2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "kvm-consts.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 # define ELF_MACHINE EM_AARCH64
31 # define TARGET_LONG_BITS 32
32 # define ELF_MACHINE EM_ARM
35 #define CPUArchState struct CPUARMState
37 #include "qemu-common.h"
38 #include "exec/cpu-defs.h"
40 #include "fpu/softfloat.h"
42 #define TARGET_HAS_ICE 1
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
54 #define EXCP_HVC 11 /* HyperVisor Call */
55 #define EXCP_HYP_TRAP 12
56 #define EXCP_SMC 13 /* Secure Monitor Call */
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SVC 11
67 #define ARMV7M_EXCP_DEBUG 12
68 #define ARMV7M_EXCP_PENDSV 14
69 #define ARMV7M_EXCP_SYSTICK 15
71 /* ARM-specific interrupt pending bits. */
72 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
73 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
74 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
76 /* The usual mapping for an AArch64 system register to its AArch32
77 * counterpart is for the 32 bit world to have access to the lower
78 * half only (with writes leaving the upper half untouched). It's
79 * therefore useful to be able to pass TCG the offset of the least
80 * significant half of a uint64_t struct member.
82 #ifdef HOST_WORDS_BIGENDIAN
83 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #define offsetofhigh32(S, M) offsetof(S, M)
86 #define offsetoflow32(S, M) offsetof(S, M)
87 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
90 /* Meanings of the ARMCPU object's four inbound GPIO lines */
93 #define ARM_CPU_VIRQ 2
94 #define ARM_CPU_VFIQ 3
96 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
97 int srcreg, int operand, uint32_t value);
98 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
99 int dstreg, int operand);
101 struct arm_boot_info;
103 #define NB_MMU_MODES 4
105 /* We currently assume float and double are IEEE single and double
106 precision respectively.
107 Doing runtime conversions is tricky because VFP registers may contain
108 integer values (eg. as the result of a FTOSI instruction).
109 s<2n> maps to the least significant half of d<n>
110 s<2n+1> maps to the most significant half of d<n>
113 /* CPU state for each instance of a generic timer (in cp15 c14) */
114 typedef struct ARMGenericTimer {
115 uint64_t cval; /* Timer CompareValue register */
116 uint64_t ctl; /* Timer Control register */
119 #define GTIMER_PHYS 0
120 #define GTIMER_VIRT 1
121 #define NUM_GTIMERS 2
123 typedef struct CPUARMState {
124 /* Regs for current mode. */
127 /* 32/64 switch only happens when taking and returning from
128 * exceptions so the overlap semantics are taken care of then
129 * instead of having a complicated union.
131 /* Regs for A64 mode. */
134 /* PSTATE isn't an architectural register for ARMv8. However, it is
135 * convenient for us to assemble the underlying state into a 32 bit format
136 * identical to the architectural format used for the SPSR. (This is also
137 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
138 * 'pstate' register are.) Of the PSTATE bits:
139 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
140 * semantics as for AArch32, as described in the comments on each field)
141 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
142 * DAIF (exception masks) are kept in env->daif
143 * all other bits are stored in their correct places in env->pstate
146 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
148 /* Frequently accessed CPSR bits are stored separately for efficiency.
149 This contains all the other bits. Use cpsr_{read,write} to access
151 uint32_t uncached_cpsr;
154 /* Banked registers. */
155 uint64_t banked_spsr[8];
156 uint32_t banked_r13[8];
157 uint32_t banked_r14[8];
159 /* These hold r8-r12. */
160 uint32_t usr_regs[5];
161 uint32_t fiq_regs[5];
163 /* cpsr flag cache for faster execution */
164 uint32_t CF; /* 0 or 1 */
165 uint32_t VF; /* V is the bit 31. All other bits are undefined */
166 uint32_t NF; /* N is bit 31. All other bits are undefined. */
167 uint32_t ZF; /* Z set if zero. */
168 uint32_t QF; /* 0 or 1 */
169 uint32_t GE; /* cpsr[19:16] */
170 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
171 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
172 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
174 uint64_t elr_el[4]; /* AArch64 exception link regs */
175 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
177 /* System control coprocessor (cp15) */
180 uint64_t c0_cssel; /* Cache size selection. */
181 uint64_t c1_sys; /* System control register. */
182 uint64_t c1_coproc; /* Coprocessor access register. */
183 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
184 uint32_t nsacr; /* Non-secure access control register. */
185 uint64_t ttbr0_el1; /* MMU translation table base 0. */
186 uint64_t ttbr1_el1; /* MMU translation table base 1. */
187 uint64_t c2_control; /* MMU translation table base control. */
188 uint32_t c2_mask; /* MMU translation table base selection mask. */
189 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
190 uint32_t c2_data; /* MPU data cachable bits. */
191 uint32_t c2_insn; /* MPU instruction cachable bits. */
192 uint32_t c3; /* MMU domain access control register
193 MPU write buffer control. */
194 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
195 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
196 uint64_t hcr_el2; /* Hypervisor configuration register */
197 uint64_t scr_el3; /* Secure configuration register. */
198 uint32_t ifsr_el2; /* Fault status registers. */
200 uint32_t c6_region[8]; /* MPU base/size registers. */
201 uint64_t far_el[4]; /* Fault address registers. */
