]> Git Repo - qemu.git/blob - softmmu/memory.c
Merge remote-tracking branch 'remotes/kwolf/tags/for-upstream' into staging
[qemu.git] / softmmu / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36
37 //#define DEBUG_UNASSIGNED
38
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 unsigned int global_dirty_tracking;
43
44 static QTAILQ_HEAD(, MemoryListener) memory_listeners
45     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48     = QTAILQ_HEAD_INITIALIZER(address_spaces);
49
50 static GHashTable *flat_views;
51
52 typedef struct AddrRange AddrRange;
53
54 /*
55  * Note that signed integers are needed for negative offsetting in aliases
56  * (large MemoryRegion::alias_offset).
57  */
58 struct AddrRange {
59     Int128 start;
60     Int128 size;
61 };
62
63 static AddrRange addrrange_make(Int128 start, Int128 size)
64 {
65     return (AddrRange) { start, size };
66 }
67
68 static bool addrrange_equal(AddrRange r1, AddrRange r2)
69 {
70     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71 }
72
73 static Int128 addrrange_end(AddrRange r)
74 {
75     return int128_add(r.start, r.size);
76 }
77
78 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
79 {
80     int128_addto(&range.start, delta);
81     return range;
82 }
83
84 static bool addrrange_contains(AddrRange range, Int128 addr)
85 {
86     return int128_ge(addr, range.start)
87         && int128_lt(addr, addrrange_end(range));
88 }
89
90 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
91 {
92     return addrrange_contains(r1, r2.start)
93         || addrrange_contains(r2, r1.start);
94 }
95
96 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
97 {
98     Int128 start = int128_max(r1.start, r2.start);
99     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
100     return addrrange_make(start, int128_sub(end, start));
101 }
102
103 enum ListenerDirection { Forward, Reverse };
104
105 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
106     do {                                                                \
107         MemoryListener *_listener;                                      \
108                                                                         \
109         switch (_direction) {                                           \
110         case Forward:                                                   \
111             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
112                 if (_listener->_callback) {                             \
113                     _listener->_callback(_listener, ##_args);           \
114                 }                                                       \
115             }                                                           \
116             break;                                                      \
117         case Reverse:                                                   \
118             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
119                 if (_listener->_callback) {                             \
120                     _listener->_callback(_listener, ##_args);           \
121                 }                                                       \
122             }                                                           \
123             break;                                                      \
124         default:                                                        \
125             abort();                                                    \
126         }                                                               \
127     } while (0)
128
129 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130     do {                                                                \
131         MemoryListener *_listener;                                      \
132                                                                         \
133         switch (_direction) {                                           \
134         case Forward:                                                   \
135             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
136                 if (_listener->_callback) {                             \
137                     _listener->_callback(_listener, _section, ##_args); \
138                 }                                                       \
139             }                                                           \
140             break;                                                      \
141         case Reverse:                                                   \
142             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
143                 if (_listener->_callback) {                             \
144                     _listener->_callback(_listener, _section, ##_args); \
145                 }                                                       \
146             }                                                           \
147             break;                                                      \
148         default:                                                        \
149             abort();                                                    \
150         }                                                               \
151     } while (0)
152
153 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
154 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
155     do {                                                                \
156         MemoryRegionSection mrs = section_from_flat_range(fr,           \
157                 address_space_to_flatview(as));                         \
158         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
159     } while(0)
160
161 struct CoalescedMemoryRange {
162     AddrRange addr;
163     QTAILQ_ENTRY(CoalescedMemoryRange) link;
164 };
165
166 struct MemoryRegionIoeventfd {
167     AddrRange addr;
168     bool match_data;
169     uint64_t data;
170     EventNotifier *e;
171 };
172
173 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
174                                            MemoryRegionIoeventfd *b)
175 {
176     if (int128_lt(a->addr.start, b->addr.start)) {
177         return true;
178     } else if (int128_gt(a->addr.start, b->addr.start)) {
179         return false;
180     } else if (int128_lt(a->addr.size, b->addr.size)) {
181         return true;
182     } else if (int128_gt(a->addr.size, b->addr.size)) {
183         return false;
184     } else if (a->match_data < b->match_data) {
185         return true;
186     } else  if (a->match_data > b->match_data) {
187         return false;
188     } else if (a->match_data) {
189         if (a->data < b->data) {
190             return true;
191         } else if (a->data > b->data) {
192             return false;
193         }
194     }
195     if (a->e < b->e) {
196         return true;
197     } else if (a->e > b->e) {
198         return false;
199     }
200     return false;
201 }
202
203 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
204                                           MemoryRegionIoeventfd *b)
205 {
206     if (int128_eq(a->addr.start, b->addr.start) &&
207         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
208          (int128_eq(a->addr.size, b->addr.size) &&
209           (a->match_data == b->match_data) &&
210           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
211           (a->e == b->e))))
212         return true;
213
214     return false;
215 }
216
217 /* Range of memory in the global map.  Addresses are absolute. */
218 struct FlatRange {
219     MemoryRegion *mr;
220     hwaddr offset_in_region;
221     AddrRange addr;
222     uint8_t dirty_log_mask;
223     bool romd_mode;
224     bool readonly;
225     bool nonvolatile;
226 };
227
228 #define FOR_EACH_FLAT_RANGE(var, view)          \
229     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
230
231 static inline MemoryRegionSection
232 section_from_flat_range(FlatRange *fr, FlatView *fv)
233 {
234     return (MemoryRegionSection) {
235         .mr = fr->mr,
236         .fv = fv,
237         .offset_within_region = fr->offset_in_region,
238         .size = fr->addr.size,
239         .offset_within_address_space = int128_get64(fr->addr.start),
240         .readonly = fr->readonly,
241         .nonvolatile = fr->nonvolatile,
242     };
243 }
244
245 static bool flatrange_equal(FlatRange *a, FlatRange *b)
246 {
247     return a->mr == b->mr
248         && addrrange_equal(a->addr, b->addr)
249         && a->offset_in_region == b->offset_in_region
250         && a->romd_mode == b->romd_mode
251         && a->readonly == b->readonly
252         && a->nonvolatile == b->nonvolatile;
253 }
254
255 static FlatView *flatview_new(MemoryRegion *mr_root)
256 {
257     FlatView *view;
258
259     view = g_new0(FlatView, 1);
260     view->ref = 1;
261     view->root = mr_root;
262     memory_region_ref(mr_root);
263     trace_flatview_new(view, mr_root);
264
265     return view;
266 }
267
268 /* Insert a range into a given position.  Caller is responsible for maintaining
269  * sorting order.
270  */
271 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
272 {
273     if (view->nr == view->nr_allocated) {
274         view->nr_allocated = MAX(2 * view->nr, 10);
275         view->ranges = g_realloc(view->ranges,
276                                     view->nr_allocated * sizeof(*view->ranges));
277     }
278     memmove(view->ranges + pos + 1, view->ranges + pos,
279             (view->nr - pos) * sizeof(FlatRange));
280     view->ranges[pos] = *range;
281     memory_region_ref(range->mr);
282     ++view->nr;
283 }
284
285 static void flatview_destroy(FlatView *view)
286 {
287     int i;
288
289     trace_flatview_destroy(view, view->root);
290     if (view->dispatch) {
291         address_space_dispatch_free(view->dispatch);
292     }
293     for (i = 0; i < view->nr; i++) {
294         memory_region_unref(view->ranges[i].mr);
295     }
296     g_free(view->ranges);
297     memory_region_unref(view->root);
298     g_free(view);
299 }
300
301 static bool flatview_ref(FlatView *view)
302 {
303     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
304 }
305
306 void flatview_unref(FlatView *view)
307 {
308     if (qatomic_fetch_dec(&view->ref) == 1) {
309         trace_flatview_destroy_rcu(view, view->root);
310         assert(view->root);
311         call_rcu(view, flatview_destroy, rcu);
312     }
313 }
314
315 static bool can_merge(FlatRange *r1, FlatRange *r2)
316 {
317     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
318         && r1->mr == r2->mr
319         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
320                                 r1->addr.size),
321                      int128_make64(r2->offset_in_region))
322         && r1->dirty_log_mask == r2->dirty_log_mask
323         && r1->romd_mode == r2->romd_mode
324         && r1->readonly == r2->readonly
325         && r1->nonvolatile == r2->nonvolatile;
326 }
327
328 /* Attempt to simplify a view by merging adjacent ranges */
329 static void flatview_simplify(FlatView *view)
330 {
331     unsigned i, j, k;
332
333     i = 0;
334     while (i < view->nr) {
335         j = i + 1;
336         while (j < view->nr
337                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
338             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
339             ++j;
340         }
341         ++i;
342         for (k = i; k < j; k++) {
343             memory_region_unref(view->ranges[k].mr);
344         }
345         memmove(&view->ranges[i], &view->ranges[j],
346                 (view->nr - j) * sizeof(view->ranges[j]));
347         view->nr -= j - i;
348     }
349 }
350
351 static bool memory_region_big_endian(MemoryRegion *mr)
352 {
353 #ifdef TARGET_WORDS_BIGENDIAN
354     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
355 #else
356     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357 #endif
358 }
359
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
361 {
362     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
363         switch (op & MO_SIZE) {
364         case MO_8:
365             break;
366         case MO_16:
367             *data = bswap16(*data);
368             break;
369         case MO_32:
370             *data = bswap32(*data);
371             break;
372         case MO_64:
373             *data = bswap64(*data);
374             break;
375         default:
376             g_assert_not_reached();
377         }
378     }
379 }
380
381 static inline void memory_region_shift_read_access(uint64_t *value,
382                                                    signed shift,
383                                                    uint64_t mask,
384                                                    uint64_t tmp)
385 {
386     if (shift >= 0) {
387         *value |= (tmp & mask) << shift;
388     } else {
389         *value |= (tmp & mask) >> -shift;
390     }
391 }
392
393 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
394                                                         signed shift,
395                                                         uint64_t mask)
396 {
397     uint64_t tmp;
398
399     if (shift >= 0) {
400         tmp = (*value >> shift) & mask;
401     } else {
402         tmp = (*value << -shift) & mask;
403     }
404
405     return tmp;
406 }
407
408 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
409 {
410     MemoryRegion *root;
411     hwaddr abs_addr = offset;
412
413     abs_addr += mr->addr;
414     for (root = mr; root->container; ) {
415         root = root->container;
416         abs_addr += root->addr;
417     }
418
419     return abs_addr;
420 }
421
422 static int get_cpu_index(void)
423 {
424     if (current_cpu) {
425         return current_cpu->cpu_index;
426     }
427     return -1;
428 }
429
430 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
431                                                 hwaddr addr,
432                                                 uint64_t *value,
433                                                 unsigned size,
434                                                 signed shift,
435                                                 uint64_t mask,
436                                                 MemTxAttrs attrs)
437 {
438     uint64_t tmp;
439
440     tmp = mr->ops->read(mr->opaque, addr, size);
441     if (mr->subpage) {
442         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
443     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
444         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
445         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
446                                      memory_region_name(mr));
447     }
448     memory_region_shift_read_access(value, shift, mask, tmp);
449     return MEMTX_OK;
450 }
451
452 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
453                                                           hwaddr addr,
454                                                           uint64_t *value,
455                                                           unsigned size,
456                                                           signed shift,
457                                                           uint64_t mask,
458                                                           MemTxAttrs attrs)
459 {
460     uint64_t tmp = 0;
461     MemTxResult r;
462
463     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464     if (mr->subpage) {
465         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
466     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
467         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
468         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
469                                      memory_region_name(mr));
470     }
471     memory_region_shift_read_access(value, shift, mask, tmp);
472     return r;
473 }
474
475 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
476                                                 hwaddr addr,
477                                                 uint64_t *value,
478                                                 unsigned size,
479                                                 signed shift,
480                                                 uint64_t mask,
481                                                 MemTxAttrs attrs)
482 {
483     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
484
485     if (mr->subpage) {
486         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
487     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
488         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
489         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
490                                       memory_region_name(mr));
491     }
492     mr->ops->write(mr->opaque, addr, tmp, size);
493     return MEMTX_OK;
494 }
495
496 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
497                                                            hwaddr addr,
498                                                            uint64_t *value,
499                                                            unsigned size,
500                                                            signed shift,
501                                                            uint64_t mask,
502                                                            MemTxAttrs attrs)
503 {
504     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
505
506     if (mr->subpage) {
507         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
508     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
509         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
510         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
511                                       memory_region_name(mr));
512     }
513     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
514 }
515
516 static MemTxResult access_with_adjusted_size(hwaddr addr,
517                                       uint64_t *value,
518                                       unsigned size,
519                                       unsigned access_size_min,
520                                       unsigned access_size_max,
521                                       MemTxResult (*access_fn)
522                                                   (MemoryRegion *mr,
523                                                    hwaddr addr,
524                                                    uint64_t *value,
525                                                    unsigned size,
526                                                    signed shift,
527                                                    uint64_t mask,
528                                                    MemTxAttrs attrs),
529                                       MemoryRegion *mr,
530                                       MemTxAttrs attrs)
531 {
532     uint64_t access_mask;
533     unsigned access_size;
534     unsigned i;
535     MemTxResult r = MEMTX_OK;
536
537     if (!access_size_min) {
538         access_size_min = 1;
539     }
540     if (!access_size_max) {
541         access_size_max = 4;
542     }
543
544     /* FIXME: support unaligned access? */
545     access_size = MAX(MIN(size, access_size_max), access_size_min);
546     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
547     if (memory_region_big_endian(mr)) {
548         for (i = 0; i < size; i += access_size) {
549             r |= access_fn(mr, addr + i, value, access_size,
550                         (size - access_size - i) * 8, access_mask, attrs);
551         }
552     } else {
553         for (i = 0; i < size; i += access_size) {
554             r |= access_fn(mr, addr + i, value, access_size, i * 8,
555                         access_mask, attrs);
556         }
557     }
558     return r;
559 }
560
561 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
562 {
563     AddressSpace *as;
564
565     while (mr->container) {
566         mr = mr->container;
567     }
568     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
569         if (mr == as->root) {
570             return as;
571         }
572     }
573     return NULL;
574 }
575
576 /* Render a memory region into the global view.  Ranges in @view obscure
577  * ranges in @mr.
