2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
28 #define DPRINTF(fmt, ...) \
29 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
31 #define DPRINTF(fmt, ...) do {} while(0)
34 static const uint8_t gic_id[] = {
35 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
38 #define NUM_CPU(s) ((s)->num_cpu)
40 static inline int gic_get_current_cpu(GICState *s)
43 return current_cpu->cpu_index;
48 /* Return true if this GIC config has interrupt groups, which is
49 * true if we're a GICv2, or a GICv1 with the security extensions.
51 static inline bool gic_has_groups(GICState *s)
53 return s->revision == 2 || s->security_extn;
56 /* TODO: Many places that call this routine could be optimized. */
57 /* Update interrupt status after enabled or pending bits have been changed. */
58 void gic_update(GICState *s)
63 int irq_level, fiq_level;
67 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
69 s->current_pending[cpu] = 1023;
70 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
71 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
72 qemu_irq_lower(s->parent_irq[cpu]);
73 qemu_irq_lower(s->parent_fiq[cpu]);
78 for (irq = 0; irq < s->num_irq; irq++) {
79 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
80 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
81 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
82 best_prio = GIC_GET_PRIORITY(irq, cpu);
88 irq_level = fiq_level = 0;
90 if (best_prio < s->priority_mask[cpu]) {
91 s->current_pending[cpu] = best_irq;
92 if (best_prio < s->running_priority[cpu]) {
93 int group = GIC_TEST_GROUP(best_irq, cm);
95 if (extract32(s->ctlr, group, 1) &&
96 extract32(s->cpu_ctlr[cpu], group, 1)) {
97 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
98 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
102 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
110 qemu_set_irq(s->parent_irq[cpu], irq_level);
111 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
115 void gic_set_pending_private(GICState *s, int cpu, int irq)
119 if (gic_test_pending(s, irq, cm)) {
123 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
124 GIC_SET_PENDING(irq, cm);
128 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
132 GIC_SET_LEVEL(irq, cm);
133 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
134 DPRINTF("Set %d pending mask %x\n", irq, target);
135 GIC_SET_PENDING(irq, target);
138 GIC_CLEAR_LEVEL(irq, cm);
142 static void gic_set_irq_generic(GICState *s, int irq, int level,
146 GIC_SET_LEVEL(irq, cm);
147 DPRINTF("Set %d pending mask %x\n", irq, target);
148 if (GIC_TEST_EDGE_TRIGGER(irq)) {
149 GIC_SET_PENDING(irq, target);
152 GIC_CLEAR_LEVEL(irq, cm);
156 /* Process a change in an external IRQ input. */
157 static void gic_set_irq(void *opaque, int irq, int level)
159 /* Meaning of the 'irq' parameter:
160 * [0..N-1] : external interrupts
161 * [N..N+31] : PPI (internal) interrupts for CPU 0
162 * [N+32..N+63] : PPI (internal interrupts for CPU 1
165 GICState *s = (GICState *)opaque;
167 if (irq < (s->num_irq - GIC_INTERNAL)) {
168 /* The first external input line is internal interrupt 32. */
171 target = GIC_TARGET(irq);
174 irq -= (s->num_irq - GIC_INTERNAL);
175 cpu = irq / GIC_INTERNAL;
181 assert(irq >= GIC_NR_SGIS);
183 if (level == GIC_TEST_LEVEL(irq, cm)) {
187 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
188 gic_set_irq_11mpcore(s, irq, level, cm, target);
190 gic_set_irq_generic(s, irq, level, cm, target);
196 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
199 uint16_t pending_irq = s->current_pending[cpu];
201 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
202 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
203 /* On a GIC without the security extensions, reading this register
204 * behaves in the same way as a secure access to a GIC with them.
206 bool secure = !s->security_extn || attrs.secure;
208 if (group == 0 && !secure) {
209 /* Group0 interrupts hidden from Non-secure access */
212 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
213 /* Group1 interrupts only seen by Secure access if
222 static int gic_get_group_priority(GICState *s, int cpu, int irq)
224 /* Return the group priority of the specified interrupt
225 * (which is the top bits of its priority, with the number
226 * of bits masked determined by the applicable binary point register).
