]> Git Repo - qemu.git/blob - qemu-thread-win32.c
Use glib memory allocation and free functions
[qemu.git] / qemu-thread-win32.c
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 #include "qemu-common.h"
14 #include "qemu-thread.h"
15 #include <process.h>
16 #include <assert.h>
17 #include <limits.h>
18
19 static void error_exit(int err, const char *msg)
20 {
21     char *pstr;
22
23     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
24                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
25     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
26     LocalFree(pstr);
27     exit(1);
28 }
29
30 void qemu_mutex_init(QemuMutex *mutex)
31 {
32     mutex->owner = 0;
33     InitializeCriticalSection(&mutex->lock);
34 }
35
36 void qemu_mutex_destroy(QemuMutex *mutex)
37 {
38     assert(mutex->owner == 0);
39     DeleteCriticalSection(&mutex->lock);
40 }
41
42 void qemu_mutex_lock(QemuMutex *mutex)
43 {
44     EnterCriticalSection(&mutex->lock);
45
46     /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
47      * using them as such.
48      */
49     assert(mutex->owner == 0);
50     mutex->owner = GetCurrentThreadId();
51 }
52
53 int qemu_mutex_trylock(QemuMutex *mutex)
54 {
55     int owned;
56
57     owned = TryEnterCriticalSection(&mutex->lock);
58     if (owned) {
59         assert(mutex->owner == 0);
60         mutex->owner = GetCurrentThreadId();
61     }
62     return !owned;
63 }
64
65 void qemu_mutex_unlock(QemuMutex *mutex)
66 {
67     assert(mutex->owner == GetCurrentThreadId());
68     mutex->owner = 0;
69     LeaveCriticalSection(&mutex->lock);
70 }
71
72 void qemu_cond_init(QemuCond *cond)
73 {
74     memset(cond, 0, sizeof(*cond));
75
76     cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
77     if (!cond->sema) {
78         error_exit(GetLastError(), __func__);
79     }
80     cond->continue_event = CreateEvent(NULL,    /* security */
81                                        FALSE,   /* auto-reset */
82                                        FALSE,   /* not signaled */
83                                        NULL);   /* name */
84     if (!cond->continue_event) {
85         error_exit(GetLastError(), __func__);
86     }
87 }
88
89 void qemu_cond_destroy(QemuCond *cond)
90 {
91     BOOL result;
92     result = CloseHandle(cond->continue_event);
93     if (!result) {
94         error_exit(GetLastError(), __func__);
95     }
96     cond->continue_event = 0;
97     result = CloseHandle(cond->sema);
98     if (!result) {
99         error_exit(GetLastError(), __func__);
100     }
101     cond->sema = 0;
102 }
103
104 void qemu_cond_signal(QemuCond *cond)
105 {
106     DWORD result;
107
108     /*
109      * Signal only when there are waiters.  cond->waiters is
110      * incremented by pthread_cond_wait under the external lock,
111      * so we are safe about that.
112      */
113     if (cond->waiters == 0) {
114         return;
115     }
116
117     /*
118      * Waiting threads decrement it outside the external lock, but
119      * only if another thread is executing pthread_cond_broadcast and
120      * has the mutex.  So, it also cannot be decremented concurrently
121      * with this particular access.
122      */
123     cond->target = cond->waiters - 1;
124     result = SignalObjectAndWait(cond->sema, cond->continue_event,
125                                  INFINITE, FALSE);
126     if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
127         error_exit(GetLastError(), __func__);
128     }
129 }
130
131 void qemu_cond_broadcast(QemuCond *cond)
132 {
133     BOOLEAN result;
134     /*
135      * As in pthread_cond_signal, access to cond->waiters and
136      * cond->target is locked via the external mutex.
137      */
138     if (cond->waiters == 0) {
139         return;
140     }
141
142     cond->target = 0;
143     result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
144     if (!result) {
145         error_exit(GetLastError(), __func__);
146     }
147
148     /*
149      * At this point all waiters continue. Each one takes its
150      * slice of the semaphore. Now it's our turn to wait: Since
151      * the external mutex is held, no thread can leave cond_wait,
152      * yet. For this reason, we can be sure that no thread gets
153      * a chance to eat *more* than one slice. OTOH, it means
154      * that the last waiter must send us a wake-up.
