FloatClass a_cls, FloatClass b_cls,
383 bool aIsLargerSignificand, float_status *status)
385 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
386 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
388 * 1. A if it is signaling
389 * 2. B if it is signaling
392 * A signaling NaN is always quietened before returning it.
394 /* According to MIPS specifications, if one of the two operands is
395 * a sNaN, a new qNaN has to be generated. This is done in
396 * floatXX_silence_nan(). For qNaN inputs the specifications
397 * says: "When possible, this QNaN result is one of the operand QNaN
398 * values." In practice it seems that most implementations choose
399 * the first operand if both operands are qNaN. In short this gives
400 * the following rules:
401 * 1. A if it is signaling
402 * 2. B if it is signaling
405 * A signaling NaN is always silenced before returning it.
407 if (is_snan(a_cls)) {
409 } else if (is_snan(b_cls)) {
411 } else if (is_qnan(a_cls)) {
416 #elif defined(TARGET_PPC) || defined(TARGET_M68K)
417 /* PowerPC propagation rules:
418 * 1. A if it sNaN or qNaN
419 * 2. B if it sNaN or qNaN
420 * A signaling NaN is always silenced before returning it.
422 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
423 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
424 * If either operand, but not both operands, of an operation is a
425 * nonsignaling NaN, then that NaN is returned as the result. If both
426 * operands are nonsignaling NaNs, then the destination operand
427 * nonsignaling NaN is returned as the result.
428 * If either operand to an operation is a signaling NaN (SNaN), then the
429 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
430 * is set in the FPCR ENABLE byte, then the exception is taken and the
431 * destination is not modified. If the SNaN exception enable bit is not
432 * set, setting the SNaN bit in the operand to a one converts the SNaN to
433 * a nonsignaling NaN. The operation then continues as described in the
434 * preceding paragraph for nonsignaling NaNs.
441 #elif defined(TARGET_XTENSA)
443 * Xtensa has two NaN propagation modes.
444 * Which one is active is controlled by float_status::use_first_nan.
446 if (status->use_first_nan) {
460 /* This implements x87 NaN propagation rules:
461 * SNaN + QNaN => return the QNaN
462 * two SNaNs => return the one with the larger significand, silenced
463 * two QNaNs => return the one with the larger significand
464 * SNaN and a non-NaN => return the SNaN, silenced
465 * QNaN and a non-NaN => return the QNaN
467 * If we get down to comparing significands and they are the same,
468 * return the NaN with the positive sign bit (if any).
470 if (is_snan(a_cls)) {
471 if (is_snan(b_cls)) {
472 return aIsLargerSignificand ? 0 : 1;
474 return is_qnan(b_cls) ? 1 : 0;
475 } else if (is_qnan(a_cls)) {
476 if (is_snan(b_cls) || !is_qnan(b_cls)) {
479 return aIsLargerSignificand ? 0 : 1;
487 /*----------------------------------------------------------------------------
488 | Select which NaN to propagate for a three-input operation.
489 | For the moment we assume that no CPU needs the 'larger significand'
491 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
492 *----------------------------------------------------------------------------*/
493 static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
494 bool infzero, float_status *status)
496 #if defined(TARGET_ARM)
497 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
500 if (infzero && is_qnan(c_cls)) {
501 float_raise(float_flag_invalid, status);
505 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
506 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
508 if (is_snan(c_cls)) {
510 } else if (is_snan(a_cls)) {
512 } else if (is_snan(b_cls)) {
514 } else if (is_qnan(c_cls)) {
516 } else if (is_qnan(a_cls)) {
521 #elif defined(TARGET_MIPS)
522 if (snan_bit_is_one(status)) {
524 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
525 * case sets InvalidOp and returns the default NaN
528 float_raise(float_flag_invalid, status);
531 /* Prefer sNaN over qNaN, in the a, b, c order. */
532 if (is_snan(a_cls)) {
534 } else if (is_snan(b_cls)) {
536 } else if (is_snan(c_cls)) {
538 } else if (is_qnan(a_cls)) {
540 } else if (is_qnan(b_cls)) {
547 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
548 * case sets InvalidOp and returns the input value 'c'
551 float_raise(float_flag_invalid, status);
554 /* Prefer sNaN over qNaN, in the c, a, b order. */
555 if (is_snan(c_cls)) {
557 } else if (is_snan(a_cls)) {
559 } else if (is_snan(b_cls)) {
561 } else if (is_qnan(c_cls)) {
563 } else if (is_qnan(a_cls)) {
569 #elif defined(TARGET_PPC)
570 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
571 * to return an input NaN if we have one (ie c) rather than generating
575 float_raise(float_flag_invalid, status);
579 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
580 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
584 } else if (is_nan(c_cls)) {
589 #elif defined(TARGET_XTENSA)
591 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
592 * an input NaN if we have one (ie c).