231 if (gic_has_groups(s) &&
232 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
233 GIC_TEST_GROUP(irq, (1 << cpu))) {
239 /* a BPR of 0 means the group priority bits are [7:1];
240 * a BPR of 1 means they are [7:2], and so on down to
241 * a BPR of 7 meaning no group priority bits at all.
243 mask = ~0U << ((bpr & 7) + 1);
245 return GIC_GET_PRIORITY(irq, cpu) & mask;
248 static void gic_activate_irq(GICState *s, int cpu, int irq)
250 /* Set the appropriate Active Priority Register bit for this IRQ,
251 * and update the running priority.
253 int prio = gic_get_group_priority(s, cpu, irq);
254 int preemption_level = prio >> (GIC_MIN_BPR + 1);
255 int regno = preemption_level / 32;
256 int bitno = preemption_level % 32;
258 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
259 s->nsapr[regno][cpu] &= (1 << bitno);
261 s->apr[regno][cpu] &= (1 << bitno);
264 s->running_priority[cpu] = prio;
267 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
269 /* Recalculate the current running priority for this CPU based
270 * on the set bits in the Active Priority Registers.
273 for (i = 0; i < GIC_NR_APRS; i++) {
274 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
278 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
283 static void gic_drop_prio(GICState *s, int cpu, int group)
285 /* Drop the priority of the currently active interrupt in the
288 * Note that we can guarantee (because of the requirement to nest
289 * GICC_IAR reads [which activate an interrupt and raise priority]
290 * with GICC_EOIR writes [which drop the priority for the interrupt])
291 * that the interrupt we're being called for is the highest priority
292 * active interrupt, meaning that it has the lowest set bit in the
295 * If the guest does not honour the ordering constraints then the
296 * behaviour of the GIC is UNPREDICTABLE, which for us means that
297 * the values of the APR registers might become incorrect and the
298 * running priority will be wrong, so interrupts that should preempt
299 * might not do so, and interrupts that should not preempt might do so.
303 for (i = 0; i < GIC_NR_APRS; i++) {
304 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
308 /* Clear lowest set bit */
313 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
316 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
321 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
322 * for the case where this GIC supports grouping and the pending interrupt
323 * is in the wrong group.
325 irq = gic_get_current_pending_irq(s, cpu, attrs);;
327 if (irq >= GIC_MAXIRQ) {
328 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
332 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
333 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
337 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
338 /* Clear pending flags for both level and edge triggered interrupts.
339 * Level triggered IRQs will be reasserted once they become inactive.
341 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
344 if (irq < GIC_NR_SGIS) {
345 /* Lookup the source CPU for the SGI and clear this in the
346 * sgi_pending map. Return the src and clear the overall pending
347 * state on this CPU if the SGI is not pending from any CPUs.
349 assert(s->sgi_pending[irq][cpu] != 0);
350 src = ctz32(s->sgi_pending[irq][cpu]);
351 s->sgi_pending[irq][cpu] &= ~(1 << src);
352 if (s->sgi_pending[irq][cpu] == 0) {
353 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
355 ret = irq | ((src & 0x7) << 10);
357 /* Clear pending state for both level and edge triggered
358 * interrupts. (level triggered interrupts with an active line
359 * remain pending, see gic_test_pending)
361 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
366 gic_activate_irq(s, cpu, irq);
368 DPRINTF("ACK %d\n", irq);
372 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
375 if (s->security_extn && !attrs.secure) {
376 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
377 return; /* Ignore Non-secure access of Group0 IRQ */
379 val = 0x80 | (val >> 1); /* Non-secure view */
382 if (irq < GIC_INTERNAL) {
383 s->priority1[irq][cpu] = val;
385 s->priority2[(irq) - GIC_INTERNAL] = val;
389 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
392 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
394 if (s->security_extn && !attrs.secure) {
395 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
396 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
398 prio = (prio << 1) & 0xff; /* Non-secure view */
403 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
406 if (s->security_extn && !attrs.secure) {
407 if (s->priority_mask[cpu] & 0x80) {
408 /* Priority Mask in upper half */
409 pmask = 0x80 | (pmask >> 1);
411 /* Non-secure write ignored if priority mask is in lower half */
415 s->priority_mask[cpu] = pmask;
418 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
420 uint32_t pmask = s->priority_mask[cpu];
422 if (s->security_extn && !attrs.secure) {
424 /* Priority Mask in upper half, return Non-secure view */
425 pmask = (pmask << 1) & 0xff;
427 /* Priority Mask in lower half, RAZ */
434 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
436 uint32_t ret = s->cpu_ctlr[cpu];
438 if (s->security_extn && !attrs.secure) {
439 /* Construct the NS banked view of GICC_CTLR from the correct
440 * bits of the S banked view. We don't need to move the bypass
441 * control bits because we don't implement that (IMPDEF) part
442 * of the GIC architecture.