155      */
156     WaitForSingleObject(cond->continue_event, INFINITE);
157 }
158
159 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
160 {
161     /*
162      * This access is protected under the mutex.
163      */
164     cond->waiters++;
165
166     /*
167      * Unlock external mutex and wait for signal.
168      * NOTE: we've held mutex locked long enough to increment
169      * waiters count above, so there's no problem with
170      * leaving mutex unlocked before we wait on semaphore.
171      */
172     qemu_mutex_unlock(mutex);
173     WaitForSingleObject(cond->sema, INFINITE);
174
175     /* Now waiters must rendez-vous with the signaling thread and
176      * let it continue.  For cond_broadcast this has heavy contention
177      * and triggers thundering herd.  So goes life.
178      *
179      * Decrease waiters count.  The mutex is not taken, so we have
180      * to do this atomically.
181      *
182      * All waiters contend for the mutex at the end of this function
183      * until the signaling thread relinquishes it.  To ensure
184      * each waiter consumes exactly one slice of the semaphore,
185      * the signaling thread stops until it is told by the last
186      * waiter that it can go on.
187      */
188     if (InterlockedDecrement(&cond->waiters) == cond->target) {
189         SetEvent(cond->continue_event);
190     }
191
192     qemu_mutex_lock(mutex);
193 }
194
195 struct QemuThreadData {
196     QemuThread *thread;
197     void *(*start_routine)(void *);
198     void *arg;
199 };
200
201 static int qemu_thread_tls_index = TLS_OUT_OF_INDEXES;
202
203 static unsigned __stdcall win32_start_routine(void *arg)
204 {
205     struct QemuThreadData data = *(struct QemuThreadData *) arg;
206     QemuThread *thread = data.thread;
207
208     free(arg);
209     TlsSetValue(qemu_thread_tls_index, thread);
210
211     /*
212      * Use DuplicateHandle instead of assigning thread->thread in the
213      * creating thread to avoid races.  It's simpler this way than with
214      * synchronization.
215      */
216     DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
217                     GetCurrentProcess(), &thread->thread,
218                     0, FALSE, DUPLICATE_SAME_ACCESS);
219
220     qemu_thread_exit(data.start_routine(data.arg));
221     abort();
222 }
223
224 void qemu_thread_exit(void *arg)
225 {
226     QemuThread *thread = TlsGetValue(qemu_thread_tls_index);
227     thread->ret = arg;
228     CloseHandle(thread->thread);
229     thread->thread = NULL;
230     ExitThread(0);
231 }
232
233 static inline void qemu_thread_init(void)
234 {
235     if (qemu_thread_tls_index == TLS_OUT_OF_INDEXES) {
236         qemu_thread_tls_index = TlsAlloc();
237         if (qemu_thread_tls_index == TLS_OUT_OF_INDEXES) {
238             error_exit(ERROR_NO_SYSTEM_RESOURCES, __func__);
239         }
240     }
241 }
242
243
244 void qemu_thread_create(QemuThread *thread,
245                        void *(*start_routine)(void *),
246                        void *arg)
247 {
248     HANDLE hThread;
249
250     struct QemuThreadData *data;
251     qemu_thread_init();
252     data = g_malloc(sizeof *data);
253     data->thread = thread;
254     data->start_routine = start_routine;
255     data->arg = arg;
256
257     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
258                                       data, 0, NULL);
259     if (!hThread) {
260         error_exit(GetLastError(), __func__);
261     }
262     CloseHandle(hThread);
263 }
264
265 void qemu_thread_get_self(QemuThread *thread)
266 {
267     if (!thread->thread) {
268         /* In the main thread of the process.  Initialize the QemuThread
269            pointer in TLS, and use the dummy GetCurrentThread handle as
270            the identifier for qemu_thread_is_self.  */
271         qemu_thread_init();
272         TlsSetValue(qemu_thread_tls_index, thread);
273         thread->thread = GetCurrentThread();
274     }
275 }
276
277 int qemu_thread_is_self(QemuThread *thread)
278 {
279     QemuThread *this_thread = TlsGetValue(qemu_thread_tls_index);
280     return this_thread->thread == thread->thread;
281 }
This page took 0.039753 seconds and 4 git commands to generate.