578  */
579 static void render_memory_region(FlatView *view,
580                                  MemoryRegion *mr,
581                                  Int128 base,
582                                  AddrRange clip,
583                                  bool readonly,
584                                  bool nonvolatile)
585 {
586     MemoryRegion *subregion;
587     unsigned i;
588     hwaddr offset_in_region;
589     Int128 remain;
590     Int128 now;
591     FlatRange fr;
592     AddrRange tmp;
593
594     if (!mr->enabled) {
595         return;
596     }
597
598     int128_addto(&base, int128_make64(mr->addr));
599     readonly |= mr->readonly;
600     nonvolatile |= mr->nonvolatile;
601
602     tmp = addrrange_make(base, mr->size);
603
604     if (!addrrange_intersects(tmp, clip)) {
605         return;
606     }
607
608     clip = addrrange_intersection(tmp, clip);
609
610     if (mr->alias) {
611         int128_subfrom(&base, int128_make64(mr->alias->addr));
612         int128_subfrom(&base, int128_make64(mr->alias_offset));
613         render_memory_region(view, mr->alias, base, clip,
614                              readonly, nonvolatile);
615         return;
616     }
617
618     /* Render subregions in priority order. */
619     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
620         render_memory_region(view, subregion, base, clip,
621                              readonly, nonvolatile);
622     }
623
624     if (!mr->terminates) {
625         return;
626     }
627
628     offset_in_region = int128_get64(int128_sub(clip.start, base));
629     base = clip.start;
630     remain = clip.size;
631
632     fr.mr = mr;
633     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
634     fr.romd_mode = mr->romd_mode;
635     fr.readonly = readonly;
636     fr.nonvolatile = nonvolatile;
637
638     /* Render the region itself into any gaps left by the current view. */
639     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
640         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
641             continue;
642         }
643         if (int128_lt(base, view->ranges[i].addr.start)) {
644             now = int128_min(remain,
645                              int128_sub(view->ranges[i].addr.start, base));
646             fr.offset_in_region = offset_in_region;
647             fr.addr = addrrange_make(base, now);
648             flatview_insert(view, i, &fr);
649             ++i;
650             int128_addto(&base, now);
651             offset_in_region += int128_get64(now);
652             int128_subfrom(&remain, now);
653         }
654         now = int128_sub(int128_min(int128_add(base, remain),
655                                     addrrange_end(view->ranges[i].addr)),
656                          base);
657         int128_addto(&base, now);
658         offset_in_region += int128_get64(now);
659         int128_subfrom(&remain, now);
660     }
661     if (int128_nz(remain)) {
662         fr.offset_in_region = offset_in_region;
663         fr.addr = addrrange_make(base, remain);
664         flatview_insert(view, i, &fr);
665     }
666 }
667
668 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
669 {
670     FlatRange *fr;
671
672     assert(fv);
673     assert(cb);
674
675     FOR_EACH_FLAT_RANGE(fr, fv) {
676         if (cb(fr->addr.start, fr->addr.size, fr->mr,
677                fr->offset_in_region, opaque)) {
678             break;
679         }
680     }
681 }
682
683 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
684 {
685     while (mr->enabled) {
686         if (mr->alias) {
687             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
688                 /* The alias is included in its entirety.  Use it as
689                  * the "real" root, so that we can share more FlatViews.
690                  */
691                 mr = mr->alias;
692                 continue;
693             }
694         } else if (!mr->terminates) {
695             unsigned int found = 0;
696             MemoryRegion *child, *next = NULL;
697             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
698                 if (child->enabled) {
699                     if (++found > 1) {
700                         next = NULL;
701                         break;
702                     }
703                     if (!child->addr && int128_ge(mr->size, child->size)) {
704                         /* A child is included in its entirety.  If it's the only
705                          * enabled one, use it in the hope of finding an alias down the
706                          * way. This will also let us share FlatViews.
707                          */
708                         next = child;
709                     }
710                 }
711             }
712             if (found == 0) {
713                 return NULL;
714             }
715             if (next) {
716                 mr = next;
717                 continue;
718             }
719         }
720
721         return mr;
722     }
723
724     return NULL;
725 }
726
727 /* Render a memory topology into a list of disjoint absolute ranges. */
728 static FlatView *generate_memory_topology(MemoryRegion *mr)
729 {
730     int i;
731     FlatView *view;
732
733     view = flatview_new(mr);
734
735     if (mr) {
736         render_memory_region(view, mr, int128_zero(),
737                              addrrange_make(int128_zero(), int128_2_64()),
738                              false, false);
739     }
740     flatview_simplify(view);
741
742     view->dispatch = address_space_dispatch_new(view);
743     for (i = 0; i < view->nr; i++) {
744         MemoryRegionSection mrs =
745             section_from_flat_range(&view->ranges[i], view);
746         flatview_add_to_dispatch(view, &mrs);
747     }
748     address_space_dispatch_compact(view->dispatch);
749     g_hash_table_replace(flat_views, mr, view);
750
751     return view;
752 }
753
754 static void address_space_add_del_ioeventfds(AddressSpace *as,
755                                              MemoryRegionIoeventfd *fds_new,
756                                              unsigned fds_new_nb,
757                                              MemoryRegionIoeventfd *fds_old,
758                                              unsigned fds_old_nb)
759 {
760     unsigned iold, inew;
761     MemoryRegionIoeventfd *fd;
762     MemoryRegionSection section;
763
764     /* Generate a symmetric difference of the old and new fd sets, adding
765      * and deleting as necessary.
766      */
767
768     iold = inew = 0;
769     while (iold < fds_old_nb || inew < fds_new_nb) {
770         if (iold < fds_old_nb
771             && (inew == fds_new_nb
772                 || memory_region_ioeventfd_before(&fds_old[iold],
773                                                   &fds_new[inew]))) {
774             fd = &fds_old[iold];
775             section = (MemoryRegionSection) {
776                 .fv = address_space_to_flatview(as),
777                 .offset_within_address_space = int128_get64(fd->addr.start),
778                 .size = fd->addr.size,
779             };
780             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
781                                  fd->match_data, fd->data, fd->e);
782             ++iold;
783         } else if (inew < fds_new_nb
784                    && (iold == fds_old_nb
785                        || memory_region_ioeventfd_before(&fds_new[inew],
786                                                          &fds_old[iold]))) {
787             fd = &fds_new[inew];
788             section = (MemoryRegionSection) {
789                 .fv = address_space_to_flatview(as),
790                 .offset_within_address_space = int128_get64(fd->addr.start),
791                 .size = fd->addr.size,
792             };
793             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
794                                  fd->match_data, fd->data, fd->e);
795             ++inew;
796         } else {
797             ++iold;
798             ++inew;
799         }
800     }
801 }
802
803 FlatView *address_space_get_flatview(AddressSpace *as)
804 {
805     FlatView *view;
806
807     RCU_READ_LOCK_GUARD();
808     do {
809         view = address_space_to_flatview(as);
810         /* If somebody has replaced as->current_map concurrently,
811          * flatview_ref returns false.
812          */
813     } while (!flatview_ref(view));
814     return view;
815 }
816
817 static void address_space_update_ioeventfds(AddressSpace *as)
818 {
819     FlatView *view;
820     FlatRange *fr;
821     unsigned ioeventfd_nb = 0;
822     unsigned ioeventfd_max;
823     MemoryRegionIoeventfd *ioeventfds;
824     AddrRange tmp;
825     unsigned i;
826
827     /*
828      * It is likely that the number of ioeventfds hasn't changed much, so use
829      * the previous size as the starting value, with some headroom to avoid
830      * gratuitous reallocations.
831      */
832     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
833     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
834
835     view = address_space_get_flatview(as);
836     FOR_EACH_FLAT_RANGE(fr, view) {
837         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
838             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
839                                   int128_sub(fr->addr.start,
840                                              int128_make64(fr->offset_in_region)));
841             if (addrrange_intersects(fr->addr, tmp)) {
842                 ++ioeventfd_nb;
843                 if (ioeventfd_nb > ioeventfd_max) {
844                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
845                     ioeventfds = g_realloc(ioeventfds,
846                             ioeventfd_max * sizeof(*ioeventfds));
847                 }
848                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
849                 ioeventfds[ioeventfd_nb-1].addr = tmp;
850             }
851         }
852     }
853
854     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
855                                      as->ioeventfds, as->ioeventfd_nb);
856
857     g_free(as->ioeventfds);
858     as->ioeventfds = ioeventfds;
859     as->ioeventfd_nb = ioeventfd_nb;
860     flatview_unref(view);
861 }
862
863 /*
864  * Notify the memory listeners about the coalesced IO change events of
865  * range `cmr'.  Only the part that has intersection of the specified
866  * FlatRange will be sent.
867  */
868 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
869                                            CoalescedMemoryRange *cmr, bool add)
870 {
871     AddrRange tmp;
872
873     tmp = addrrange_shift(cmr->addr,
874                           int128_sub(fr->addr.start,
875                                      int128_make64(fr->offset_in_region)));
876     if (!addrrange_intersects(tmp, fr->addr)) {
877         return;
878     }
879     tmp = addrrange_intersection(tmp, fr->addr);
880
881     if (add) {
882         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
883                                       int128_get64(tmp.start),
884                                       int128_get64(tmp.size));
885     } else {
886         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
887                                       int128_get64(tmp.start),
888                                       int128_get64(tmp.size));
889     }
890 }
891
892 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
893 {
894     CoalescedMemoryRange *cmr;
895
896     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
897         flat_range_coalesced_io_notify(fr, as, cmr, false);
898     }
899 }
900
901 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
902 {
903     MemoryRegion *mr = fr->mr;
904     CoalescedMemoryRange *cmr;
905
906     if (QTAILQ_EMPTY(&mr->coalesced)) {
907         return;
908     }
909
910     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
911         flat_range_coalesced_io_notify(fr, as, cmr, true);
912     }
913 }
914
915 static void address_space_update_topology_pass(AddressSpace *as,
916                                                const FlatView *old_view,
917                                                const FlatView *new_view,
918                                                bool adding)
919 {
920     unsigned iold, inew;
921     FlatRange *frold, *frnew;
922
923     /* Generate a symmetric difference of the old and new memory maps.