202 uint64_t par_el1; /* Translation result. */
203 uint32_t c9_insn; /* Cache lockdown registers. */
205 uint64_t c9_pmcr; /* performance monitor control register */
206 uint64_t c9_pmcnten; /* perf monitor counter enables */
207 uint32_t c9_pmovsr; /* perf monitor overflow status */
208 uint32_t c9_pmxevtyper; /* perf monitor event type */
209 uint32_t c9_pmuserenr; /* perf monitor user enable */
210 uint32_t c9_pminten; /* perf monitor interrupt enables */
212 uint64_t vbar_el[4]; /* vector base address register */
213 uint32_t c13_fcse; /* FCSE PID. */
214 uint64_t contextidr_el1; /* Context ID. */
215 uint64_t tpidr_el0; /* User RW Thread register. */
216 uint64_t tpidrro_el0; /* User RO Thread register. */
217 uint64_t tpidr_el1; /* Privileged Thread register. */
218 uint64_t c14_cntfrq; /* Counter Frequency register */
219 uint64_t c14_cntkctl; /* Timer Control register */
220 ARMGenericTimer c14_timer[NUM_GTIMERS];
221 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
222 uint32_t c15_ticonfig; /* TI925T configuration byte. */
223 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
224 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
225 uint32_t c15_threadid; /* TI debugger thread-ID. */
226 uint32_t c15_config_base_address; /* SCU base address. */
227 uint32_t c15_diagnostic; /* diagnostic register */
228 uint32_t c15_power_diagnostic;
229 uint32_t c15_power_control; /* power control */
230 uint64_t dbgbvr[16]; /* breakpoint value registers */
231 uint64_t dbgbcr[16]; /* breakpoint control registers */
232 uint64_t dbgwvr[16]; /* watchpoint value registers */
233 uint64_t dbgwcr[16]; /* watchpoint control registers */
235 /* If the counter is enabled, this stores the last time the counter
236 * was reset. Otherwise it stores the counter value
239 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
249 int pending_exception;
252 /* Information associated with an exception about to be taken:
253 * code which raises an exception must set cs->exception_index and
254 * the relevant parts of this structure; the cpu_do_interrupt function
255 * will then set the guest-visible registers as part of the exception
259 uint32_t syndrome; /* AArch64 format syndrome register */
260 uint32_t fsr; /* AArch32 format fault status register info */
261 uint64_t vaddress; /* virtual addr associated with exception, if any */
262 /* If we implement EL2 we will also need to store information
263 * about the intermediate physical address for stage 2 faults.
267 /* Thumb-2 EE state. */
271 /* VFP coprocessor state. */
273 /* VFP/Neon register state. Note that the mapping between S, D and Q
274 * views of the register bank differs between AArch64 and AArch32:
276 * Qn = regs[2n+1]:regs[2n]
278 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
279 * (and regs[32] to regs[63] are inaccessible)
281 * Qn = regs[2n+1]:regs[2n]
283 * Sn = regs[2n] bits 31..0
284 * This corresponds to the architecturally defined mapping between
285 * the two execution states, and means we do not need to explicitly
286 * map these registers when changing states.
291 /* We store these fpcsr fields separately for convenience. */
295 /* scratch space when Tn are not sufficient. */
298 /* fp_status is the "normal" fp status. standard_fp_status retains
299 * values corresponding to the ARM "Standard FPSCR Value", ie
300 * default-NaN, flush-to-zero, round-to-nearest and is used by
301 * any operations (generally Neon) which the architecture defines
302 * as controlled by the standard FPSCR value rather than the FPSCR.
304 * To avoid having to transfer exception bits around, we simply
305 * say that the FPSCR cumulative exception flags are the logical
306 * OR of the flags in the two fp statuses. This relies on the
307 * only thing which needs to read the exception flags being
308 * an explicit FPSCR read.
310 float_status fp_status;
311 float_status standard_fp_status;
313 uint64_t exclusive_addr;
314 uint64_t exclusive_val;
315 uint64_t exclusive_high;
316 #if defined(CONFIG_USER_ONLY)
317 uint64_t exclusive_test;
318 uint32_t exclusive_info;
321 /* iwMMXt coprocessor state. */
329 /* For mixed endian mode. */
332 #if defined(CONFIG_USER_ONLY)
333 /* For usermode syscall translation. */
337 struct CPUBreakpoint *cpu_breakpoint[16];
338 struct CPUWatchpoint *cpu_watchpoint[16];
342 /* These fields after the common ones so they are preserved on reset. */
344 /* Internal CPU feature flags. */
348 const struct arm_boot_info *boot_info;
353 ARMCPU *cpu_arm_init(const char *cpu_model);
354 int cpu_arm_exec(CPUARMState *s);
355 uint32_t do_arm_semihosting(CPUARMState *env);
357 static inline bool is_a64(CPUARMState *env)
362 /* you can call this signal handler from your SIGBUS and SIGSEGV
363 signal handlers to inform the virtual CPU of exceptions. non zero
364 is returned if the signal was handled by the virtual CPU. */
365 int cpu_arm_signal_handler(int host_signum, void *pinfo,
367 int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
374 * Synchronises the counter in the PMCCNTR. This must always be called twice,
375 * once before any action that might affect the timer and again afterwards.
376 * The function is used to swap the state of the register if required.
377 * This only happens when not in user mode (!CONFIG_USER_ONLY)
379 void pmccntr_sync(CPUARMState *env);
381 /* SCTLR bit meanings. Several bits have been reused in newer
382 * versions of the architecture; in that case we define constants
383 * for both old and new bit meanings. Code which tests against those
384 * bits should probably check or otherwise arrange that the CPU
385 * is the architectural version it expects.