444 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
449 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
454 if (s->security_extn && !attrs.secure) {
455 /* The NS view can only write certain bits in the register;
456 * the rest are unchanged
458 mask = GICC_CTLR_EN_GRP1;
459 if (s->revision == 2) {
460 mask |= GICC_CTLR_EOIMODE_NS;
462 s->cpu_ctlr[cpu] &= ~mask;
463 s->cpu_ctlr[cpu] |= (value << 1) & mask;
465 if (s->revision == 2) {
466 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
468 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
470 s->cpu_ctlr[cpu] = value & mask;
472 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
473 "Group1 Interrupts %sabled\n", cpu,
474 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
475 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
478 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
480 if (s->security_extn && !attrs.secure) {
481 if (s->running_priority[cpu] & 0x80) {
482 /* Running priority in upper half of range: return the Non-secure
483 * view of the priority.
485 return s->running_priority[cpu] << 1;
487 /* Running priority in lower half of range: RAZ */
491 return s->running_priority[cpu];
495 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
500 DPRINTF("EOI %d\n", irq);
501 if (irq >= s->num_irq) {
502 /* This handles two cases:
503 * 1. If software writes the ID of a spurious interrupt [ie 1023]
504 * to the GICC_EOIR, the GIC ignores that write.
505 * 2. If software writes the number of a non-existent interrupt
506 * this must be a subcase of "value written does not match the last
507 * valid interrupt value read from the Interrupt Acknowledge
508 * register" and so this is UNPREDICTABLE. We choose to ignore it.
512 if (s->running_priority[cpu] == 0x100) {
513 return; /* No active IRQ. */
516 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
517 /* Mark level triggered interrupts as pending if they are still
519 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
520 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
521 DPRINTF("Set %d pending mask %x\n", irq, cm);
522 GIC_SET_PENDING(irq, cm);
526 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
528 if (s->security_extn && !attrs.secure && !group) {
529 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
533 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
534 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
535 * i.e. go ahead and complete the irq anyway.
538 gic_drop_prio(s, cpu, group);
542 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
544 GICState *s = (GICState *)opaque;
552 cpu = gic_get_current_cpu(s);
554 if (offset < 0x100) {
555 if (offset == 0) { /* GICD_CTLR */
556 if (s->security_extn && !attrs.secure) {
557 /* The NS bank of this register is just an alias of the
558 * EnableGrp1 bit in the S bank version.
560 return extract32(s->ctlr, 1, 1);
566 /* Interrupt Controller Type Register */
567 return ((s->num_irq / 32) - 1)
568 | ((NUM_CPU(s) - 1) << 5)
569 | (s->security_extn << 10);
572 if (offset >= 0x80) {
573 /* Interrupt Group Registers: these RAZ/WI if this is an NS
574 * access to a GIC with the security extensions, or if the GIC
575 * doesn't have groups at all.