924      * Kill ranges in the old map, and instantiate ranges in the new map.
925      */
926     iold = inew = 0;
927     while (iold < old_view->nr || inew < new_view->nr) {
928         if (iold < old_view->nr) {
929             frold = &old_view->ranges[iold];
930         } else {
931             frold = NULL;
932         }
933         if (inew < new_view->nr) {
934             frnew = &new_view->ranges[inew];
935         } else {
936             frnew = NULL;
937         }
938
939         if (frold
940             && (!frnew
941                 || int128_lt(frold->addr.start, frnew->addr.start)
942                 || (int128_eq(frold->addr.start, frnew->addr.start)
943                     && !flatrange_equal(frold, frnew)))) {
944             /* In old but not in new, or in both but attributes changed. */
945
946             if (!adding) {
947                 flat_range_coalesced_io_del(frold, as);
948                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
949             }
950
951             ++iold;
952         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
953             /* In both and unchanged (except logging may have changed) */
954
955             if (adding) {
956                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
957                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
958                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
959                                                   frold->dirty_log_mask,
960                                                   frnew->dirty_log_mask);
961                 }
962                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
963                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
964                                                   frold->dirty_log_mask,
965                                                   frnew->dirty_log_mask);
966                 }
967             }
968
969             ++iold;
970             ++inew;
971         } else {
972             /* In new */
973
974             if (adding) {
975                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
976                 flat_range_coalesced_io_add(frnew, as);
977             }
978
979             ++inew;
980         }
981     }
982 }
983
984 static void flatviews_init(void)
985 {
986     static FlatView *empty_view;
987
988     if (flat_views) {
989         return;
990     }
991
992     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
993                                        (GDestroyNotify) flatview_unref);
994     if (!empty_view) {
995         empty_view = generate_memory_topology(NULL);
996         /* We keep it alive forever in the global variable.  */
997         flatview_ref(empty_view);
998     } else {
999         g_hash_table_replace(flat_views, NULL, empty_view);
1000         flatview_ref(empty_view);
1001     }
1002 }
1003
1004 static void flatviews_reset(void)
1005 {
1006     AddressSpace *as;
1007
1008     if (flat_views) {
1009         g_hash_table_unref(flat_views);
1010         flat_views = NULL;
1011     }
1012     flatviews_init();
1013
1014     /* Render unique FVs */
1015     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1016         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1017
1018         if (g_hash_table_lookup(flat_views, physmr)) {
1019             continue;
1020         }
1021
1022         generate_memory_topology(physmr);
1023     }
1024 }
1025
1026 static void address_space_set_flatview(AddressSpace *as)
1027 {
1028     FlatView *old_view = address_space_to_flatview(as);
1029     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1030     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1031
1032     assert(new_view);
1033
1034     if (old_view == new_view) {
1035         return;
1036     }
1037
1038     if (old_view) {
1039         flatview_ref(old_view);
1040     }
1041
1042     flatview_ref(new_view);
1043
1044     if (!QTAILQ_EMPTY(&as->listeners)) {
1045         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1046
1047         if (!old_view2) {
1048             old_view2 = &tmpview;
1049         }
1050         address_space_update_topology_pass(as, old_view2, new_view, false);
1051         address_space_update_topology_pass(as, old_view2, new_view, true);
1052     }
1053
1054     /* Writes are protected by the BQL.  */
1055     qatomic_rcu_set(&as->current_map, new_view);
1056     if (old_view) {
1057         flatview_unref(old_view);
1058     }
1059
1060     /* Note that all the old MemoryRegions are still alive up to this
1061      * point.  This relieves most MemoryListeners from the need to
1062      * ref/unref the MemoryRegions they get---unless they use them
1063      * outside the iothread mutex, in which case precise reference
1064      * counting is necessary.
1065      */
1066     if (old_view) {
1067         flatview_unref(old_view);
1068     }
1069 }
1070
1071 static void address_space_update_topology(AddressSpace *as)
1072 {
1073     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1074
1075     flatviews_init();
1076     if (!g_hash_table_lookup(flat_views, physmr)) {
1077         generate_memory_topology(physmr);
1078     }
1079     address_space_set_flatview(as);
1080 }
1081
1082 void memory_region_transaction_begin(void)
1083 {
1084     qemu_flush_coalesced_mmio_buffer();
1085     ++memory_region_transaction_depth;
1086 }
1087
1088 void memory_region_transaction_commit(void)
1089 {
1090     AddressSpace *as;
1091
1092     assert(memory_region_transaction_depth);
1093     assert(qemu_mutex_iothread_locked());
1094
1095     --memory_region_transaction_depth;
1096     if (!memory_region_transaction_depth) {
1097         if (memory_region_update_pending) {
1098             flatviews_reset();
1099
1100             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1101
1102             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1103                 address_space_set_flatview(as);
1104                 address_space_update_ioeventfds(as);
1105             }
1106             memory_region_update_pending = false;
1107             ioeventfd_update_pending = false;
1108             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1109         } else if (ioeventfd_update_pending) {
1110             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1111                 address_space_update_ioeventfds(as);
1112             }
1113             ioeventfd_update_pending = false;
1114         }
1115    }
1116 }
1117
1118 static void memory_region_destructor_none(MemoryRegion *mr)
1119 {
1120 }
1121
1122 static void memory_region_destructor_ram(MemoryRegion *mr)
1123 {
1124     qemu_ram_free(mr->ram_block);
1125 }
1126
1127 static bool memory_region_need_escape(char c)
1128 {
1129     return c == '/' || c == '[' || c == '\\' || c == ']';
1130 }
1131
1132 static char *memory_region_escape_name(const char *name)
1133 {
1134     const char *p;
1135     char *escaped, *q;
1136     uint8_t c;
1137     size_t bytes = 0;
1138
1139     for (p = name; *p; p++) {
1140         bytes += memory_region_need_escape(*p) ? 4 : 1;
1141     }
1142     if (bytes == p - name) {
1143        return g_memdup(name, bytes + 1);
1144     }
1145
1146     escaped = g_malloc(bytes + 1);
1147     for (p = name, q = escaped; *p; p++) {
1148         c = *p;
1149         if (unlikely(memory_region_need_escape(c))) {
1150             *q++ = '\\';
1151             *q++ = 'x';
1152             *q++ = "0123456789abcdef"[c >> 4];
1153             c = "0123456789abcdef"[c & 15];
1154         }
1155         *q++ = c;
1156     }
1157     *q = 0;
1158     return escaped;
1159 }
1160
1161 static void memory_region_do_init(MemoryRegion *mr,
1162                                   Object *owner,
1163                                   const char *name,
1164                                   uint64_t size)
1165 {
1166     mr->size = int128_make64(size);
1167     if (size == UINT64_MAX) {
1168         mr->size = int128_2_64();
1169     }
1170     mr->name = g_strdup(name);
1171     mr->owner = owner;
1172     mr->ram_block = NULL;
1173
1174     if (name) {
1175         char *escaped_name = memory_region_escape_name(name);
1176         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1177
1178         if (!owner) {
1179             owner = container_get(qdev_get_machine(), "/unattached");
1180         }
1181
1182         object_property_add_child(owner, name_array, OBJECT(mr));
1183         object_unref(OBJECT(mr));
1184         g_free(name_array);
1185         g_free(escaped_name);
1186     }
1187 }
1188
1189 void memory_region_init(MemoryRegion *mr,
1190                         Object *owner,
1191                         const char *name,
1192                         uint64_t size)
1193 {
1194     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1195     memory_region_do_init(mr, owner, name, size);
1196 }
1197
1198 static void memory_region_get_container(Object *obj, Visitor *v,
1199                                         const char *name, void *opaque,
1200                                         Error **errp)
1201 {
1202     MemoryRegion *mr = MEMORY_REGION(obj);
1203     char *path = (char *)"";
1204
1205     if (mr->container) {
1206         path = object_get_canonical_path(OBJECT(mr->container));
1207     }
1208     visit_type_str(v, name, &path, errp);
1209     if (mr->container) {
1210         g_free(path);
1211     }
1212 }
1213
1214 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1215                                                const char *part)
1216 {
1217     MemoryRegion *mr = MEMORY_REGION(obj);
1218
1219     return OBJECT(mr->container);
1220 }
1221
1222 static void memory_region_get_priority(Object *obj, Visitor *v,
1223                                        const char *name, void *opaque,
1224                                        Error **errp)
1225 {
1226     MemoryRegion *mr = MEMORY_REGION(obj);
1227     int32_t value = mr->priority;
1228
1229     visit_type_int32(v, name, &value, errp);
1230 }
1231
1232 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1233                                    void *opaque, Error **errp)
1234 {
1235     MemoryRegion *mr = MEMORY_REGION(obj);
1236     uint64_t value = memory_region_size(mr);
1237
1238     visit_type_uint64(v, name, &value, errp);
1239 }
1240
1241 static void memory_region_initfn(Object *obj)
1242 {
1243     MemoryRegion *mr = MEMORY_REGION(obj);
1244     ObjectProperty *op;
1245
1246     mr->ops = &unassigned_mem_ops;
1247     mr->enabled = true;
1248     mr->romd_mode = true;
1249     mr->destructor = memory_region_destructor_none;
1250     QTAILQ_INIT(&mr->subregions);
1251     QTAILQ_INIT(&mr->coalesced);
1252
1253     op = object_property_add(OBJECT(mr), "container",
1254                              "link<" TYPE_MEMORY_REGION ">",
1255                              memory_region_get_container,
1256                              NULL, /* memory_region_set_container */
1257                              NULL, NULL);
1258     op->resolve = memory_region_resolve_container;
1259
1260     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1261                                    &mr->addr, OBJ_PROP_FLAG_READ);
1262     object_property_add(OBJECT(mr), "priority", "uint32",
1263                         memory_region_get_priority,
1264                         NULL, /* memory_region_set_priority */
1265                         NULL, NULL);
1266     object_property_add(OBJECT(mr), "size", "uint64",
1267                         memory_region_get_size,
1268                         NULL, /* memory_region_set_size, */
1269                         NULL, NULL);
1270 }
1271
1272 static void iommu_memory_region_initfn(Object *obj)
1273 {
1274     MemoryRegion *mr = MEMORY_REGION(obj);
1275
1276     mr->is_iommu = true;
1277 }
1278
1279 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1280                                     unsigned size)
1281 {
1282 #ifdef DEBUG_UNASSIGNED
1283     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1284 #endif
1285     return 0;
1286 }
1287
1288 static void unassigned_mem_write(void *opaque, hwaddr addr,
1289                                  uint64_t val, unsigned size)
1290 {
1291 #ifdef DEBUG_UNASSIGNED
1292     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1293 #endif
1294 }
1295
1296 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1297                                    unsigned size, bool is_write,
1298                                    MemTxAttrs attrs)
1299 {
1300     return false;
1301 }
1302
1303 const MemoryRegionOps unassigned_mem_ops = {
1304     .valid.accepts = unassigned_mem_accepts,
1305     .endianness = DEVICE_NATIVE_ENDIAN,
1306 };
1307
1308 static uint64_t memory_region_ram_device_read(void *opaque,
1309                                               hwaddr addr, unsigned size)
1310 {
1311     MemoryRegion *mr = opaque;
1312     uint64_t data = (uint64_t)~0;
1313
1314     switch (size) {
1315     case 1:
1316         data = *(uint8_t *)(mr->ram_block->host + addr);
1317         break;
1318     case 2:
1319         data = *(uint16_t *)(mr->ram_block->host + addr);
1320         break;
1321     case 4:
1322         data = *(uint32_t *)(mr->ram_block->host + addr);
1323         break;
1324     case 8:
1325         data = *(uint64_t *)(mr->ram_block->host + addr);
1326         break;
1327     }
1328
1329     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1330
1331     return data;
1332 }
1333
1334 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1335                                            uint64_t data, unsigned size)
1336 {
1337     MemoryRegion *mr = opaque;
1338
1339     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1340
1341     switch (size) {
1342     case 1:
1343         *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1344         break;
1345     case 2:
1346         *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1347         break;
1348     case 4:
1349         *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1350         break;
1351     case 8:
1352         *(uint64_t *)(mr->ram_block->host + addr) = data;
1353         break;
1354     }
1355 }
1356
1357 static const MemoryRegionOps ram_device_mem_ops = {
1358     .read = memory_region_ram_device_read,
1359     .write = memory_region_ram_device_write,
1360     .endianness = DEVICE_HOST_ENDIAN,
1361     .valid = {
1362         .min_access_size = 1,
1363         .max_access_size = 8,
1364         .unaligned = true,
1365     },
1366     .impl = {
1367         .min_access_size = 1,
1368         .max_access_size = 8,
1369         .unaligned = true,
1370     },
1371 };
1372
1373 bool memory_region_access_valid(MemoryRegion *mr,
1374                                 hwaddr addr,
1375                                 unsigned size,
1376                                 bool is_write,
1377                                 MemTxAttrs attrs)