595 float_raise(float_flag_invalid, status);
598 if (status->use_first_nan) {
601 } else if (is_nan(b_cls)) {
609 } else if (is_nan(b_cls)) {
616 /* A default implementation: prefer a to b to c.
617 * This is unlikely to actually match any real implementation.
621 } else if (is_nan(b_cls)) {
629 /*----------------------------------------------------------------------------
630 | Takes two single-precision floating-point values `a' and `b', one of which
631 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
632 | signaling NaN, the invalid exception is raised.
633 *----------------------------------------------------------------------------*/
635 static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
637 bool aIsLargerSignificand;
639 FloatClass a_cls, b_cls;
641 /* This is not complete, but is good enough for pickNaN. */
642 a_cls = (!float32_is_any_nan(a)
644 : float32_is_signaling_nan(a, status)
647 b_cls = (!float32_is_any_nan(b)
649 : float32_is_signaling_nan(b, status)
656 if (is_snan(a_cls) || is_snan(b_cls)) {
657 float_raise(float_flag_invalid, status);
660 if (status->default_nan_mode) {
661 return float32_default_nan(status);
664 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
665 aIsLargerSignificand = 0;
666 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
667 aIsLargerSignificand = 1;
669 aIsLargerSignificand = (av < bv) ? 1 : 0;
672 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
673 if (is_snan(b_cls)) {
674 return float32_silence_nan(b, status);
678 if (is_snan(a_cls)) {
679 return float32_silence_nan(a, status);
685 /*----------------------------------------------------------------------------
686 | Returns 1 if the double-precision floating-point value `a' is a quiet
687 | NaN; otherwise returns 0.
688 *----------------------------------------------------------------------------*/
690 bool float64_is_quiet_nan(float64 a_, float_status *status)
692 if (no_signaling_nans(status)) {
693 return float64_is_any_nan(a_);
695 uint64_t a = float64_val(a_);
696 if (snan_bit_is_one(status)) {
697 return (((a >> 51) & 0xFFF) == 0xFFE)
698 && (a & 0x0007FFFFFFFFFFFFULL);
700 return ((a << 1) >= 0xFFF0000000000000ULL);
705 /*----------------------------------------------------------------------------
706 | Returns 1 if the double-precision floating-point value `a' is a signaling
707 | NaN; otherwise returns 0.
708 *----------------------------------------------------------------------------*/
710 bool float64_is_signaling_nan(float64 a_, float_status *status)
712 if (no_signaling_nans(status)) {
715 uint64_t a = float64_val(a_);
716 if (snan_bit_is_one(status)) {
717 return ((a << 1) >= 0xFFF0000000000000ULL);
719 return (((a >> 51) & 0xFFF) == 0xFFE)
720 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
725 /*----------------------------------------------------------------------------
726 | Returns the result of converting the double-precision floating-point NaN
727 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
728 | exception is raised.
729 *----------------------------------------------------------------------------*/
731 static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
735 if (float64_is_signaling_nan(a, status)) {
736 float_raise(float_flag_invalid, status);
738 z.sign = float64_val(a) >> 63;
740 z.high = float64_val(a) << 12;
744 /*----------------------------------------------------------------------------
745 | Returns the result of converting the canonical NaN `a' to the double-
746 | precision floating-point format.
747 *----------------------------------------------------------------------------*/
749 static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
751 uint64_t mantissa = a.high >> 12;
753 if (status->default_nan_mode) {
754 return float64_default_nan(status);
759 (((uint64_t) a.sign) << 63)
760 | UINT64_C(0x7FF0000000000000)
763 return float64_default_nan(status);
767 /*----------------------------------------------------------------------------
768 | Takes two double-precision floating-point values `a' and `b', one of which
769 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
770 | signaling NaN, the invalid exception is raised.