387 #define SCTLR_M (1U << 0)
388 #define SCTLR_A (1U << 1)
389 #define SCTLR_C (1U << 2)
390 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
391 #define SCTLR_SA (1U << 3)
392 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
393 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
394 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
395 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
396 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
397 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
398 #define SCTLR_ITD (1U << 7) /* v8 onward */
399 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
400 #define SCTLR_SED (1U << 8) /* v8 onward */
401 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
402 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
403 #define SCTLR_F (1U << 10) /* up to v6 */
404 #define SCTLR_SW (1U << 10) /* v7 onward */
405 #define SCTLR_Z (1U << 11)
406 #define SCTLR_I (1U << 12)
407 #define SCTLR_V (1U << 13)
408 #define SCTLR_RR (1U << 14) /* up to v7 */
409 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
410 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
411 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
412 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
413 #define SCTLR_nTWI (1U << 16) /* v8 onward */
414 #define SCTLR_HA (1U << 17)
415 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
416 #define SCTLR_nTWE (1U << 18) /* v8 onward */
417 #define SCTLR_WXN (1U << 19)
418 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
419 #define SCTLR_UWXN (1U << 20) /* v7 onward */
420 #define SCTLR_FI (1U << 21)
421 #define SCTLR_U (1U << 22)
422 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
423 #define SCTLR_VE (1U << 24) /* up to v7 */
424 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
425 #define SCTLR_EE (1U << 25)
426 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
427 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
428 #define SCTLR_NMFI (1U << 27)
429 #define SCTLR_TRE (1U << 28)
430 #define SCTLR_AFE (1U << 29)
431 #define SCTLR_TE (1U << 30)
433 #define CPSR_M (0x1fU)
434 #define CPSR_T (1U << 5)
435 #define CPSR_F (1U << 6)
436 #define CPSR_I (1U << 7)
437 #define CPSR_A (1U << 8)
438 #define CPSR_E (1U << 9)
439 #define CPSR_IT_2_7 (0xfc00U)
440 #define CPSR_GE (0xfU << 16)
441 #define CPSR_IL (1U << 20)
442 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
443 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
444 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
445 * where it is live state but not accessible to the AArch32 code.
447 #define CPSR_RESERVED (0x7U << 21)
448 #define CPSR_J (1U << 24)
449 #define CPSR_IT_0_1 (3U << 25)
450 #define CPSR_Q (1U << 27)
451 #define CPSR_V (1U << 28)
452 #define CPSR_C (1U << 29)
453 #define CPSR_Z (1U << 30)
454 #define CPSR_N (1U << 31)
455 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
456 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
458 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
459 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
461 /* Bits writable in user mode. */
462 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
463 /* Execution state bits. MRS read as zero, MSR writes ignored. */
464 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
465 /* Mask of bits which may be set by exception return copying them from SPSR */
466 #define CPSR_ERET_MASK (~CPSR_RESERVED)
468 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
469 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
470 #define TTBCR_PD0 (1U << 4)
471 #define TTBCR_PD1 (1U << 5)
472 #define TTBCR_EPD0 (1U << 7)
473 #define TTBCR_IRGN0 (3U << 8)
474 #define TTBCR_ORGN0 (3U << 10)
475 #define TTBCR_SH0 (3U << 12)
476 #define TTBCR_T1SZ (3U << 16)
477 #define TTBCR_A1 (1U << 22)
478 #define TTBCR_EPD1 (1U << 23)
479 #define TTBCR_IRGN1 (3U << 24)
480 #define TTBCR_ORGN1 (3U << 26)
481 #define TTBCR_SH1 (1U << 28)
482 #define TTBCR_EAE (1U << 31)
484 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
485 * Only these are valid when in AArch64 mode; in
486 * AArch32 mode SPSRs are basically CPSR-format.
488 #define PSTATE_SP (1U)
489 #define PSTATE_M (0xFU)
490 #define PSTATE_nRW (1U << 4)
491 #define PSTATE_F (1U << 6)
492 #define PSTATE_I (1U << 7)
493 #define PSTATE_A (1U << 8)
494 #define PSTATE_D (1U << 9)
495 #define PSTATE_IL (1U << 20)
496 #define PSTATE_SS (1U << 21)
497 #define PSTATE_V (1U << 28)
498 #define PSTATE_C (1U << 29)
499 #define PSTATE_Z (1U << 30)
500 #define PSTATE_N (1U << 31)
501 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
502 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
503 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
504 /* Mode values for AArch64 */
505 #define PSTATE_MODE_EL3h 13
506 #define PSTATE_MODE_EL3t 12
507 #define PSTATE_MODE_EL2h 9
508 #define PSTATE_MODE_EL2t 8
509 #define PSTATE_MODE_EL1h 5
510 #define PSTATE_MODE_EL1t 4
511 #define PSTATE_MODE_EL0t 0
513 /* Map EL and handler into a PSTATE_MODE. */
514 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
516 return (el << 2) | handler;
519 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
520 * interprocessing, so we don't attempt to sync with the cpsr state used by
521 * the 32 bit decoder.
523 static inline uint32_t pstate_read(CPUARMState *env)
528 return (env->NF & 0x80000000) | (ZF << 30)
529 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
530 | env->pstate | env->daif;
533 static inline void pstate_write(CPUARMState *env, uint32_t val)
535 env->ZF = (~val) & PSTATE_Z;
537 env->CF = (val >> 29) & 1;
538 env->VF = (val << 3) & 0x80000000;
539 env->daif = val & PSTATE_DAIF;
540 env->pstate = val & ~CACHED_PSTATE_BITS;
543 /* Return the current CPSR value. */
544 uint32_t cpsr_read(CPUARMState *env);
545 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
546 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
548 /* Return the current xPSR value. */
549 static inline uint32_t xpsr_read(CPUARMState *env)
553 return (env->NF & 0x80000000) | (ZF << 30)
554 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
555 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
556 | ((env->condexec_bits & 0xfc) << 8)
557 | env->v7m.exception;
560 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
561 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
563 if (mask & CPSR_NZCV) {
564 env->ZF = (~val) & CPSR_Z;
566 env->CF = (val >> 29) & 1;