1378 {
1379     if (mr->ops->valid.accepts
1380         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1381         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1382                       ", size %u, region '%s', reason: rejected\n",
1383                       is_write ? "write" : "read",
1384                       addr, size, memory_region_name(mr));
1385         return false;
1386     }
1387
1388     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1389         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1390                       ", size %u, region '%s', reason: unaligned\n",
1391                       is_write ? "write" : "read",
1392                       addr, size, memory_region_name(mr));
1393         return false;
1394     }
1395
1396     /* Treat zero as compatibility all valid */
1397     if (!mr->ops->valid.max_access_size) {
1398         return true;
1399     }
1400
1401     if (size > mr->ops->valid.max_access_size
1402         || size < mr->ops->valid.min_access_size) {
1403         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1404                       ", size %u, region '%s', reason: invalid size "
1405                       "(min:%u max:%u)\n",
1406                       is_write ? "write" : "read",
1407                       addr, size, memory_region_name(mr),
1408                       mr->ops->valid.min_access_size,
1409                       mr->ops->valid.max_access_size);
1410         return false;
1411     }
1412     return true;
1413 }
1414
1415 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1416                                                 hwaddr addr,
1417                                                 uint64_t *pval,
1418                                                 unsigned size,
1419                                                 MemTxAttrs attrs)
1420 {
1421     *pval = 0;
1422
1423     if (mr->ops->read) {
1424         return access_with_adjusted_size(addr, pval, size,
1425                                          mr->ops->impl.min_access_size,
1426                                          mr->ops->impl.max_access_size,
1427                                          memory_region_read_accessor,
1428                                          mr, attrs);
1429     } else {
1430         return access_with_adjusted_size(addr, pval, size,
1431                                          mr->ops->impl.min_access_size,
1432                                          mr->ops->impl.max_access_size,
1433                                          memory_region_read_with_attrs_accessor,
1434                                          mr, attrs);
1435     }
1436 }
1437
1438 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1439                                         hwaddr addr,
1440                                         uint64_t *pval,
1441                                         MemOp op,
1442                                         MemTxAttrs attrs)
1443 {
1444     unsigned size = memop_size(op);
1445     MemTxResult r;
1446
1447     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1448         *pval = unassigned_mem_read(mr, addr, size);
1449         return MEMTX_DECODE_ERROR;
1450     }
1451
1452     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1453     adjust_endianness(mr, pval, op);
1454     return r;
1455 }
1456
1457 /* Return true if an eventfd was signalled */
1458 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1459                                                     hwaddr addr,
1460                                                     uint64_t data,
1461                                                     unsigned size,
1462                                                     MemTxAttrs attrs)
1463 {
1464     MemoryRegionIoeventfd ioeventfd = {
1465         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1466         .data = data,
1467     };
1468     unsigned i;
1469
1470     for (i = 0; i < mr->ioeventfd_nb; i++) {
1471         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1472         ioeventfd.e = mr->ioeventfds[i].e;
1473
1474         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1475             event_notifier_set(ioeventfd.e);
1476             return true;
1477         }
1478     }
1479
1480     return false;
1481 }
1482
1483 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1484                                          hwaddr addr,
1485                                          uint64_t data,
1486                                          MemOp op,
1487                                          MemTxAttrs attrs)
1488 {
1489     unsigned size = memop_size(op);
1490
1491     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1492         unassigned_mem_write(mr, addr, data, size);
1493         return MEMTX_DECODE_ERROR;
1494     }
1495
1496     adjust_endianness(mr, &data, op);
1497
1498     if ((!kvm_eventfds_enabled()) &&
1499         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1500         return MEMTX_OK;
1501     }
1502
1503     if (mr->ops->write) {
1504         return access_with_adjusted_size(addr, &data, size,
1505                                          mr->ops->impl.min_access_size,
1506                                          mr->ops->impl.max_access_size,
1507                                          memory_region_write_accessor, mr,
1508                                          attrs);
1509     } else {
1510         return
1511             access_with_adjusted_size(addr, &data, size,
1512                                       mr->ops->impl.min_access_size,
1513                                       mr->ops->impl.max_access_size,
1514                                       memory_region_write_with_attrs_accessor,
1515                                       mr, attrs);
1516     }
1517 }
1518
1519 void memory_region_init_io(MemoryRegion *mr,
1520                            Object *owner,
1521                            const MemoryRegionOps *ops,
1522                            void *opaque,
1523                            const char *name,
1524                            uint64_t size)
1525 {
1526     memory_region_init(mr, owner, name, size);
1527     mr->ops = ops ? ops : &unassigned_mem_ops;
1528     mr->opaque = opaque;
1529     mr->terminates = true;
1530 }
1531
1532 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1533                                       Object *owner,
1534                                       const char *name,
1535                                       uint64_t size,
1536                                       Error **errp)
1537 {
1538     memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1539 }
1540
1541 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1542                                             Object *owner,
1543                                             const char *name,
1544                                             uint64_t size,
1545                                             uint32_t ram_flags,
1546                                             Error **errp)
1547 {
1548     Error *err = NULL;
1549     memory_region_init(mr, owner, name, size);
1550     mr->ram = true;
1551     mr->terminates = true;
1552     mr->destructor = memory_region_destructor_ram;
1553     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1554     if (err) {
1555         mr->size = int128_zero();
1556         object_unparent(OBJECT(mr));
1557         error_propagate(errp, err);
1558     }
1559 }
1560
1561 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1562                                        Object *owner,
1563                                        const char *name,
1564                                        uint64_t size,
1565                                        uint64_t max_size,
1566                                        void (*resized)(const char*,
1567                                                        uint64_t length,
1568                                                        void *host),
1569                                        Error **errp)
1570 {
1571     Error *err = NULL;
1572     memory_region_init(mr, owner, name, size);
1573     mr->ram = true;
1574     mr->terminates = true;
1575     mr->destructor = memory_region_destructor_ram;
1576     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1577                                               mr, &err);
1578     if (err) {
1579         mr->size = int128_zero();
1580         object_unparent(OBJECT(mr));
1581         error_propagate(errp, err);
1582     }
1583 }
1584
1585 #ifdef CONFIG_POSIX
1586 void memory_region_init_ram_from_file(MemoryRegion *mr,
1587                                       Object *owner,
1588                                       const char *name,
1589                                       uint64_t size,
1590                                       uint64_t align,
1591                                       uint32_t ram_flags,
1592                                       const char *path,
1593                                       bool readonly,
1594                                       Error **errp)
1595 {
1596     Error *err = NULL;
1597     memory_region_init(mr, owner, name, size);
1598     mr->ram = true;
1599     mr->readonly = readonly;
1600     mr->terminates = true;
1601     mr->destructor = memory_region_destructor_ram;
1602     mr->align = align;
1603     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1604                                              readonly, &err);
1605     if (err) {
1606         mr->size = int128_zero();
1607         object_unparent(OBJECT(mr));
1608         error_propagate(errp, err);
1609     }
1610 }
1611
1612 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1613                                     Object *owner,
1614                                     const char *name,
1615                                     uint64_t size,
1616                                     uint32_t ram_flags,
1617                                     int fd,
1618                                     ram_addr_t offset,
1619                                     Error **errp)
1620 {
1621     Error *err = NULL;
1622     memory_region_init(mr, owner, name, size);
1623     mr->ram = true;
1624     mr->terminates = true;
1625     mr->destructor = memory_region_destructor_ram;
1626     mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1627                                            false, &err);
1628     if (err) {
1629         mr->size = int128_zero();
1630         object_unparent(OBJECT(mr));
1631         error_propagate(errp, err);
1632     }
1633 }
1634 #endif
1635
1636 void memory_region_init_ram_ptr(MemoryRegion *mr,
1637                                 Object *owner,
1638                                 const char *name,
1639                                 uint64_t size,
1640                                 void *ptr)
1641 {
1642     memory_region_init(mr, owner, name, size);
1643     mr->ram = true;
1644     mr->terminates = true;
1645     mr->destructor = memory_region_destructor_ram;
1646
1647     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1648     assert(ptr != NULL);
1649     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1650 }
1651
1652 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1653                                        Object *owner,
1654                                        const char *name,
1655                                        uint64_t size,
1656                                        void *ptr)
1657 {
1658     memory_region_init(mr, owner, name, size);
1659     mr->ram = true;
1660     mr->terminates = true;
1661     mr->ram_device = true;
1662     mr->ops = &ram_device_mem_ops;
1663     mr->opaque = mr;
1664     mr->destructor = memory_region_destructor_ram;
1665
1666     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1667     assert(ptr != NULL);
1668     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1669 }
1670
1671 void memory_region_init_alias(MemoryRegion *mr,
1672                               Object *owner,
1673                               const char *name,
1674                               MemoryRegion *orig,
1675                               hwaddr offset,
1676                               uint64_t size)
1677 {
1678     memory_region_init(mr, owner, name, size);
1679     mr->alias = orig;
1680     mr->alias_offset = offset;
1681 }
1682
1683 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1684                                       Object *owner,
1685                                       const char *name,
1686                                       uint64_t size,
1687                                       Error **errp)
1688 {
1689     memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1690     mr->readonly = true;
1691 }
1692
1693 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1694                                              Object *owner,
1695                                              const MemoryRegionOps *ops,
1696                                              void *opaque,
1697                                              const char *name,
1698                                              uint64_t size,
1699                                              Error **errp)
1700 {
1701     Error *err = NULL;
1702     assert(ops);
1703     memory_region_init(mr, owner, name, size);
1704     mr->ops = ops;
1705     mr->opaque = opaque;
1706     mr->terminates = true;
1707     mr->rom_device = true;
1708     mr->destructor = memory_region_destructor_ram;
1709     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1710     if (err) {
1711         mr->size = int128_zero();
1712         object_unparent(OBJECT(mr));
1713         error_propagate(errp, err);
1714     }
1715 }
1716
1717 void memory_region_init_iommu(void *_iommu_mr,
1718                               size_t instance_size,
1719                               const char *mrtypename,
1720                               Object *owner,
1721                               const char *name,
1722                               uint64_t size)
1723 {
1724     struct IOMMUMemoryRegion *iommu_mr;
1725     struct MemoryRegion *mr;
1726
1727     object_initialize(_iommu_mr, instance_size, mrtypename);
1728     mr = MEMORY_REGION(_iommu_mr);
1729     memory_region_do_init(mr, owner, name, size);
1730     iommu_mr = IOMMU_MEMORY_REGION(mr);
1731     mr->terminates = true;  /* then re-forwards */
1732     QLIST_INIT(&iommu_mr->iommu_notify);
1733     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1734 }
1735
1736 static void memory_region_finalize(Object *obj)
1737 {
1738     MemoryRegion *mr = MEMORY_REGION(obj);
1739
1740     assert(!mr->container);
1741
1742     /* We know the region is not visible in any address space (it
1743      * does not have a container and cannot be a root either because
1744      * it has no references, so we can blindly clear mr->enabled.