578 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
579 /* Every byte offset holds 8 group status bits */
580 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
581 if (irq >= s->num_irq) {
584 for (i = 0; i < 8; i++) {
585 if (GIC_TEST_GROUP(irq + i, cm)) {
593 } else if (offset < 0x200) {
594 /* Interrupt Set/Clear Enable. */
596 irq = (offset - 0x100) * 8;
598 irq = (offset - 0x180) * 8;
600 if (irq >= s->num_irq)
603 for (i = 0; i < 8; i++) {
604 if (GIC_TEST_ENABLED(irq + i, cm)) {
608 } else if (offset < 0x300) {
609 /* Interrupt Set/Clear Pending. */
611 irq = (offset - 0x200) * 8;
613 irq = (offset - 0x280) * 8;
615 if (irq >= s->num_irq)
618 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
619 for (i = 0; i < 8; i++) {
620 if (gic_test_pending(s, irq + i, mask)) {
624 } else if (offset < 0x400) {
625 /* Interrupt Active. */
626 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
627 if (irq >= s->num_irq)
630 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
631 for (i = 0; i < 8; i++) {
632 if (GIC_TEST_ACTIVE(irq + i, mask)) {
636 } else if (offset < 0x800) {
637 /* Interrupt Priority. */
638 irq = (offset - 0x400) + GIC_BASE_IRQ;
639 if (irq >= s->num_irq)
641 res = gic_get_priority(s, cpu, irq, attrs);
642 } else if (offset < 0xc00) {
643 /* Interrupt CPU Target. */
644 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
645 /* For uniprocessor GICs these RAZ/WI */
648 irq = (offset - 0x800) + GIC_BASE_IRQ;
649 if (irq >= s->num_irq) {
652 if (irq >= 29 && irq <= 31) {
655 res = GIC_TARGET(irq);
658 } else if (offset < 0xf00) {
659 /* Interrupt Configuration. */
660 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
661 if (irq >= s->num_irq)
664 for (i = 0; i < 4; i++) {
665 if (GIC_TEST_MODEL(irq + i))
666 res |= (1 << (i * 2));
667 if (GIC_TEST_EDGE_TRIGGER(irq + i))
668 res |= (2 << (i * 2));
670 } else if (offset < 0xf10) {
672 } else if (offset < 0xf30) {
673 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
677 if (offset < 0xf20) {
678 /* GICD_CPENDSGIRn */
679 irq = (offset - 0xf10);
681 irq = (offset - 0xf20);
682 /* GICD_SPENDSGIRn */
685 res = s->sgi_pending[irq][cpu];
686 } else if (offset < 0xfe0) {
688 } else /* offset >= 0xfe0 */ {
692 res = gic_id[(offset - 0xfe0) >> 2];
697 qemu_log_mask(LOG_GUEST_ERROR,
698 "gic_dist_readb: Bad offset %x\n", (int)offset);
702 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
703 unsigned size, MemTxAttrs attrs)
707 *data = gic_dist_readb(opaque, offset, attrs);
710 *data = gic_dist_readb(opaque, offset, attrs);
711 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
714 *data = gic_dist_readb(opaque, offset, attrs);
715 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
716 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
717 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
724 static void gic_dist_writeb(void *opaque, hwaddr offset,
725 uint32_t value, MemTxAttrs attrs)
727 GICState *s = (GICState *)opaque;
732 cpu = gic_get_current_cpu(s);
733 if (offset < 0x100) {
735 if (s->security_extn && !attrs.secure) {
736 /* NS version is just an alias of the S version's bit 1 */
737 s->ctlr = deposit32(s->ctlr, 1, 1, value);
738 } else if (gic_has_groups(s)) {
739 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
741 s->ctlr = value & GICD_CTLR_EN_GRP0;
743 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
744 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
745 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
746 } else if (offset < 4) {
748 } else if (offset >= 0x80) {
749 /* Interrupt Group Registers: RAZ/WI for NS access to secure
750 * GIC, or for GICs without groups.