567 env->VF = (val << 3) & 0x80000000;
570 env->QF = ((val & CPSR_Q) != 0);
571 if (mask & (1 << 24))
572 env->thumb = ((val & (1 << 24)) != 0);
573 if (mask & CPSR_IT_0_1) {
574 env->condexec_bits &= ~3;
575 env->condexec_bits |= (val >> 25) & 3;
577 if (mask & CPSR_IT_2_7) {
578 env->condexec_bits &= 3;
579 env->condexec_bits |= (val >> 8) & 0xfc;
582 env->v7m.exception = val & 0x1ff;
586 #define HCR_VM (1ULL << 0)
587 #define HCR_SWIO (1ULL << 1)
588 #define HCR_PTW (1ULL << 2)
589 #define HCR_FMO (1ULL << 3)
590 #define HCR_IMO (1ULL << 4)
591 #define HCR_AMO (1ULL << 5)
592 #define HCR_VF (1ULL << 6)
593 #define HCR_VI (1ULL << 7)
594 #define HCR_VSE (1ULL << 8)
595 #define HCR_FB (1ULL << 9)
596 #define HCR_BSU_MASK (3ULL << 10)
597 #define HCR_DC (1ULL << 12)
598 #define HCR_TWI (1ULL << 13)
599 #define HCR_TWE (1ULL << 14)
600 #define HCR_TID0 (1ULL << 15)
601 #define HCR_TID1 (1ULL << 16)
602 #define HCR_TID2 (1ULL << 17)
603 #define HCR_TID3 (1ULL << 18)
604 #define HCR_TSC (1ULL << 19)
605 #define HCR_TIDCP (1ULL << 20)
606 #define HCR_TACR (1ULL << 21)
607 #define HCR_TSW (1ULL << 22)
608 #define HCR_TPC (1ULL << 23)
609 #define HCR_TPU (1ULL << 24)
610 #define HCR_TTLB (1ULL << 25)
611 #define HCR_TVM (1ULL << 26)
612 #define HCR_TGE (1ULL << 27)
613 #define HCR_TDZ (1ULL << 28)
614 #define HCR_HCD (1ULL << 29)
615 #define HCR_TRVM (1ULL << 30)
616 #define HCR_RW (1ULL << 31)
617 #define HCR_CD (1ULL << 32)
618 #define HCR_ID (1ULL << 33)
619 #define HCR_MASK ((1ULL << 34) - 1)
621 #define SCR_NS (1U << 0)
622 #define SCR_IRQ (1U << 1)
623 #define SCR_FIQ (1U << 2)
624 #define SCR_EA (1U << 3)
625 #define SCR_FW (1U << 4)
626 #define SCR_AW (1U << 5)
627 #define SCR_NET (1U << 6)
628 #define SCR_SMD (1U << 7)
629 #define SCR_HCE (1U << 8)
630 #define SCR_SIF (1U << 9)
631 #define SCR_RW (1U << 10)
632 #define SCR_ST (1U << 11)
633 #define SCR_TWI (1U << 12)
634 #define SCR_TWE (1U << 13)
635 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
636 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
638 /* Return the current FPSCR value. */
639 uint32_t vfp_get_fpscr(CPUARMState *env);
640 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
642 /* For A64 the FPSCR is split into two logically distinct registers,
643 * FPCR and FPSR. However since they still use non-overlapping bits
644 * we store the underlying state in fpscr and just mask on read/write.
646 #define FPSR_MASK 0xf800009f
647 #define FPCR_MASK 0x07f79f00
648 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
650 return vfp_get_fpscr(env) & FPSR_MASK;
653 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
655 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
656 vfp_set_fpscr(env, new_fpscr);
659 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
661 return vfp_get_fpscr(env) & FPCR_MASK;
664 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
666 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
667 vfp_set_fpscr(env, new_fpscr);
671 ARM_CPU_MODE_USR = 0x10,
672 ARM_CPU_MODE_FIQ = 0x11,
673 ARM_CPU_MODE_IRQ = 0x12,
674 ARM_CPU_MODE_SVC = 0x13,
675 ARM_CPU_MODE_MON = 0x16,
676 ARM_CPU_MODE_ABT = 0x17,
677 ARM_CPU_MODE_HYP = 0x1a,
678 ARM_CPU_MODE_UND = 0x1b,
679 ARM_CPU_MODE_SYS = 0x1f
682 /* VFP system registers. */
683 #define ARM_VFP_FPSID 0
684 #define ARM_VFP_FPSCR 1
685 #define ARM_VFP_MVFR2 5
686 #define ARM_VFP_MVFR1 6
687 #define ARM_VFP_MVFR0 7
688 #define ARM_VFP_FPEXC 8
689 #define ARM_VFP_FPINST 9
690 #define ARM_VFP_FPINST2 10
692 /* iwMMXt coprocessor control registers. */
693 #define ARM_IWMMXT_wCID 0
694 #define ARM_IWMMXT_wCon 1
695 #define ARM_IWMMXT_wCSSF 2
696 #define ARM_IWMMXT_wCASF 3
697 #define ARM_IWMMXT_wCGR0 8
698 #define ARM_IWMMXT_wCGR1 9
699 #define ARM_IWMMXT_wCGR2 10
700 #define ARM_IWMMXT_wCGR3 11
702 /* If adding a feature bit which corresponds to a Linux ELF
703 * HWCAP bit, remember to update the feature-bit-to-hwcap
704 * mapping in linux-user/elfload.c:get_elf_hwcap().
708 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
709 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
710 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
715 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
717 ARM_FEATURE_VFP_FP16,
719 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
720 ARM_FEATURE_M, /* Microcontroller profile. */
721 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
722 ARM_FEATURE_THUMB2EE,
723 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
726 ARM_FEATURE_STRONGARM,
727 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
728 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
729 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
730 ARM_FEATURE_GENERIC_TIMER,
731 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
732 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
733 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
734 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
735 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
736 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
737 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
738 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
740 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
741 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
742 ARM_FEATURE_CBAR, /* has cp15 CBAR */
743 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
744 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
745 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
746 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
747 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
748 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
749 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
752 static inline int arm_feature(CPUARMState *env, int feature)
754 return (env->features & (1ULL << feature)) != 0;
757 #if !defined(CONFIG_USER_ONLY)
758 /* Return true if exception levels below EL3 are in secure state,
759 * or would be following an exception return to that level.
760 * Unlike arm_is_secure() (which is always a question about the
761 * _current_ state of the CPU) this doesn't care about the current
764 static inline bool arm_is_secure_below_el3(CPUARMState *env)
766 if (arm_feature(env, ARM_FEATURE_EL3)) {
767 return !(env->cp15.scr_el3 & SCR_NS);
769 /* If EL2 is not supported then the secure state is implementation
770 * defined, in which case QEMU defaults to non-secure.