771 *----------------------------------------------------------------------------*/
773 static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
775 bool aIsLargerSignificand;
777 FloatClass a_cls, b_cls;
779 /* This is not complete, but is good enough for pickNaN. */
780 a_cls = (!float64_is_any_nan(a)
782 : float64_is_signaling_nan(a, status)
785 b_cls = (!float64_is_any_nan(b)
787 : float64_is_signaling_nan(b, status)
794 if (is_snan(a_cls) || is_snan(b_cls)) {
795 float_raise(float_flag_invalid, status);
798 if (status->default_nan_mode) {
799 return float64_default_nan(status);
802 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
803 aIsLargerSignificand = 0;
804 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
805 aIsLargerSignificand = 1;
807 aIsLargerSignificand = (av < bv) ? 1 : 0;
810 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
811 if (is_snan(b_cls)) {
812 return float64_silence_nan(b, status);
816 if (is_snan(a_cls)) {
817 return float64_silence_nan(a, status);
823 /*----------------------------------------------------------------------------
824 | Returns 1 if the extended double-precision floating-point value `a' is a
825 | quiet NaN; otherwise returns 0. This slightly differs from the same
826 | function for other types as floatx80 has an explicit bit.
827 *----------------------------------------------------------------------------*/
829 int floatx80_is_quiet_nan(floatx80 a, float_status *status)
831 if (no_signaling_nans(status)) {
832 return floatx80_is_any_nan(a);
834 if (snan_bit_is_one(status)) {
837 aLow = a.low & ~0x4000000000000000ULL;
838 return ((a.high & 0x7FFF) == 0x7FFF)
842 return ((a.high & 0x7FFF) == 0x7FFF)
843 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
848 /*----------------------------------------------------------------------------
849 | Returns 1 if the extended double-precision floating-point value `a' is a
850 | signaling NaN; otherwise returns 0. This slightly differs from the same
851 | function for other types as floatx80 has an explicit bit.
852 *----------------------------------------------------------------------------*/
854 int floatx80_is_signaling_nan(floatx80 a, float_status *status)
856 if (no_signaling_nans(status)) {
859 if (snan_bit_is_one(status)) {
860 return ((a.high & 0x7FFF) == 0x7FFF)
861 && ((a.low << 1) >= 0x8000000000000000ULL);
865 aLow = a.low & ~UINT64_C(0x4000000000000000);
866 return ((a.high & 0x7FFF) == 0x7FFF)
867 && (uint64_t)(aLow << 1)
873 /*----------------------------------------------------------------------------
874 | Returns a quiet NaN from a signalling NaN for the extended double-precision
875 | floating point value `a'.
876 *----------------------------------------------------------------------------*/
878 floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
880 /* None of the targets that have snan_bit_is_one use floatx80. */
881 assert(!snan_bit_is_one(status));
882 a.low |= UINT64_C(0xC000000000000000);
886 /*----------------------------------------------------------------------------
887 | Returns the result of converting the extended double-precision floating-
888 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
889 | invalid exception is raised.
890 *----------------------------------------------------------------------------*/
892 static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
897 if (floatx80_is_signaling_nan(a, status)) {
898 float_raise(float_flag_invalid, status);
901 z.sign = a.high >> 15;
905 dflt = floatx80_default_nan(status);
906 z.sign = dflt.high >> 15;
908 z.high = dflt.low << 1;
913 /*----------------------------------------------------------------------------
914 | Returns the result of converting the canonical NaN `a' to the extended
915 | double-precision floating-point format.
916 *----------------------------------------------------------------------------*/
918 static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
922 if (status->default_nan_mode) {
923 return floatx80_default_nan(status);
927 z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
928 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
930 z = floatx80_default_nan(status);
935 /*----------------------------------------------------------------------------
936 | Takes two extended double-precision floating-point values `a' and `b', one
937 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
938 | `b' is a signaling NaN, the invalid exception is raised.