752 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
753 /* Every byte offset holds 8 group status bits */
754 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
755 if (irq >= s->num_irq) {
758 for (i = 0; i < 8; i++) {
759 /* Group bits are banked for private interrupts */
760 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
761 if (value & (1 << i)) {
762 /* Group1 (Non-secure) */
763 GIC_SET_GROUP(irq + i, cm);
765 /* Group0 (Secure) */
766 GIC_CLEAR_GROUP(irq + i, cm);
773 } else if (offset < 0x180) {
774 /* Interrupt Set Enable. */
775 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
776 if (irq >= s->num_irq)
778 if (irq < GIC_NR_SGIS) {
782 for (i = 0; i < 8; i++) {
783 if (value & (1 << i)) {
785 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
786 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
788 if (!GIC_TEST_ENABLED(irq + i, cm)) {
789 DPRINTF("Enabled IRQ %d\n", irq + i);
791 GIC_SET_ENABLED(irq + i, cm);
792 /* If a raised level triggered IRQ enabled then mark
794 if (GIC_TEST_LEVEL(irq + i, mask)
795 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
796 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
797 GIC_SET_PENDING(irq + i, mask);
801 } else if (offset < 0x200) {
802 /* Interrupt Clear Enable. */
803 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
804 if (irq >= s->num_irq)
806 if (irq < GIC_NR_SGIS) {
810 for (i = 0; i < 8; i++) {
811 if (value & (1 << i)) {
812 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
814 if (GIC_TEST_ENABLED(irq + i, cm)) {
815 DPRINTF("Disabled IRQ %d\n", irq + i);
817 GIC_CLEAR_ENABLED(irq + i, cm);
820 } else if (offset < 0x280) {
821 /* Interrupt Set Pending. */
822 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
823 if (irq >= s->num_irq)
825 if (irq < GIC_NR_SGIS) {
829 for (i = 0; i < 8; i++) {
830 if (value & (1 << i)) {
831 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
834 } else if (offset < 0x300) {
835 /* Interrupt Clear Pending. */
836 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
837 if (irq >= s->num_irq)
839 if (irq < GIC_NR_SGIS) {
843 for (i = 0; i < 8; i++) {
844 /* ??? This currently clears the pending bit for all CPUs, even
845 for per-CPU interrupts. It's unclear whether this is the
847 if (value & (1 << i)) {
848 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
851 } else if (offset < 0x400) {
852 /* Interrupt Active. */
854 } else if (offset < 0x800) {
855 /* Interrupt Priority. */
856 irq = (offset - 0x400) + GIC_BASE_IRQ;
857 if (irq >= s->num_irq)
859 gic_set_priority(s, cpu, irq, value, attrs);
860 } else if (offset < 0xc00) {
861 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
862 * annoying exception of the 11MPCore's GIC.
864 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
865 irq = (offset - 0x800) + GIC_BASE_IRQ;
866 if (irq >= s->num_irq) {
871 } else if (irq < GIC_INTERNAL) {
872 value = ALL_CPU_MASK;
874 s->irq_target[irq] = value & ALL_CPU_MASK;
876 } else if (offset < 0xf00) {
877 /* Interrupt Configuration. */
878 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
879 if (irq >= s->num_irq)
881 if (irq < GIC_NR_SGIS)
883 for (i = 0; i < 4; i++) {
884 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
885 if (value & (1 << (i * 2))) {
886 GIC_SET_MODEL(irq + i);
888 GIC_CLEAR_MODEL(irq + i);
891 if (value & (2 << (i * 2))) {
892 GIC_SET_EDGE_TRIGGER(irq + i);
894 GIC_CLEAR_EDGE_TRIGGER(irq + i);
897 } else if (offset < 0xf10) {
898 /* 0xf00 is only handled for 32-bit writes. */
900 } else if (offset < 0xf20) {
901 /* GICD_CPENDSGIRn */
902 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
905 irq = (offset - 0xf10);
907 s->sgi_pending[irq][cpu] &= ~value;
908 if (s->sgi_pending[irq][cpu] == 0) {
909 GIC_CLEAR_PENDING(irq, 1 << cpu);
911 } else if (offset < 0xf30) {
912 /* GICD_SPENDSGIRn */
913 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
916 irq = (offset - 0xf20);
918 GIC_SET_PENDING(irq, 1 << cpu);
919 s->sgi_pending[irq][cpu] |= value;
926 qemu_log_mask(LOG_GUEST_ERROR,
927 "gic_dist_writeb: Bad offset %x\n", (int)offset);
930 static void gic_dist_writew(void *opaque, hwaddr offset,
931 uint32_t value, MemTxAttrs attrs)
933 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
934 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
937 static void gic_dist_writel(void *opaque, hwaddr offset,
938 uint32_t value, MemTxAttrs attrs)
940 GICState *s = (GICState *)opaque;
941 if (offset == 0xf00) {
947 cpu = gic_get_current_cpu(s);
949 switch ((value >> 24) & 3) {
951 mask = (value >> 16) & ALL_CPU_MASK;
954 mask = ALL_CPU_MASK ^ (1 << cpu);
960 DPRINTF("Bad Soft Int target filter\n");
964 GIC_SET_PENDING(irq, mask);
965 target_cpu = ctz32(mask);
966 while (target_cpu < GIC_NCPU) {
967 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
968 mask &= ~(1 << target_cpu);
969 target_cpu = ctz32(mask);
974 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
975 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
978 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
979 unsigned size, MemTxAttrs attrs)
983 gic_dist_writeb(opaque, offset, data, attrs);
986 gic_dist_writew(opaque, offset, data, attrs);
989 gic_dist_writel(opaque, offset, data, attrs);
996 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
998 /* Return the Nonsecure view of GICC_APR<regno>. This is the
999 * second half of GICC_NSAPR.