776 /* Return true if the processor is in secure state */
777 static inline bool arm_is_secure(CPUARMState *env)
779 if (arm_feature(env, ARM_FEATURE_EL3)) {
780 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
781 /* CPU currently in AArch64 state and EL3 */
783 } else if (!is_a64(env) &&
784 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
785 /* CPU currently in AArch32 state and monitor mode */
789 return arm_is_secure_below_el3(env);
793 static inline bool arm_is_secure_below_el3(CPUARMState *env)
798 static inline bool arm_is_secure(CPUARMState *env)
804 /* Return true if the specified exception level is running in AArch64 state. */
805 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
807 /* We don't currently support EL2, and this isn't valid for EL0
808 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
809 * then the state of EL0 isn't well defined.)
811 assert(el == 1 || el == 3);
813 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
814 * is a QEMU-imposed simplification which we may wish to change later.
815 * If we in future support EL2 and/or EL3, then the state of lower
816 * exception levels is controlled by the HCR.RW and SCR.RW bits.
818 return arm_feature(env, ARM_FEATURE_AARCH64);
821 /* Function for determing whether guest cp register reads and writes should
822 * access the secure or non-secure bank of a cp register. When EL3 is
823 * operating in AArch32 state, the NS-bit determines whether the secure
824 * instance of a cp register should be used. When EL3 is AArch64 (or if
825 * it doesn't exist at all) then there is no register banking, and all
826 * accesses are to the non-secure version.
828 static inline bool access_secure_reg(CPUARMState *env)
830 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
831 !arm_el_is_aa64(env, 3) &&
832 !(env->cp15.scr_el3 & SCR_NS));
837 /* Macros for accessing a specified CP register bank */
838 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
839 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
841 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
844 (_env)->cp15._regname##_s = (_val); \
846 (_env)->cp15._regname##_ns = (_val); \
850 /* Macros for automatically accessing a specific CP register bank depending on
851 * the current secure state of the system. These macros are not intended for
852 * supporting instruction translation reads/writes as these are dependent
853 * solely on the SCR.NS bit and not the mode.
855 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
856 A32_BANKED_REG_GET((_env), _regname, \
857 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
859 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
860 A32_BANKED_REG_SET((_env), _regname, \
861 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
864 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
865 unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
867 /* Interface between CPU and Interrupt controller. */
868 void armv7m_nvic_set_pending(void *opaque, int irq);
869 int armv7m_nvic_acknowledge_irq(void *opaque);
870 void armv7m_nvic_complete_irq(void *opaque, int irq);
872 /* Interface for defining coprocessor registers.
873 * Registers are defined in tables of arm_cp_reginfo structs
874 * which are passed to define_arm_cp_regs().
877 /* When looking up a coprocessor register we look for it
878 * via an integer which encodes all of:
880 * Crn, Crm, opc1, opc2 fields
881 * 32 or 64 bit register (ie is it accessed via MRC/MCR
883 * non-secure/secure bank (AArch32 only)
884 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
885 * (In this case crn and opc2 should be zero.)
886 * For AArch64, there is no 32/64 bit size distinction;
887 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
888 * and 4 bit CRn and CRm. The encoding patterns are chosen
889 * to be easy to convert to and from the KVM encodings, and also
890 * so that the hashtable can contain both AArch32 and AArch64
891 * registers (to allow for interprocessing where we might run
892 * 32 bit code on a 64 bit core).
894 /* This bit is private to our hashtable cpreg; in KVM register
895 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
896 * in the upper bits of the 64 bit ID.
898 #define CP_REG_AA64_SHIFT 28
899 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
901 /* To enable banking of coprocessor registers depending on ns-bit we
902 * add a bit to distinguish between secure and non-secure cpregs in the
905 #define CP_REG_NS_SHIFT 29
906 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
908 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
909 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
910 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
912 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
913 (CP_REG_AA64_MASK | \
914 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
915 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
916 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
917 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
918 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
919 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
921 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
922 * version used as a key for the coprocessor register hashtable
924 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
926 uint32_t cpregid = kvmid;
927 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
928 cpregid |= CP_REG_AA64_MASK;
930 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
931 cpregid |= (1 << 15);
934 /* KVM is always non-secure so add the NS flag on AArch32 register
937 cpregid |= 1 << CP_REG_NS_SHIFT;
942 /* Convert a truncated 32 bit hashtable key into the full
943 * 64 bit KVM register ID.
945 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
949 if (cpregid & CP_REG_AA64_MASK) {
950 kvmid = cpregid & ~CP_REG_AA64_MASK;
951 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
953 kvmid = cpregid & ~(1 << 15);
954 if (cpregid & (1 << 15)) {
955 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
957 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
963 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
964 * special-behaviour cp reg and bits [15..8] indicate what behaviour
965 * it has. Otherwise it is a simple cp reg, where CONST indicates that
966 * TCG can assume the value to be constant (ie load at translate time)
967 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
968 * indicates that the TB should not be ended after a write to this register
969 * (the default is that the TB ends after cp writes). OVERRIDE permits
970 * a register definition to override a previous definition for the
971 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
972 * old must have the OVERRIDE bit set.
973 * NO_MIGRATE indicates that this register should be ignored for migration;
974 * (eg because any state is accessed via some other coprocessor register).
975 * IO indicates that this register does I/O and therefore its accesses
976 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
977 * registers which implement clocks or timers require this.
979 #define ARM_CP_SPECIAL 1
980 #define ARM_CP_CONST 2
981 #define ARM_CP_64BIT 4
982 #define ARM_CP_SUPPRESS_TB_END 8
983 #define ARM_CP_OVERRIDE 16
984 #define ARM_CP_NO_MIGRATE 32
986 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
987 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
988 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
989 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
990 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
991 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
992 /* Used only as a terminator for ARMCPRegInfo lists */
993 #define ARM_CP_SENTINEL 0xffff
994 /* Mask of only the flag bits in a type field */
995 #define ARM_CP_FLAG_MASK 0x7f
997 /* Valid values for ARMCPRegInfo state field, indicating which of
998 * the AArch32 and AArch64 execution states this register is visible in.