1745      * memory_region_set_enabled instead could trigger a transaction
1746      * and cause an infinite loop.
1747      */
1748     mr->enabled = false;
1749     memory_region_transaction_begin();
1750     while (!QTAILQ_EMPTY(&mr->subregions)) {
1751         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1752         memory_region_del_subregion(mr, subregion);
1753     }
1754     memory_region_transaction_commit();
1755
1756     mr->destructor(mr);
1757     memory_region_clear_coalescing(mr);
1758     g_free((char *)mr->name);
1759     g_free(mr->ioeventfds);
1760 }
1761
1762 Object *memory_region_owner(MemoryRegion *mr)
1763 {
1764     Object *obj = OBJECT(mr);
1765     return obj->parent;
1766 }
1767
1768 void memory_region_ref(MemoryRegion *mr)
1769 {
1770     /* MMIO callbacks most likely will access data that belongs
1771      * to the owner, hence the need to ref/unref the owner whenever
1772      * the memory region is in use.
1773      *
1774      * The memory region is a child of its owner.  As long as the
1775      * owner doesn't call unparent itself on the memory region,
1776      * ref-ing the owner will also keep the memory region alive.
1777      * Memory regions without an owner are supposed to never go away;
1778      * we do not ref/unref them because it slows down DMA sensibly.
1779      */
1780     if (mr && mr->owner) {
1781         object_ref(mr->owner);
1782     }
1783 }
1784
1785 void memory_region_unref(MemoryRegion *mr)
1786 {
1787     if (mr && mr->owner) {
1788         object_unref(mr->owner);
1789     }
1790 }
1791
1792 uint64_t memory_region_size(MemoryRegion *mr)
1793 {
1794     if (int128_eq(mr->size, int128_2_64())) {
1795         return UINT64_MAX;
1796     }
1797     return int128_get64(mr->size);
1798 }
1799
1800 const char *memory_region_name(const MemoryRegion *mr)
1801 {
1802     if (!mr->name) {
1803         ((MemoryRegion *)mr)->name =
1804             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1805     }
1806     return mr->name;
1807 }
1808
1809 bool memory_region_is_ram_device(MemoryRegion *mr)
1810 {
1811     return mr->ram_device;
1812 }
1813
1814 bool memory_region_is_protected(MemoryRegion *mr)
1815 {
1816     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1817 }
1818
1819 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1820 {
1821     uint8_t mask = mr->dirty_log_mask;
1822     RAMBlock *rb = mr->ram_block;
1823
1824     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1825                              memory_region_is_iommu(mr))) {
1826         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1827     }
1828
1829     if (tcg_enabled() && rb) {
1830         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1831         mask |= (1 << DIRTY_MEMORY_CODE);
1832     }
1833     return mask;
1834 }
1835
1836 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1837 {
1838     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1839 }
1840
1841 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1842                                                    Error **errp)
1843 {
1844     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1845     IOMMUNotifier *iommu_notifier;
1846     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1847     int ret = 0;
1848
1849     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1850         flags |= iommu_notifier->notifier_flags;
1851     }
1852
1853     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1854         ret = imrc->notify_flag_changed(iommu_mr,
1855                                         iommu_mr->iommu_notify_flags,
1856                                         flags, errp);
1857     }
1858
1859     if (!ret) {
1860         iommu_mr->iommu_notify_flags = flags;
1861     }
1862     return ret;
1863 }
1864
1865 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1866                                            uint64_t page_size_mask,
1867                                            Error **errp)
1868 {
1869     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1870     int ret = 0;
1871
1872     if (imrc->iommu_set_page_size_mask) {
1873         ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1874     }
1875     return ret;
1876 }
1877
1878 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1879                                           IOMMUNotifier *n, Error **errp)
1880 {
1881     IOMMUMemoryRegion *iommu_mr;
1882     int ret;
1883
1884     if (mr->alias) {
1885         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1886     }
1887
1888     /* We need to register for at least one bitfield */
1889     iommu_mr = IOMMU_MEMORY_REGION(mr);
1890     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1891     assert(n->start <= n->end);
1892     assert(n->iommu_idx >= 0 &&
1893            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1894
1895     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1896     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1897     if (ret) {
1898         QLIST_REMOVE(n, node);
1899     }
1900     return ret;
1901 }
1902
1903 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1904 {
1905     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1906
1907     if (imrc->get_min_page_size) {
1908         return imrc->get_min_page_size(iommu_mr);
1909     }
1910     return TARGET_PAGE_SIZE;
1911 }
1912
1913 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1914 {
1915     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1916     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1917     hwaddr addr, granularity;
1918     IOMMUTLBEntry iotlb;
1919
1920     /* If the IOMMU has its own replay callback, override */
1921     if (imrc->replay) {
1922         imrc->replay(iommu_mr, n);
1923         return;
1924     }
1925
1926     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1927
1928     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1929         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1930         if (iotlb.perm != IOMMU_NONE) {
1931             n->notify(n, &iotlb);
1932         }
1933
1934         /* if (2^64 - MR size) < granularity, it's possible to get an
1935          * infinite loop here.  This should catch such a wraparound */
1936         if ((addr + granularity) < addr) {
1937             break;
1938         }
1939     }
1940 }
1941
1942 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1943                                              IOMMUNotifier *n)
1944 {
1945     IOMMUMemoryRegion *iommu_mr;
1946
1947     if (mr->alias) {
1948         memory_region_unregister_iommu_notifier(mr->alias, n);
1949         return;
1950     }
1951     QLIST_REMOVE(n, node);
1952     iommu_mr = IOMMU_MEMORY_REGION(mr);
1953     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1954 }
1955
1956 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1957                                     IOMMUTLBEvent *event)
1958 {
1959     IOMMUTLBEntry *entry = &event->entry;
1960     hwaddr entry_end = entry->iova + entry->addr_mask;
1961     IOMMUTLBEntry tmp = *entry;
1962
1963     if (event->type == IOMMU_NOTIFIER_UNMAP) {
1964         assert(entry->perm == IOMMU_NONE);
1965     }
1966
1967     /*
1968      * Skip the notification if the notification does not overlap
1969      * with registered range.
1970      */
1971     if (notifier->start > entry_end || notifier->end < entry->iova) {
1972         return;
1973     }
1974
1975     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1976         /* Crop (iova, addr_mask) to range */
1977         tmp.iova = MAX(tmp.iova, notifier->start);
1978         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1979     } else {
1980         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1981     }
1982
1983     if (event->type & notifier->notifier_flags) {
1984         notifier->notify(notifier, &tmp);
1985     }
1986 }
1987
1988 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1989                                 int iommu_idx,
1990                                 IOMMUTLBEvent event)
1991 {
1992     IOMMUNotifier *iommu_notifier;
1993
1994     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1995
1996     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1997         if (iommu_notifier->iommu_idx == iommu_idx) {
1998             memory_region_notify_iommu_one(iommu_notifier, &event);
1999         }
2000     }
2001 }
2002
2003 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2004                                  enum IOMMUMemoryRegionAttr attr,
2005                                  void *data)
2006 {
2007     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2008
2009     if (!imrc->get_attr) {
2010         return -EINVAL;
2011     }
2012
2013     return imrc->get_attr(iommu_mr, attr, data);
2014 }
2015
2016 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2017                                        MemTxAttrs attrs)
2018 {
2019     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2020
2021     if (!imrc->attrs_to_index) {
2022         return 0;
2023     }
2024
2025     return imrc->attrs_to_index(iommu_mr, attrs);
2026 }
2027
2028 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2029 {
2030     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2031
2032     if (!imrc->num_indexes) {
2033         return 1;
2034     }
2035
2036     return imrc->num_indexes(iommu_mr);
2037 }
2038
2039 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2040 {
2041     if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
2042         return NULL;
2043     }
2044     return mr->rdm;
2045 }
2046
2047 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2048                                            RamDiscardManager *rdm)
2049 {
2050     g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
2051     g_assert(!rdm || !mr->rdm);
2052     mr->rdm = rdm;
2053 }
2054
2055 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2056                                                  const MemoryRegion *mr)
2057 {
2058     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2059
2060     g_assert(rdmc->get_min_granularity);
2061     return rdmc->get_min_granularity(rdm, mr);
2062 }
2063
2064 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2065                                       const MemoryRegionSection *section)
2066 {
2067     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2068
2069     g_assert(rdmc->is_populated);
2070     return rdmc->is_populated(rdm, section);
2071 }
2072
2073 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2074                                          MemoryRegionSection *section,
2075                                          ReplayRamPopulate replay_fn,
2076                                          void *opaque)
2077 {
2078     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2079
2080     g_assert(rdmc->replay_populated);
2081     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2082 }
2083
2084 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2085                                           MemoryRegionSection *section,
2086                                           ReplayRamDiscard replay_fn,
2087                                           void *opaque)
2088 {
2089     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2090
2091     g_assert(rdmc->replay_discarded);
2092     rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2093 }
2094
2095 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2096                                            RamDiscardListener *rdl,
2097                                            MemoryRegionSection *section)
2098 {
2099     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2100
2101     g_assert(rdmc->register_listener);
2102     rdmc->register_listener(rdm, rdl, section);
2103 }
2104
2105 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2106                                              RamDiscardListener *rdl)
2107 {
2108     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2109
2110     g_assert(rdmc->unregister_listener);
2111     rdmc->unregister_listener(rdm, rdl);
2112 }
2113
2114 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2115 {
2116     uint8_t mask = 1 << client;
2117     uint8_t old_logging;
2118
2119     assert(client == DIRTY_MEMORY_VGA);
2120     old_logging = mr->vga_logging_count;
2121     mr->vga_logging_count += log ? 1 : -1;
2122     if (!!old_logging == !!mr->vga_logging_count) {
2123         return;
2124     }
2125
2126     memory_region_transaction_begin();
2127     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2128     memory_region_update_pending |= mr->enabled;
2129     memory_region_transaction_commit();
2130 }
2131
2132 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2133                              hwaddr size)
2134 {
2135     assert(mr->ram_block);
2136     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2137                                         size,
2138                                         memory_region_get_dirty_log_mask(mr));
2139 }
2140
2141 /*
2142  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2143  * dirty bitmap for the specified memory region.
2144  */
2145 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2146 {
2147     MemoryListener *listener;
2148     AddressSpace *as;
2149     FlatView *view;
2150     FlatRange *fr;
2151
2152     /* If the same address space has multiple log_sync listeners, we
2153      * visit that address space's FlatView multiple times.  But because
2154      * log_sync listeners are rare, it's still cheaper than walking each
2155      * address space once.
2156      */
2157     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2158         if (listener->log_sync) {
2159             as = listener->address_space;
2160             view = address_space_get_flatview(as);
2161             FOR_EACH_FLAT_RANGE(fr, view) {
2162                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2163                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2164                     listener->log_sync(listener, &mrs);
2165                 }
2166             }
2167             flatview_unref(view);
2168             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2169         } else if (listener->log_sync_global) {
2170             /*
2171              * No matter whether MR is specified, what we can do here
2172              * is to do a global sync, because we are not capable to
2173              * sync in a finer granularity.
2174              */
2175             listener->log_sync_global(listener);
2176             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2177         }
2178     }
2179 }
2180
2181 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2182                                       hwaddr len)
2183 {
2184     MemoryRegionSection mrs;
2185     MemoryListener *listener;
2186     AddressSpace *as;
2187     FlatView *view;
2188     FlatRange *fr;
2189     hwaddr sec_start, sec_end, sec_size;
2190
2191     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2192         if (!listener->log_clear) {
2193             continue;
2194         }
2195         as = listener->address_space;
2196         view = address_space_get_flatview(as);
2197         FOR_EACH_FLAT_RANGE(fr, view) {
2198             if (!fr->dirty_log_mask || fr->mr != mr) {
2199                 /*
2200                  * Clear dirty bitmap operation only applies to those
2201                  * regions whose dirty logging is at least enabled
2202                  */
2203                 continue;
2204             }
2205
2206             mrs = section_from_flat_range(fr, view);
2207
2208             sec_start = MAX(mrs.offset_within_region, start);
2209             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2210             sec_end = MIN(sec_end, start + len);
2211
2212             if (sec_start >= sec_end) {
2213                 /*
2214                  * If this memory region section has no intersection
2215                  * with the requested range, skip.