1001 switch (GIC_MIN_BPR) {
1004 return s->nsapr[regno + 2][cpu];
1009 return s->nsapr[regno + 1][cpu];
1014 return extract32(s->nsapr[0][cpu], 16, 16);
1019 return extract32(s->nsapr[0][cpu], 8, 8);
1023 g_assert_not_reached();
1028 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1031 /* Write the Nonsecure view of GICC_APR<regno>. */
1032 switch (GIC_MIN_BPR) {
1035 s->nsapr[regno + 2][cpu] = value;
1040 s->nsapr[regno + 1][cpu] = value;
1045 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1050 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1054 g_assert_not_reached();
1058 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1059 uint64_t *data, MemTxAttrs attrs)
1062 case 0x00: /* Control */
1063 *data = gic_get_cpu_control(s, cpu, attrs);
1065 case 0x04: /* Priority mask */
1066 *data = gic_get_priority_mask(s, cpu, attrs);
1068 case 0x08: /* Binary Point */
1069 if (s->security_extn && !attrs.secure) {
1070 /* BPR is banked. Non-secure copy stored in ABPR. */
1071 *data = s->abpr[cpu];
1073 *data = s->bpr[cpu];
1076 case 0x0c: /* Acknowledge */
1077 *data = gic_acknowledge_irq(s, cpu, attrs);
1079 case 0x14: /* Running Priority */
1080 *data = gic_get_running_priority(s, cpu, attrs);
1082 case 0x18: /* Highest Pending Interrupt */
1083 *data = gic_get_current_pending_irq(s, cpu, attrs);
1085 case 0x1c: /* Aliased Binary Point */
1086 /* GIC v2, no security: ABPR
1087 * GIC v1, no security: not implemented (RAZ/WI)
1088 * With security extensions, secure access: ABPR (alias of NS BPR)
1089 * With security extensions, nonsecure access: RAZ/WI
1091 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1094 *data = s->abpr[cpu];
1097 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1099 int regno = (offset - 0xd0) / 4;
1101 if (regno >= GIC_NR_APRS || s->revision != 2) {
1103 } else if (s->security_extn && !attrs.secure) {
1104 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1105 *data = gic_apr_ns_view(s, regno, cpu);
1107 *data = s->apr[regno][cpu];
1111 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1113 int regno = (offset - 0xe0) / 4;
1115 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1116 (s->security_extn && !attrs.secure)) {
1119 *data = s->nsapr[regno][cpu];
1124 qemu_log_mask(LOG_GUEST_ERROR,
1125 "gic_cpu_read: Bad offset %x\n", (int)offset);
1131 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1132 uint32_t value, MemTxAttrs attrs)
1135 case 0x00: /* Control */
1136 gic_set_cpu_control(s, cpu, value, attrs);
1138 case 0x04: /* Priority mask */
1139 gic_set_priority_mask(s, cpu, value, attrs);
1141 case 0x08: /* Binary Point */
1142 if (s->security_extn && !attrs.secure) {
1143 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1145 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1148 case 0x10: /* End Of Interrupt */
1149 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1151 case 0x1c: /* Aliased Binary Point */
1152 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1153 /* unimplemented, or NS access: RAZ/WI */
1156 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1159 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1161 int regno = (offset - 0xd0) / 4;
1163 if (regno >= GIC_NR_APRS || s->revision != 2) {
1166 if (s->security_extn && !attrs.secure) {
1167 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1168 gic_apr_write_ns_view(s, regno, cpu, value);
1170 s->apr[regno][cpu] = value;
1174 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1176 int regno = (offset - 0xe0) / 4;
1178 if (regno >= GIC_NR_APRS || s->revision != 2) {
1181 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1184 s->nsapr[regno][cpu] = value;
1188 qemu_log_mask(LOG_GUEST_ERROR,
1189 "gic_cpu_write: Bad offset %x\n", (int)offset);
1196 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1197 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1198 unsigned size, MemTxAttrs attrs)
1200 GICState *s = (GICState *)opaque;
1201 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1204 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1205 uint64_t value, unsigned size,
1208 GICState *s = (GICState *)opaque;
1209 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1212 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1213 * These just decode the opaque pointer into GICState* + cpu id.