999 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1000 * If the reginfo is declared to be visible in both states then a second
1001 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1002 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1003 * Note that we rely on the values of these enums as we iterate through
1004 * the various states in some places.
1007 ARM_CP_STATE_AA32 = 0,
1008 ARM_CP_STATE_AA64 = 1,
1009 ARM_CP_STATE_BOTH = 2,
1012 /* ARM CP register secure state flags. These flags identify security state
1013 * attributes for a given CP register entry.
1014 * The existence of both or neither secure and non-secure flags indicates that
1015 * the register has both a secure and non-secure hash entry. A single one of
1016 * these flags causes the register to only be hashed for the specified
1018 * Although definitions may have any combination of the S/NS bits, each
1019 * registered entry will only have one to identify whether the entry is secure
1023 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1024 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1027 /* Return true if cptype is a valid type field. This is used to try to
1028 * catch errors where the sentinel has been accidentally left off the end
1029 * of a list of registers.
1031 static inline bool cptype_valid(int cptype)
1033 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1034 || ((cptype & ARM_CP_SPECIAL) &&
1035 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1039 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1040 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1041 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1042 * (ie any of the privileged modes in Secure state, or Monitor mode).
1043 * If a register is accessible in one privilege level it's always accessible
1044 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1045 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1046 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1047 * terminology a little and call this PL3.
1048 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1049 * with the ELx exception levels.
1051 * If access permissions for a register are more complex than can be
1052 * described with these bits, then use a laxer set of restrictions, and
1053 * do the more restrictive/complex check inside a helper function.
1057 #define PL2_R (0x20 | PL3_R)
1058 #define PL2_W (0x10 | PL3_W)
1059 #define PL1_R (0x08 | PL2_R)
1060 #define PL1_W (0x04 | PL2_W)
1061 #define PL0_R (0x02 | PL1_R)
1062 #define PL0_W (0x01 | PL1_W)
1064 #define PL3_RW (PL3_R | PL3_W)
1065 #define PL2_RW (PL2_R | PL2_W)
1066 #define PL1_RW (PL1_R | PL1_W)
1067 #define PL0_RW (PL0_R | PL0_W)
1069 /* Return the current Exception Level (as per ARMv8; note that this differs
1070 * from the ARMv7 Privilege Level).
1072 static inline int arm_current_el(CPUARMState *env)
1075 return extract32(env->pstate, 2, 2);
1078 switch (env->uncached_cpsr & 0x1f) {
1079 case ARM_CPU_MODE_USR:
1081 case ARM_CPU_MODE_HYP:
1083 case ARM_CPU_MODE_MON:
1086 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1087 /* If EL3 is 32-bit then all secure privileged modes run in
1097 typedef struct ARMCPRegInfo ARMCPRegInfo;
1099 typedef enum CPAccessResult {
1100 /* Access is permitted */
1102 /* Access fails due to a configurable trap or enable which would
1103 * result in a categorized exception syndrome giving information about
1104 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1108 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1109 * Note that this is not a catch-all case -- the set of cases which may
1110 * result in this failure is specifically defined by the architecture.
1112 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1115 /* Access functions for coprocessor registers. These cannot fail and
1116 * may not raise exceptions.
1118 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1119 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1121 /* Access permission check functions for coprocessor registers. */
1122 typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1123 /* Hook function for register reset */
1124 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1128 /* Definition of an ARM coprocessor register */
1129 struct ARMCPRegInfo {
1130 /* Name of register (useful mainly for debugging, need not be unique) */
1132 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1133 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1134 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1135 * will be decoded to this register. The register read and write
1136 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1137 * used by the program, so it is possible to register a wildcard and
1138 * then behave differently on read/write if necessary.
1139 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1140 * must both be zero.
1141 * For AArch64-visible registers, opc0 is also used.
1142 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1143 * way to distinguish (for KVM's benefit) guest-visible system registers
1144 * from demuxed ones provided to preserve the "no side effects on
1145 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1146 * visible (to match KVM's encoding); cp==0 will be converted to
1147 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1155 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1157 /* Register type: ARM_CP_* bits/values */
1159 /* Access rights: PL*_[RW] */
1161 /* Security state: ARM_CP_SECSTATE_* bits/values */
1163 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1164 * this register was defined: can be used to hand data through to the
1165 * register read/write functions, since they are passed the ARMCPRegInfo*.
1168 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1169 * fieldoffset is non-zero, the reset value of the register.
1171 uint64_t resetvalue;
1172 /* Offset of the field in CPUARMState for this register.
1174 * This is not needed if either:
1175 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1176 * 2. both readfn and writefn are specified
1178 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1180 /* Offsets of the secure and non-secure fields in CPUARMState for the
1181 * register if it is banked. These fields are only used during the static
1182 * registration of a register. During hashing the bank associated
1183 * with a given security state is copied to fieldoffset which is used from
1186 * It is expected that register definitions use either fieldoffset or
1187 * bank_fieldoffsets in the definition but not both. It is also expected
1188 * that both bank offsets are set when defining a banked register. This
1189 * use indicates that a register is banked.
1191 ptrdiff_t bank_fieldoffsets[2];
1193 /* Function for making any access checks for this register in addition to
1194 * those specified by the 'access' permissions bits. If NULL, no extra
1195 * checks required. The access check is performed at runtime, not at
1198 CPAccessFn *accessfn;
1199 /* Function for handling reads of this register. If NULL, then reads
1200 * will be done by loading from the offset into CPUARMState specified
1204 /* Function for handling writes of this register. If NULL, then writes
1205 * will be done by writing to the offset into CPUARMState specified
1209 /* Function for doing a "raw" read; used when we need to copy
1210 * coprocessor state to the kernel for KVM or out for
1211 * migration. This only needs to be provided if there is also a
1212 * readfn and it has side effects (for instance clear-on-read bits).