2216                  */
2217                 continue;
2218             }
2219
2220             /* Valid case; shrink the section if needed */
2221             mrs.offset_within_address_space +=
2222                 sec_start - mrs.offset_within_region;
2223             mrs.offset_within_region = sec_start;
2224             sec_size = sec_end - sec_start;
2225             mrs.size = int128_make64(sec_size);
2226             listener->log_clear(listener, &mrs);
2227         }
2228         flatview_unref(view);
2229     }
2230 }
2231
2232 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2233                                                             hwaddr addr,
2234                                                             hwaddr size,
2235                                                             unsigned client)
2236 {
2237     DirtyBitmapSnapshot *snapshot;
2238     assert(mr->ram_block);
2239     memory_region_sync_dirty_bitmap(mr);
2240     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2241     memory_global_after_dirty_log_sync();
2242     return snapshot;
2243 }
2244
2245 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2246                                       hwaddr addr, hwaddr size)
2247 {
2248     assert(mr->ram_block);
2249     return cpu_physical_memory_snapshot_get_dirty(snap,
2250                 memory_region_get_ram_addr(mr) + addr, size);
2251 }
2252
2253 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2254 {
2255     if (mr->readonly != readonly) {
2256         memory_region_transaction_begin();
2257         mr->readonly = readonly;
2258         memory_region_update_pending |= mr->enabled;
2259         memory_region_transaction_commit();
2260     }
2261 }
2262
2263 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2264 {
2265     if (mr->nonvolatile != nonvolatile) {
2266         memory_region_transaction_begin();
2267         mr->nonvolatile = nonvolatile;
2268         memory_region_update_pending |= mr->enabled;
2269         memory_region_transaction_commit();
2270     }
2271 }
2272
2273 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2274 {
2275     if (mr->romd_mode != romd_mode) {
2276         memory_region_transaction_begin();
2277         mr->romd_mode = romd_mode;
2278         memory_region_update_pending |= mr->enabled;
2279         memory_region_transaction_commit();
2280     }
2281 }
2282
2283 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2284                                hwaddr size, unsigned client)
2285 {
2286     assert(mr->ram_block);
2287     cpu_physical_memory_test_and_clear_dirty(
2288         memory_region_get_ram_addr(mr) + addr, size, client);
2289 }
2290
2291 int memory_region_get_fd(MemoryRegion *mr)
2292 {
2293     int fd;
2294
2295     RCU_READ_LOCK_GUARD();
2296     while (mr->alias) {
2297         mr = mr->alias;
2298     }
2299     fd = mr->ram_block->fd;
2300
2301     return fd;
2302 }
2303
2304 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2305 {
2306     void *ptr;
2307     uint64_t offset = 0;
2308
2309     RCU_READ_LOCK_GUARD();
2310     while (mr->alias) {
2311         offset += mr->alias_offset;
2312         mr = mr->alias;
2313     }
2314     assert(mr->ram_block);
2315     ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2316
2317     return ptr;
2318 }
2319
2320 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2321 {
2322     RAMBlock *block;
2323
2324     block = qemu_ram_block_from_host(ptr, false, offset);
2325     if (!block) {
2326         return NULL;
2327     }
2328
2329     return block->mr;
2330 }
2331
2332 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2333 {
2334     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2335 }
2336
2337 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2338 {
2339     assert(mr->ram_block);
2340
2341     qemu_ram_resize(mr->ram_block, newsize, errp);
2342 }
2343
2344 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2345 {
2346     if (mr->ram_block) {
2347         qemu_ram_msync(mr->ram_block, addr, size);
2348     }
2349 }
2350
2351 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2352 {
2353     /*
2354      * Might be extended case needed to cover
2355      * different types of memory regions
2356      */
2357     if (mr->dirty_log_mask) {
2358         memory_region_msync(mr, addr, size);
2359     }
2360 }
2361
2362 /*
2363  * Call proper memory listeners about the change on the newly
2364  * added/removed CoalescedMemoryRange.
2365  */
2366 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2367                                                  CoalescedMemoryRange *cmr,
2368                                                  bool add)
2369 {
2370     AddressSpace *as;
2371     FlatView *view;
2372     FlatRange *fr;
2373
2374     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2375         view = address_space_get_flatview(as);
2376         FOR_EACH_FLAT_RANGE(fr, view) {
2377             if (fr->mr == mr) {
2378                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2379             }
2380         }
2381         flatview_unref(view);
2382     }
2383 }
2384
2385 void memory_region_set_coalescing(MemoryRegion *mr)
2386 {
2387     memory_region_clear_coalescing(mr);
2388     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2389 }
2390
2391 void memory_region_add_coalescing(MemoryRegion *mr,
2392                                   hwaddr offset,
2393                                   uint64_t size)
2394 {
2395     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2396
2397     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2398     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2399     memory_region_update_coalesced_range(mr, cmr, true);
2400     memory_region_set_flush_coalesced(mr);
2401 }
2402
2403 void memory_region_clear_coalescing(MemoryRegion *mr)
2404 {
2405     CoalescedMemoryRange *cmr;
2406
2407     if (QTAILQ_EMPTY(&mr->coalesced)) {
2408         return;
2409     }
2410
2411     qemu_flush_coalesced_mmio_buffer();
2412     mr->flush_coalesced_mmio = false;
2413
2414     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2415         cmr = QTAILQ_FIRST(&mr->coalesced);
2416         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2417         memory_region_update_coalesced_range(mr, cmr, false);
2418         g_free(cmr);
2419     }
2420 }
2421
2422 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2423 {
2424     mr->flush_coalesced_mmio = true;
2425 }
2426
2427 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2428 {
2429     qemu_flush_coalesced_mmio_buffer();
2430     if (QTAILQ_EMPTY(&mr->coalesced)) {
2431         mr->flush_coalesced_mmio = false;
2432     }
2433 }
2434
2435 static bool userspace_eventfd_warning;
2436
2437 void memory_region_add_eventfd(MemoryRegion *mr,
2438                                hwaddr addr,
2439                                unsigned size,
2440                                bool match_data,
2441                                uint64_t data,
2442                                EventNotifier *e)
2443 {
2444     MemoryRegionIoeventfd mrfd = {
2445         .addr.start = int128_make64(addr),
2446         .addr.size = int128_make64(size),
2447         .match_data = match_data,
2448         .data = data,
2449         .e = e,
2450     };
2451     unsigned i;
2452
2453     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2454                             userspace_eventfd_warning))) {
2455         userspace_eventfd_warning = true;
2456         error_report("Using eventfd without MMIO binding in KVM. "
2457                      "Suboptimal performance expected");
2458     }
2459
2460     if (size) {
2461         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2462     }
2463     memory_region_transaction_begin();
2464     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2465         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2466             break;
2467         }
2468     }
2469     ++mr->ioeventfd_nb;
2470     mr->ioeventfds = g_realloc(mr->ioeventfds,
2471                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2472     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2473             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2474     mr->ioeventfds[i] = mrfd;
2475     ioeventfd_update_pending |= mr->enabled;
2476     memory_region_transaction_commit();
2477 }
2478
2479 void memory_region_del_eventfd(MemoryRegion *mr,
2480                                hwaddr addr,
2481                                unsigned size,
2482                                bool match_data,
2483                                uint64_t data,
2484                                EventNotifier *e)
2485 {
2486     MemoryRegionIoeventfd mrfd = {
2487         .addr.start = int128_make64(addr),
2488         .addr.size = int128_make64(size),
2489         .match_data = match_data,
2490         .data = data,
2491         .e = e,
2492     };
2493     unsigned i;
2494
2495     if (size) {
2496         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2497     }
2498     memory_region_transaction_begin();
2499     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2500         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2501             break;
2502         }
2503     }
2504     assert(i != mr->ioeventfd_nb);
2505     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2506             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2507     --mr->ioeventfd_nb;
2508     mr->ioeventfds = g_realloc(mr->ioeventfds,
2509                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2510     ioeventfd_update_pending |= mr->enabled;
2511     memory_region_transaction_commit();
2512 }
2513
2514 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2515 {
2516     MemoryRegion *mr = subregion->container;
2517     MemoryRegion *other;
2518
2519     memory_region_transaction_begin();
2520
2521     memory_region_ref(subregion);
2522     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2523         if (subregion->priority >= other->priority) {
2524             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2525             goto done;
2526         }
2527     }
2528     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2529 done:
2530     memory_region_update_pending |= mr->enabled && subregion->enabled;
2531     memory_region_transaction_commit();
2532 }
2533
2534 static void memory_region_add_subregion_common(MemoryRegion *mr,
2535                                                hwaddr offset,
2536                                                MemoryRegion *subregion)
2537 {
2538     assert(!subregion->container);
2539     subregion->container = mr;
2540     subregion->addr = offset;
2541     memory_region_update_container_subregions(subregion);
2542 }
2543
2544 void memory_region_add_subregion(MemoryRegion *mr,
2545                                  hwaddr offset,
2546                                  MemoryRegion *subregion)
2547 {
2548     subregion->priority = 0;
2549     memory_region_add_subregion_common(mr, offset, subregion);
2550 }
2551
2552 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2553                                          hwaddr offset,
2554                                          MemoryRegion *subregion,
2555                                          int priority)
2556 {
2557     subregion->priority = priority;
2558     memory_region_add_subregion_common(mr, offset, subregion);
2559 }
2560
2561 void memory_region_del_subregion(MemoryRegion *mr,
2562                                  MemoryRegion *subregion)
2563 {
2564     memory_region_transaction_begin();
2565     assert(subregion->container == mr);
2566     subregion->container = NULL;
2567     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2568     memory_region_unref(subregion);
2569     memory_region_update_pending |= mr->enabled && subregion->enabled;
2570     memory_region_transaction_commit();
2571 }
2572
2573 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2574 {
2575     if (enabled == mr->enabled) {
2576         return;
2577     }
2578     memory_region_transaction_begin();
2579     mr->enabled = enabled;
2580     memory_region_update_pending = true;
2581     memory_region_transaction_commit();
2582 }
2583
2584 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2585 {
2586     Int128 s = int128_make64(size);
2587
2588     if (size == UINT64_MAX) {
2589         s = int128_2_64();
2590     }
2591     if (int128_eq(s, mr->size)) {
2592         return;
2593     }
2594     memory_region_transaction_begin();
2595     mr->size = s;
2596     memory_region_update_pending = true;
2597     memory_region_transaction_commit();
2598 }
2599
2600 static void memory_region_readd_subregion(MemoryRegion *mr)
2601 {
2602     MemoryRegion *container = mr->container;
2603
2604     if (container) {
2605         memory_region_transaction_begin();
2606         memory_region_ref(mr);
2607         memory_region_del_subregion(container, mr);
2608         mr->container = container;
2609         memory_region_update_container_subregions(mr);
2610         memory_region_unref(mr);
2611         memory_region_transaction_commit();
2612     }
2613 }
2614
2615 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2616 {
2617     if (addr != mr->addr) {
2618         mr->addr = addr;
2619         memory_region_readd_subregion(mr);
2620     }
2621 }
2622
2623 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2624 {
2625     assert(mr->alias);
2626
2627     if (offset == mr->alias_offset) {
2628         return;
2629     }
2630
2631     memory_region_transaction_begin();
2632     mr->alias_offset = offset;
2633     memory_region_update_pending |= mr->enabled;
2634     memory_region_transaction_commit();
2635 }
2636
2637 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2638 {
2639     return mr->align;
2640 }
2641
2642 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2643 {
2644     const AddrRange *addr = addr_;
2645     const FlatRange *fr = fr_;
2646
2647     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2648         return -1;
2649     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2650         return 1;
2651     }
2652     return 0;
2653 }
2654
2655 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2656 {
2657     return bsearch(&addr, view->ranges, view->nr,
2658                    sizeof(FlatRange), cmp_flatrange_addr);
2659 }
2660
2661 bool memory_region_is_mapped(MemoryRegion *mr)
2662 {
2663     return mr->container ? true : false;
2664 }
2665
2666 /* Same as memory_region_find, but it does not add a reference to the
2667  * returned region.  It must be called from an RCU critical section.