1215 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1216 unsigned size, MemTxAttrs attrs)
1218 GICState **backref = (GICState **)opaque;
1219 GICState *s = *backref;
1220 int id = (backref - s->backref);
1221 return gic_cpu_read(s, id, addr, data, attrs);
1224 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1225 uint64_t value, unsigned size,
1228 GICState **backref = (GICState **)opaque;
1229 GICState *s = *backref;
1230 int id = (backref - s->backref);
1231 return gic_cpu_write(s, id, addr, value, attrs);
1234 static const MemoryRegionOps gic_ops[2] = {
1236 .read_with_attrs = gic_dist_read,
1237 .write_with_attrs = gic_dist_write,
1238 .endianness = DEVICE_NATIVE_ENDIAN,
1241 .read_with_attrs = gic_thiscpu_read,
1242 .write_with_attrs = gic_thiscpu_write,
1243 .endianness = DEVICE_NATIVE_ENDIAN,
1247 static const MemoryRegionOps gic_cpu_ops = {
1248 .read_with_attrs = gic_do_cpu_read,
1249 .write_with_attrs = gic_do_cpu_write,
1250 .endianness = DEVICE_NATIVE_ENDIAN,
1253 /* This function is used by nvic model */
1254 void gic_init_irqs_and_distributor(GICState *s)
1256 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1259 static void arm_gic_realize(DeviceState *dev, Error **errp)
1261 /* Device instance realize function for the GIC sysbus device */
1263 GICState *s = ARM_GIC(dev);
1264 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1265 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1266 Error *local_err = NULL;
1268 agc->parent_realize(dev, &local_err);
1270 error_propagate(errp, local_err);
1274 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1275 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1277 /* Extra core-specific regions for the CPU interfaces. This is
1278 * necessary for "franken-GIC" implementations, for example on
1280 * NB that the memory region size of 0x100 applies for the 11MPCore
1281 * and also cores following the GIC v1 spec (ie A9).
1282 * GIC v2 defines a larger memory region (0x1000) so this will need
1283 * to be extended when we implement A15.
1285 for (i = 0; i < NUM_CPU(s); i++) {
1287 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1288 &s->backref[i], "gic_cpu", 0x100);
1289 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1293 static void arm_gic_class_init(ObjectClass *klass, void *data)
1295 DeviceClass *dc = DEVICE_CLASS(klass);
1296 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1298 agc->parent_realize = dc->realize;
1299 dc->realize = arm_gic_realize;
1302 static const TypeInfo arm_gic_info = {
1303 .name = TYPE_ARM_GIC,
1304 .parent = TYPE_ARM_GIC_COMMON,
1305 .instance_size = sizeof(GICState),
1306 .class_init = arm_gic_class_init,
1307 .class_size = sizeof(ARMGICClass),
1310 static void arm_gic_register_types(void)
1312 type_register_static(&arm_gic_info);
1315 type_init(arm_gic_register_types)