939 *----------------------------------------------------------------------------*/
941 floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
943 bool aIsLargerSignificand;
944 FloatClass a_cls, b_cls;
946 /* This is not complete, but is good enough for pickNaN. */
947 a_cls = (!floatx80_is_any_nan(a)
949 : floatx80_is_signaling_nan(a, status)
952 b_cls = (!floatx80_is_any_nan(b)
954 : floatx80_is_signaling_nan(b, status)
958 if (is_snan(a_cls) || is_snan(b_cls)) {
959 float_raise(float_flag_invalid, status);
962 if (status->default_nan_mode) {
963 return floatx80_default_nan(status);
967 aIsLargerSignificand = 0;
968 } else if (b.low < a.low) {
969 aIsLargerSignificand = 1;
971 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
974 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
975 if (is_snan(b_cls)) {
976 return floatx80_silence_nan(b, status);
980 if (is_snan(a_cls)) {
981 return floatx80_silence_nan(a, status);
987 /*----------------------------------------------------------------------------
988 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
989 | NaN; otherwise returns 0.
990 *----------------------------------------------------------------------------*/
992 bool float128_is_quiet_nan(float128 a, float_status *status)
994 if (no_signaling_nans(status)) {
995 return float128_is_any_nan(a);
997 if (snan_bit_is_one(status)) {
998 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
999 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1001 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1002 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1007 /*----------------------------------------------------------------------------
1008 | Returns 1 if the quadruple-precision floating-point value `a' is a
1009 | signaling NaN; otherwise returns 0.
1010 *----------------------------------------------------------------------------*/
1012 bool float128_is_signaling_nan(float128 a, float_status *status)
1014 if (no_signaling_nans(status)) {
1017 if (snan_bit_is_one(status)) {
1018 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1019 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1021 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1022 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1027 /*----------------------------------------------------------------------------
1028 | Returns a quiet NaN from a signalling NaN for the quadruple-precision
1029 | floating point value `a'.
1030 *----------------------------------------------------------------------------*/
1032 float128 float128_silence_nan(float128 a, float_status *status)
1034 if (no_signaling_nans(status)) {
1035 g_assert_not_reached();
1037 if (snan_bit_is_one(status)) {
1038 return float128_default_nan(status);
1040 a.high |= UINT64_C(0x0000800000000000);
1046 /*----------------------------------------------------------------------------
1047 | Returns the result of converting the quadruple-precision floating-point NaN
1048 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1049 | exception is raised.
1050 *----------------------------------------------------------------------------*/
1052 static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1056 if (float128_is_signaling_nan(a, status)) {
1057 float_raise(float_flag_invalid, status);
1059 z.sign = a.high >> 63;
1060 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1064 /*----------------------------------------------------------------------------
1065 | Returns the result of converting the canonical NaN `a' to the quadruple-
1066 | precision floating-point format.
1067 *----------------------------------------------------------------------------*/
1069 static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1073 if (status->default_nan_mode) {
1074 return float128_default_nan(status);
1077 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1078 z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1082 /*----------------------------------------------------------------------------
1083 | Takes two quadruple-precision floating-point values `a' and `b', one of
1084 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1085 | `b' is a signaling NaN, the invalid exception is raised.
1086 *----------------------------------------------------------------------------*/
1088 static float128 propagateFloat128NaN(float128 a, float128 b,
1089 float_status *status)
1091 bool aIsLargerSignificand;
1092 FloatClass a_cls, b_cls;
1094 /* This is not complete, but is good enough for pickNaN. */
1095 a_cls = (!float128_is_any_nan(a)
1096 ? float_class_normal
1097 : float128_is_signaling_nan(a, status)
1099 : float_class_qnan);
1100 b_cls = (!float128_is_any_nan(b)
1101 ? float_class_normal
1102 : float128_is_signaling_nan(b, status)
1104 : float_class_qnan);
1106 if (is_snan(a_cls) || is_snan(b_cls)) {
1107 float_raise(float_flag_invalid, status);
1110 if (status->default_nan_mode) {
1111 return float128_default_nan(status);
1114 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1115 aIsLargerSignificand = 0;
1116 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1117 aIsLargerSignificand = 1;
1119 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1122 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1123 if (is_snan(b_cls)) {
1124 return float128_silence_nan(b, status);
1128 if (is_snan(a_cls)) {
1129 return float128_silence_nan(a, status);