2668  */
2669 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2670                                                   hwaddr addr, uint64_t size)
2671 {
2672     MemoryRegionSection ret = { .mr = NULL };
2673     MemoryRegion *root;
2674     AddressSpace *as;
2675     AddrRange range;
2676     FlatView *view;
2677     FlatRange *fr;
2678
2679     addr += mr->addr;
2680     for (root = mr; root->container; ) {
2681         root = root->container;
2682         addr += root->addr;
2683     }
2684
2685     as = memory_region_to_address_space(root);
2686     if (!as) {
2687         return ret;
2688     }
2689     range = addrrange_make(int128_make64(addr), int128_make64(size));
2690
2691     view = address_space_to_flatview(as);
2692     fr = flatview_lookup(view, range);
2693     if (!fr) {
2694         return ret;
2695     }
2696
2697     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2698         --fr;
2699     }
2700
2701     ret.mr = fr->mr;
2702     ret.fv = view;
2703     range = addrrange_intersection(range, fr->addr);
2704     ret.offset_within_region = fr->offset_in_region;
2705     ret.offset_within_region += int128_get64(int128_sub(range.start,
2706                                                         fr->addr.start));
2707     ret.size = range.size;
2708     ret.offset_within_address_space = int128_get64(range.start);
2709     ret.readonly = fr->readonly;
2710     ret.nonvolatile = fr->nonvolatile;
2711     return ret;
2712 }
2713
2714 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2715                                        hwaddr addr, uint64_t size)
2716 {
2717     MemoryRegionSection ret;
2718     RCU_READ_LOCK_GUARD();
2719     ret = memory_region_find_rcu(mr, addr, size);
2720     if (ret.mr) {
2721         memory_region_ref(ret.mr);
2722     }
2723     return ret;
2724 }
2725
2726 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2727 {
2728     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2729
2730     *tmp = *s;
2731     if (tmp->mr) {
2732         memory_region_ref(tmp->mr);
2733     }
2734     if (tmp->fv) {
2735         bool ret  = flatview_ref(tmp->fv);
2736
2737         g_assert(ret);
2738     }
2739     return tmp;
2740 }
2741
2742 void memory_region_section_free_copy(MemoryRegionSection *s)
2743 {
2744     if (s->fv) {
2745         flatview_unref(s->fv);
2746     }
2747     if (s->mr) {
2748         memory_region_unref(s->mr);
2749     }
2750     g_free(s);
2751 }
2752
2753 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2754 {
2755     MemoryRegion *mr;
2756
2757     RCU_READ_LOCK_GUARD();
2758     mr = memory_region_find_rcu(container, addr, 1).mr;
2759     return mr && mr != container;
2760 }
2761
2762 void memory_global_dirty_log_sync(void)
2763 {
2764     memory_region_sync_dirty_bitmap(NULL);
2765 }
2766
2767 void memory_global_after_dirty_log_sync(void)
2768 {
2769     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2770 }
2771
2772 static VMChangeStateEntry *vmstate_change;
2773
2774 void memory_global_dirty_log_start(unsigned int flags)
2775 {
2776     if (vmstate_change) {
2777         qemu_del_vm_change_state_handler(vmstate_change);
2778         vmstate_change = NULL;
2779     }
2780
2781     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2782     assert(!(global_dirty_tracking & flags));
2783     global_dirty_tracking |= flags;
2784
2785     trace_global_dirty_changed(global_dirty_tracking);
2786
2787     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2788
2789     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2790     memory_region_transaction_begin();
2791     memory_region_update_pending = true;
2792     memory_region_transaction_commit();
2793 }
2794
2795 static void memory_global_dirty_log_do_stop(unsigned int flags)
2796 {
2797     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2798     assert((global_dirty_tracking & flags) == flags);
2799     global_dirty_tracking &= ~flags;
2800
2801     trace_global_dirty_changed(global_dirty_tracking);
2802
2803     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2804     memory_region_transaction_begin();
2805     memory_region_update_pending = true;
2806     memory_region_transaction_commit();
2807
2808     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2809 }
2810
2811 static void memory_vm_change_state_handler(void *opaque, bool running,
2812                                            RunState state)
2813 {
2814     unsigned int flags = (unsigned int)(uintptr_t)opaque;
2815     if (running) {
2816         memory_global_dirty_log_do_stop(flags);
2817
2818         if (vmstate_change) {
2819             qemu_del_vm_change_state_handler(vmstate_change);
2820             vmstate_change = NULL;
2821         }
2822     }
2823 }
2824
2825 void memory_global_dirty_log_stop(unsigned int flags)
2826 {
2827     if (!runstate_is_running()) {
2828         if (vmstate_change) {
2829             return;
2830         }
2831         vmstate_change = qemu_add_vm_change_state_handler(
2832                                 memory_vm_change_state_handler,
2833                                 (void *)(uintptr_t)flags);
2834         return;
2835     }
2836
2837     memory_global_dirty_log_do_stop(flags);
2838 }
2839
2840 static void listener_add_address_space(MemoryListener *listener,
2841                                        AddressSpace *as)
2842 {
2843     FlatView *view;
2844     FlatRange *fr;
2845
2846     if (listener->begin) {
2847         listener->begin(listener);
2848     }
2849     if (global_dirty_tracking) {
2850         if (listener->log_global_start) {
2851             listener->log_global_start(listener);
2852         }
2853     }
2854
2855     view = address_space_get_flatview(as);
2856     FOR_EACH_FLAT_RANGE(fr, view) {
2857         MemoryRegionSection section = section_from_flat_range(fr, view);
2858
2859         if (listener->region_add) {
2860             listener->region_add(listener, &section);
2861         }
2862         if (fr->dirty_log_mask && listener->log_start) {
2863             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2864         }
2865     }
2866     if (listener->commit) {
2867         listener->commit(listener);
2868     }
2869     flatview_unref(view);
2870 }
2871
2872 static void listener_del_address_space(MemoryListener *listener,
2873                                        AddressSpace *as)
2874 {
2875     FlatView *view;
2876     FlatRange *fr;
2877
2878     if (listener->begin) {
2879         listener->begin(listener);
2880     }
2881     view = address_space_get_flatview(as);
2882     FOR_EACH_FLAT_RANGE(fr, view) {
2883         MemoryRegionSection section = section_from_flat_range(fr, view);
2884
2885         if (fr->dirty_log_mask && listener->log_stop) {
2886             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2887         }
2888         if (listener->region_del) {
2889             listener->region_del(listener, &section);
2890         }
2891     }
2892     if (listener->commit) {
2893         listener->commit(listener);
2894     }
2895     flatview_unref(view);
2896 }
2897
2898 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2899 {
2900     MemoryListener *other = NULL;
2901
2902     /* Only one of them can be defined for a listener */
2903     assert(!(listener->log_sync && listener->log_sync_global));
2904
2905     listener->address_space = as;
2906     if (QTAILQ_EMPTY(&memory_listeners)
2907         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2908         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2909     } else {
2910         QTAILQ_FOREACH(other, &memory_listeners, link) {
2911             if (listener->priority < other->priority) {
2912                 break;
2913             }
2914         }
2915         QTAILQ_INSERT_BEFORE(other, listener, link);
2916     }
2917
2918     if (QTAILQ_EMPTY(&as->listeners)
2919         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2920         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2921     } else {
2922         QTAILQ_FOREACH(other, &as->listeners, link_as) {
2923             if (listener->priority < other->priority) {
2924                 break;
2925             }
2926         }
2927         QTAILQ_INSERT_BEFORE(other, listener, link_as);
2928     }
2929
2930     listener_add_address_space(listener, as);
2931 }
2932
2933 void memory_listener_unregister(MemoryListener *listener)
2934 {
2935     if (!listener->address_space) {
2936         return;
2937     }
2938
2939     listener_del_address_space(listener, listener->address_space);
2940     QTAILQ_REMOVE(&memory_listeners, listener, link);
2941     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2942     listener->address_space = NULL;
2943 }
2944
2945 void address_space_remove_listeners(AddressSpace *as)
2946 {
2947     while (!QTAILQ_EMPTY(&as->listeners)) {
2948         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2949     }
2950 }
2951
2952 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2953 {
2954     memory_region_ref(root);
2955     as->root = root;
2956     as->current_map = NULL;
2957     as->ioeventfd_nb = 0;
2958     as->ioeventfds = NULL;
2959     QTAILQ_INIT(&as->listeners);
2960     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2961     as->name = g_strdup(name ? name : "anonymous");
2962     address_space_update_topology(as);
2963     address_space_update_ioeventfds(as);
2964 }
2965
2966 static void do_address_space_destroy(AddressSpace *as)
2967 {
2968     assert(QTAILQ_EMPTY(&as->listeners));
2969
2970     flatview_unref(as->current_map);
2971     g_free(as->name);
2972     g_free(as->ioeventfds);
2973     memory_region_unref(as->root);
2974 }
2975
2976 void address_space_destroy(AddressSpace *as)
2977 {
2978     MemoryRegion *root = as->root;
2979
2980     /* Flush out anything from MemoryListeners listening in on this */
2981     memory_region_transaction_begin();
2982     as->root = NULL;
2983     memory_region_transaction_commit();
2984     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2985
2986     /* At this point, as->dispatch and as->current_map are dummy
2987      * entries that the guest should never use.  Wait for the old
2988      * values to expire before freeing the data.
2989      */
2990     as->root = root;
2991     call_rcu(as, do_address_space_destroy, rcu);
2992 }
2993
2994 static const char *memory_region_type(MemoryRegion *mr)
2995 {
2996     if (mr->alias) {
2997         return memory_region_type(mr->alias);
2998     }
2999     if (memory_region_is_ram_device(mr)) {
3000         return "ramd";
3001     } else if (memory_region_is_romd(mr)) {
3002         return "romd";
3003     } else if (memory_region_is_rom(mr)) {
3004         return "rom";
3005     } else if (memory_region_is_ram(mr)) {
3006         return "ram";
3007     } else {
3008         return "i/o";
3009     }
3010 }
3011
3012 typedef struct MemoryRegionList MemoryRegionList;
3013
3014 struct MemoryRegionList {
3015     const MemoryRegion *mr;
3016     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3017 };
3018
3019 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3020
3021 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3022                            int128_sub((size), int128_one())) : 0)
3023 #define MTREE_INDENT "  "
3024
3025 static void mtree_expand_owner(const char *label, Object *obj)
3026 {
3027     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3028
3029     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3030     if (dev && dev->id) {
3031         qemu_printf(" id=%s", dev->id);
3032     } else {
3033         char *canonical_path = object_get_canonical_path(obj);
3034         if (canonical_path) {
3035             qemu_printf(" path=%s", canonical_path);
3036             g_free(canonical_path);
3037         } else {
3038             qemu_printf(" type=%s", object_get_typename(obj));
3039         }
3040     }
3041     qemu_printf("}");
3042 }
3043
3044 static void mtree_print_mr_owner(const MemoryRegion *mr)
3045 {
3046     Object *owner = mr->owner;
3047     Object *parent = memory_region_owner((MemoryRegion *)mr);
3048
3049     if (!owner && !parent) {
3050         qemu_printf(" orphan");
3051         return;
3052     }
3053     if (owner) {
3054         mtree_expand_owner("owner", owner);
3055     }
3056     if (parent && parent != owner) {
3057         mtree_expand_owner("parent", parent);
3058     }
3059 }
3060
3061 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3062                            hwaddr base,
3063                            MemoryRegionListHead *alias_print_queue,
3064                            bool owner, bool display_disabled)
3065 {
3066     MemoryRegionList *new_ml, *ml, *next_ml;
3067     MemoryRegionListHead submr_print_queue;
3068     const MemoryRegion *submr;
3069     unsigned int i;
3070     hwaddr cur_start, cur_end;
3071
3072     if (!mr) {
3073         return;
3074     }
3075
3076     cur_start = base + mr->addr;
3077     cur_end = cur_start + MR_SIZE(mr->size);
3078
3079     /*
3080      * Try to detect overflow of memory region. This should never
3081      * happen normally. When it happens, we dump something to warn the
3082      * user who is observing this.