1214 CPReadFn *raw_readfn;
1215 /* Function for doing a "raw" write; used when we need to copy KVM
1216 * kernel coprocessor state into userspace, or for inbound
1217 * migration. This only needs to be provided if there is also a
1218 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1219 * or similar behaviour.
1221 CPWriteFn *raw_writefn;
1222 /* Function for resetting the register. If NULL, then reset will be done
1223 * by writing resetvalue to the field specified in fieldoffset. If
1224 * fieldoffset is 0 then no reset will be done.
1229 /* Macros which are lvalues for the field in CPUARMState for the
1232 #define CPREG_FIELD32(env, ri) \
1233 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1234 #define CPREG_FIELD64(env, ri) \
1235 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1237 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1239 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1240 const ARMCPRegInfo *regs, void *opaque);
1241 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1242 const ARMCPRegInfo *regs, void *opaque);
1243 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1245 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1247 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1249 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1251 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1253 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1254 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1256 /* CPReadFn that can be used for read-as-zero behaviour */
1257 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1259 /* CPResetFn that does nothing, for use if no reset is required even
1260 * if fieldoffset is non zero.
1262 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1264 /* Return true if this reginfo struct's field in the cpu state struct
1267 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1269 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1272 static inline bool cp_access_ok(int current_el,
1273 const ARMCPRegInfo *ri, int isread)
1275 return (ri->access >> ((current_el * 2) + isread)) & 1;
1279 * write_list_to_cpustate
1282 * For each register listed in the ARMCPU cpreg_indexes list, write
1283 * its value from the cpreg_values list into the ARMCPUState structure.
1284 * This updates TCG's working data structures from KVM data or
1285 * from incoming migration state.
1287 * Returns: true if all register values were updated correctly,
1288 * false if some register was unknown or could not be written.
1289 * Note that we do not stop early on failure -- we will attempt
1290 * writing all registers in the list.
1292 bool write_list_to_cpustate(ARMCPU *cpu);
1295 * write_cpustate_to_list:
1298 * For each register listed in the ARMCPU cpreg_indexes list, write
1299 * its value from the ARMCPUState structure into the cpreg_values list.
1300 * This is used to copy info from TCG's working data structures into
1301 * KVM or for outbound migration.
1303 * Returns: true if all register values were read correctly,
1304 * false if some register was unknown or could not be read.
1305 * Note that we do not stop early on failure -- we will attempt
1306 * reading all registers in the list.
1308 bool write_cpustate_to_list(ARMCPU *cpu);
1310 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1311 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1312 conventional cores (ie. Application or Realtime profile). */
1314 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1316 #define ARM_CPUID_TI915T 0x54029152
1317 #define ARM_CPUID_TI925T 0x54029252
1319 #if defined(CONFIG_USER_ONLY)
1320 #define TARGET_PAGE_BITS 12
1322 /* The ARM MMU allows 1k pages. */
1323 /* ??? Linux doesn't actually use these, and they're deprecated in recent
1324 architecture revisions. Maybe a configure option to disable them. */
1325 #define TARGET_PAGE_BITS 10
1328 #if defined(TARGET_AARCH64)
1329 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1330 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1332 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1333 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1336 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
1338 CPUARMState *env = cs->env_ptr;
1339 unsigned int cur_el = arm_current_el(env);
1340 unsigned int target_el = arm_excp_target_el(cs, excp_idx);
1341 bool secure = arm_is_secure(env);
1344 bool pstate_unmasked;
1345 int8_t unmasked = 0;
1347 /* Don't take exceptions if they target a lower EL.
1348 * This check should catch any exceptions that would not be taken but left
1351 if (cur_el > target_el) {
1357 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1358 * override the CPSR.F in determining if the exception is masked or
1359 * not. If neither of these are set then we fall back to the CPSR.F
1360 * setting otherwise we further assess the state below.
1362 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1363 scr = (env->cp15.scr_el3 & SCR_FIQ);
1365 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1366 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1367 * set then FIQs can be masked by CPSR.F when non-secure but only
1368 * when FIQs are only routed to EL3.
1370 scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1371 pstate_unmasked = !(env->daif & PSTATE_F);
1375 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1376 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1377 * setting has already been taken into consideration when setting the
1378 * target EL, so it does not have a further affect here.
1380 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1382 pstate_unmasked = !(env->daif & PSTATE_I);
1386 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1387 /* VFIQs are only taken when hypervized and non-secure. */
1390 return !(env->daif & PSTATE_F);
1392 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1393 /* VIRQs are only taken when hypervized and non-secure. */
1396 return !(env->daif & PSTATE_I);
1398 g_assert_not_reached();
1401 /* Use the target EL, current execution state and SCR/HCR settings to
1402 * determine whether the corresponding CPSR bit is used to mask the
1405 if ((target_el > cur_el) && (target_el != 1)) {
1406 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1411 /* The PSTATE bits only mask the interrupt if we have not overriden the
1414 return unmasked || pstate_unmasked;
1417 static inline CPUARMState *cpu_init(const char *cpu_model)
1419 ARMCPU *cpu = cpu_arm_init(cpu_model);
1426 #define cpu_exec cpu_arm_exec
1427 #define cpu_gen_code cpu_arm_gen_code
1428 #define cpu_signal_handler cpu_arm_signal_handler
1429 #define cpu_list arm_cpu_list
1431 /* MMU modes definitions */
1432 #define MMU_MODE0_SUFFIX _user
1433 #define MMU_MODE1_SUFFIX _kernel
1434 #define MMU_USER_IDX 0
1435 static inline int cpu_mmu_index (CPUARMState *env)
1437 return arm_current_el(env);
1440 /* Return the Exception Level targeted by debug exceptions;
1441 * currently always EL1 since we don't implement EL2 or EL3.