3083      */
3084     if (cur_start < base || cur_end < cur_start) {
3085         qemu_printf("[DETECTED OVERFLOW!] ");
3086     }
3087
3088     if (mr->alias) {
3089         MemoryRegionList *ml;
3090         bool found = false;
3091
3092         /* check if the alias is already in the queue */
3093         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3094             if (ml->mr == mr->alias) {
3095                 found = true;
3096             }
3097         }
3098
3099         if (!found) {
3100             ml = g_new(MemoryRegionList, 1);
3101             ml->mr = mr->alias;
3102             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3103         }
3104         if (mr->enabled || display_disabled) {
3105             for (i = 0; i < level; i++) {
3106                 qemu_printf(MTREE_INDENT);
3107             }
3108             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3109                         " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
3110                         "-" TARGET_FMT_plx "%s",
3111                         cur_start, cur_end,
3112                         mr->priority,
3113                         mr->nonvolatile ? "nv-" : "",
3114                         memory_region_type((MemoryRegion *)mr),
3115                         memory_region_name(mr),
3116                         memory_region_name(mr->alias),
3117                         mr->alias_offset,
3118                         mr->alias_offset + MR_SIZE(mr->size),
3119                         mr->enabled ? "" : " [disabled]");
3120             if (owner) {
3121                 mtree_print_mr_owner(mr);
3122             }
3123             qemu_printf("\n");
3124         }
3125     } else {
3126         if (mr->enabled || display_disabled) {
3127             for (i = 0; i < level; i++) {
3128                 qemu_printf(MTREE_INDENT);
3129             }
3130             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3131                         " (prio %d, %s%s): %s%s",
3132                         cur_start, cur_end,
3133                         mr->priority,
3134                         mr->nonvolatile ? "nv-" : "",
3135                         memory_region_type((MemoryRegion *)mr),
3136                         memory_region_name(mr),
3137                         mr->enabled ? "" : " [disabled]");
3138             if (owner) {
3139                 mtree_print_mr_owner(mr);
3140             }
3141             qemu_printf("\n");
3142         }
3143     }
3144
3145     QTAILQ_INIT(&submr_print_queue);
3146
3147     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3148         new_ml = g_new(MemoryRegionList, 1);
3149         new_ml->mr = submr;
3150         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3151             if (new_ml->mr->addr < ml->mr->addr ||
3152                 (new_ml->mr->addr == ml->mr->addr &&
3153                  new_ml->mr->priority > ml->mr->priority)) {
3154                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3155                 new_ml = NULL;
3156                 break;
3157             }
3158         }
3159         if (new_ml) {
3160             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3161         }
3162     }
3163
3164     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3165         mtree_print_mr(ml->mr, level + 1, cur_start,
3166                        alias_print_queue, owner, display_disabled);
3167     }
3168
3169     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3170         g_free(ml);
3171     }
3172 }
3173
3174 struct FlatViewInfo {
3175     int counter;
3176     bool dispatch_tree;
3177     bool owner;
3178     AccelClass *ac;
3179 };
3180
3181 static void mtree_print_flatview(gpointer key, gpointer value,
3182                                  gpointer user_data)
3183 {
3184     FlatView *view = key;
3185     GArray *fv_address_spaces = value;
3186     struct FlatViewInfo *fvi = user_data;
3187     FlatRange *range = &view->ranges[0];
3188     MemoryRegion *mr;
3189     int n = view->nr;
3190     int i;
3191     AddressSpace *as;
3192
3193     qemu_printf("FlatView #%d\n", fvi->counter);
3194     ++fvi->counter;
3195
3196     for (i = 0; i < fv_address_spaces->len; ++i) {
3197         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3198         qemu_printf(" AS \"%s\", root: %s",
3199                     as->name, memory_region_name(as->root));
3200         if (as->root->alias) {
3201             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3202         }
3203         qemu_printf("\n");
3204     }
3205
3206     qemu_printf(" Root memory region: %s\n",
3207       view->root ? memory_region_name(view->root) : "(none)");
3208
3209     if (n <= 0) {
3210         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3211         return;
3212     }
3213
3214     while (n--) {
3215         mr = range->mr;
3216         if (range->offset_in_region) {
3217             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3218                         " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3219                         int128_get64(range->addr.start),
3220                         int128_get64(range->addr.start)
3221                         + MR_SIZE(range->addr.size),
3222                         mr->priority,
3223                         range->nonvolatile ? "nv-" : "",
3224                         range->readonly ? "rom" : memory_region_type(mr),
3225                         memory_region_name(mr),
3226                         range->offset_in_region);
3227         } else {
3228             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3229                         " (prio %d, %s%s): %s",
3230                         int128_get64(range->addr.start),
3231                         int128_get64(range->addr.start)
3232                         + MR_SIZE(range->addr.size),
3233                         mr->priority,
3234                         range->nonvolatile ? "nv-" : "",
3235                         range->readonly ? "rom" : memory_region_type(mr),
3236                         memory_region_name(mr));
3237         }
3238         if (fvi->owner) {
3239             mtree_print_mr_owner(mr);
3240         }
3241
3242         if (fvi->ac) {
3243             for (i = 0; i < fv_address_spaces->len; ++i) {
3244                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3245                 if (fvi->ac->has_memory(current_machine, as,
3246                                         int128_get64(range->addr.start),
3247                                         MR_SIZE(range->addr.size) + 1)) {
3248                     qemu_printf(" %s", fvi->ac->name);
3249                 }
3250             }
3251         }
3252         qemu_printf("\n");
3253         range++;
3254     }
3255
3256 #if !defined(CONFIG_USER_ONLY)
3257     if (fvi->dispatch_tree && view->root) {
3258         mtree_print_dispatch(view->dispatch, view->root);
3259     }
3260 #endif
3261
3262     qemu_printf("\n");
3263 }
3264
3265 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3266                                       gpointer user_data)
3267 {
3268     FlatView *view = key;
3269     GArray *fv_address_spaces = value;
3270
3271     g_array_unref(fv_address_spaces);
3272     flatview_unref(view);
3273
3274     return true;
3275 }
3276
3277 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3278 {
3279     MemoryRegionListHead ml_head;
3280     MemoryRegionList *ml, *ml2;
3281     AddressSpace *as;
3282
3283     if (flatview) {
3284         FlatView *view;
3285         struct FlatViewInfo fvi = {
3286             .counter = 0,
3287             .dispatch_tree = dispatch_tree,
3288             .owner = owner,
3289         };
3290         GArray *fv_address_spaces;
3291         GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3292         AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3293
3294         if (ac->has_memory) {
3295             fvi.ac = ac;
3296         }
3297
3298         /* Gather all FVs in one table */
3299         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3300             view = address_space_get_flatview(as);
3301
3302             fv_address_spaces = g_hash_table_lookup(views, view);
3303             if (!fv_address_spaces) {
3304                 fv_address_spaces = g_array_new(false, false, sizeof(as));
3305                 g_hash_table_insert(views, view, fv_address_spaces);
3306             }
3307
3308             g_array_append_val(fv_address_spaces, as);
3309         }
3310
3311         /* Print */
3312         g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3313
3314         /* Free */
3315         g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3316         g_hash_table_unref(views);
3317
3318         return;
3319     }
3320
3321     QTAILQ_INIT(&ml_head);
3322
3323     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3324         qemu_printf("address-space: %s\n", as->name);
3325         mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3326         qemu_printf("\n");
3327     }
3328
3329     /* print aliased regions */
3330     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3331         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3332         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3333         qemu_printf("\n");
3334     }
3335
3336     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3337         g_free(ml);
3338     }
3339 }
3340
3341 void memory_region_init_ram(MemoryRegion *mr,
3342                             Object *owner,
3343                             const char *name,
3344                             uint64_t size,
3345                             Error **errp)
3346 {
3347     DeviceState *owner_dev;
3348     Error *err = NULL;
3349
3350     memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3351     if (err) {
3352         error_propagate(errp, err);
3353         return;
3354     }
3355     /* This will assert if owner is neither NULL nor a DeviceState.
3356      * We only want the owner here for the purposes of defining a
3357      * unique name for migration. TODO: Ideally we should implement
3358      * a naming scheme for Objects which are not DeviceStates, in
3359      * which case we can relax this restriction.
3360      */
3361     owner_dev = DEVICE(owner);
3362     vmstate_register_ram(mr, owner_dev);
3363 }
3364
3365 void memory_region_init_rom(MemoryRegion *mr,
3366                             Object *owner,
3367                             const char *name,
3368                             uint64_t size,
3369                             Error **errp)
3370 {
3371     DeviceState *owner_dev;
3372     Error *err = NULL;
3373
3374     memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3375     if (err) {
3376         error_propagate(errp, err);
3377         return;
3378     }
3379     /* This will assert if owner is neither NULL nor a DeviceState.
3380      * We only want the owner here for the purposes of defining a
3381      * unique name for migration. TODO: Ideally we should implement
3382      * a naming scheme for Objects which are not DeviceStates, in
3383      * which case we can relax this restriction.
3384      */
3385     owner_dev = DEVICE(owner);
3386     vmstate_register_ram(mr, owner_dev);
3387 }
3388
3389 void memory_region_init_rom_device(MemoryRegion *mr,
3390                                    Object *owner,
3391                                    const MemoryRegionOps *ops,
3392                                    void *opaque,
3393                                    const char *name,
3394                                    uint64_t size,
3395                                    Error **errp)
3396 {
3397     DeviceState *owner_dev;
3398     Error *err = NULL;
3399
3400     memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3401                                             name, size, &err);
3402     if (err) {
3403         error_propagate(errp, err);
3404         return;
3405     }
3406     /* This will assert if owner is neither NULL nor a DeviceState.
3407      * We only want the owner here for the purposes of defining a
3408      * unique name for migration. TODO: Ideally we should implement
3409      * a naming scheme for Objects which are not DeviceStates, in
3410      * which case we can relax this restriction.
3411      */
3412     owner_dev = DEVICE(owner);
3413     vmstate_register_ram(mr, owner_dev);
3414 }
3415
3416 /*
3417  * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3418  * the fuzz_dma_read_cb callback
3419  */
3420 #ifdef CONFIG_FUZZ
3421 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3422                       size_t len,
3423                       MemoryRegion *mr)
3424 {
3425 }
3426 #endif
3427
3428 static const TypeInfo memory_region_info = {
3429     .parent             = TYPE_OBJECT,
3430     .name               = TYPE_MEMORY_REGION,
3431     .class_size         = sizeof(MemoryRegionClass),
3432     .instance_size      = sizeof(MemoryRegion),
3433     .instance_init      = memory_region_initfn,
3434     .instance_finalize  = memory_region_finalize,
3435 };
3436
3437 static const TypeInfo iommu_memory_region_info = {
3438     .parent             = TYPE_MEMORY_REGION,
3439     .name               = TYPE_IOMMU_MEMORY_REGION,
3440     .class_size         = sizeof(IOMMUMemoryRegionClass),
3441     .instance_size      = sizeof(IOMMUMemoryRegion),
3442     .instance_init      = iommu_memory_region_initfn,
3443     .abstract           = true,
3444 };
3445
3446 static const TypeInfo ram_discard_manager_info = {
3447     .parent             = TYPE_INTERFACE,
3448     .name               = TYPE_RAM_DISCARD_MANAGER,
3449     .class_size         = sizeof(RamDiscardManagerClass),
3450 };
3451
3452 static void memory_register_types(void)
3453 {
3454     type_register_static(&memory_region_info);
3455     type_register_static(&iommu_memory_region_info);
3456     type_register_static(&ram_discard_manager_info);
3457 }
3458
3459 type_init(memory_register_types)
This page took 0.211916 seconds and 4 git commands to generate.