1443 static inline int arm_debug_target_el(CPUARMState *env)
1448 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1450 if (arm_current_el(env) == arm_debug_target_el(env)) {
1451 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1452 || (env->daif & PSTATE_D)) {
1459 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1461 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
1462 return aa64_generate_debug_exceptions(env);
1464 return arm_current_el(env) != 2;
1467 /* Return true if debugging exceptions are currently enabled.
1468 * This corresponds to what in ARM ARM pseudocode would be
1469 * if UsingAArch32() then
1470 * return AArch32.GenerateDebugExceptions()
1472 * return AArch64.GenerateDebugExceptions()
1473 * We choose to push the if() down into this function for clarity,
1474 * since the pseudocode has it at all callsites except for the one in
1475 * CheckSoftwareStep(), where it is elided because both branches would
1476 * always return the same value.
1478 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1479 * don't yet implement those exception levels or their associated trap bits.
1481 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1484 return aa64_generate_debug_exceptions(env);
1486 return aa32_generate_debug_exceptions(env);
1490 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1491 * implicitly means this always returns false in pre-v8 CPUs.)
1493 static inline bool arm_singlestep_active(CPUARMState *env)
1495 return extract32(env->cp15.mdscr_el1, 0, 1)
1496 && arm_el_is_aa64(env, arm_debug_target_el(env))
1497 && arm_generate_debug_exceptions(env);
1500 #include "exec/cpu-all.h"
1502 /* Bit usage in the TB flags field: bit 31 indicates whether we are
1503 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1505 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1506 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1508 /* Bit usage when in AArch32 state: */
1509 #define ARM_TBFLAG_THUMB_SHIFT 0
1510 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1511 #define ARM_TBFLAG_VECLEN_SHIFT 1
1512 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1513 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1514 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1515 #define ARM_TBFLAG_PRIV_SHIFT 6
1516 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1517 #define ARM_TBFLAG_VFPEN_SHIFT 7
1518 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1519 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
1520 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
1521 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1522 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
1523 #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1524 #define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
1525 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1526 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1527 #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1528 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
1529 /* We store the bottom two bits of the CPAR as TB flags and handle
1530 * checks on the other bits at runtime
1532 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1533 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1534 /* Indicates whether cp register reads and writes by guest code should access
1535 * the secure or nonsecure bank of banked registers; note that this is not
1536 * the same thing as the current security state of the processor!
1538 #define ARM_TBFLAG_NS_SHIFT 22
1539 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
1541 /* Bit usage when in AArch64 state */
1542 #define ARM_TBFLAG_AA64_EL_SHIFT 0
1543 #define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
1544 #define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1545 #define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
1546 #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1547 #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1548 #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1549 #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1551 /* some convenience accessor macros */
1552 #define ARM_TBFLAG_AARCH64_STATE(F) \
1553 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
1554 #define ARM_TBFLAG_THUMB(F) \
1555 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1556 #define ARM_TBFLAG_VECLEN(F) \
1557 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1558 #define ARM_TBFLAG_VECSTRIDE(F) \
1559 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1560 #define ARM_TBFLAG_PRIV(F) \
1561 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1562 #define ARM_TBFLAG_VFPEN(F) \
1563 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1564 #define ARM_TBFLAG_CONDEXEC(F) \
1565 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
1566 #define ARM_TBFLAG_BSWAP_CODE(F) \
1567 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
1568 #define ARM_TBFLAG_CPACR_FPEN(F) \
1569 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
1570 #define ARM_TBFLAG_SS_ACTIVE(F) \
1571 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1572 #define ARM_TBFLAG_PSTATE_SS(F) \
1573 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
1574 #define ARM_TBFLAG_XSCALE_CPAR(F) \
1575 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
1576 #define ARM_TBFLAG_AA64_EL(F) \
1577 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
1578 #define ARM_TBFLAG_AA64_FPEN(F) \
1579 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
1580 #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1581 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1582 #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1583 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
1584 #define ARM_TBFLAG_NS(F) \
1585 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
1587 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1588 target_ulong *cs_base, int *flags)
1592 if (arm_feature(env, ARM_FEATURE_V6)) {
1593 fpen = extract32(env->cp15.c1_coproc, 20, 2);
1595 /* CPACR doesn't exist before v6, so VFP is always accessible */
1601 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1602 | (arm_current_el(env) << ARM_TBFLAG_AA64_EL_SHIFT);
1603 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1604 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1606 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1607 * states defined in the ARM ARM for software singlestep:
1608 * SS_ACTIVE PSTATE.SS State
1609 * 0 x Inactive (the TB flag for SS is always 0)
1610 * 1 0 Active-pending
1611 * 1 1 Active-not-pending
1613 if (arm_singlestep_active(env)) {
1614 *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1615 if (env->pstate & PSTATE_SS) {
1616 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1621 *pc = env->regs[15];
1622 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1623 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1624 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1625 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1626 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1627 if (arm_feature(env, ARM_FEATURE_M)) {
1628 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1630 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1633 *flags |= ARM_TBFLAG_PRIV_MASK;
1635 if (!(access_secure_reg(env))) {
1636 *flags |= ARM_TBFLAG_NS_MASK;
1638 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1639 || arm_el_is_aa64(env, 1)) {
1640 *flags |= ARM_TBFLAG_VFPEN_MASK;
1642 if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
1643 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1645 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1646 * states defined in the ARM ARM for software singlestep:
1647 * SS_ACTIVE PSTATE.SS State
1648 * 0 x Inactive (the TB flag for SS is always 0)
1649 * 1 0 Active-pending
1650 * 1 1 Active-not-pending
1652 if (arm_singlestep_active(env)) {
1653 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1654 if (env->uncached_cpsr & PSTATE_SS) {
1655 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1658 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1659 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
1665 #include "exec/exec-all.h"
1667 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1669 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1672 env->regs[15] = tb->pc;
1677 QEMU_PSCI_CONDUIT_DISABLED = 0,
1678 QEMU_PSCI_CONDUIT_SMC = 1,
1679 QEMU_PSCI_CONDUIT_HVC = 2,