2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "kvm-consts.h"
25 #if defined(TARGET_AARCH64)
26 /* AArch64 definitions */
27 # define TARGET_LONG_BITS 64
29 # define TARGET_LONG_BITS 32
32 #define CPUArchState struct CPUARMState
34 #include "qemu-common.h"
36 #include "exec/cpu-defs.h"
38 #include "fpu/softfloat.h"
40 #define EXCP_UDEF 1 /* undefined instruction */
41 #define EXCP_SWI 2 /* software interrupt */
42 #define EXCP_PREFETCH_ABORT 3
43 #define EXCP_DATA_ABORT 4
47 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
48 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
49 #define EXCP_HVC 11 /* HyperVisor Call */
50 #define EXCP_HYP_TRAP 12
51 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_SEMIHOST 16 /* semihosting call */
56 #define ARMV7M_EXCP_RESET 1
57 #define ARMV7M_EXCP_NMI 2
58 #define ARMV7M_EXCP_HARD 3
59 #define ARMV7M_EXCP_MEM 4
60 #define ARMV7M_EXCP_BUS 5
61 #define ARMV7M_EXCP_USAGE 6
62 #define ARMV7M_EXCP_SVC 11
63 #define ARMV7M_EXCP_DEBUG 12
64 #define ARMV7M_EXCP_PENDSV 14
65 #define ARMV7M_EXCP_SYSTICK 15
67 /* ARM-specific interrupt pending bits. */
68 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
69 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
70 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
72 /* The usual mapping for an AArch64 system register to its AArch32
73 * counterpart is for the 32 bit world to have access to the lower
74 * half only (with writes leaving the upper half untouched). It's
75 * therefore useful to be able to pass TCG the offset of the least
76 * significant half of a uint64_t struct member.
78 #ifdef HOST_WORDS_BIGENDIAN
79 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
80 #define offsetofhigh32(S, M) offsetof(S, M)
82 #define offsetoflow32(S, M) offsetof(S, M)
83 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
86 /* Meanings of the ARMCPU object's four inbound GPIO lines */
89 #define ARM_CPU_VIRQ 2
90 #define ARM_CPU_VFIQ 3
92 #define NB_MMU_MODES 7
93 /* ARM-specific extra insn start words:
94 * 1: Conditional execution bits
95 * 2: Partial exception syndrome for data aborts
97 #define TARGET_INSN_START_EXTRA_WORDS 2
99 /* The 2nd extra word holding syndrome info for data aborts does not use
100 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
101 * help the sleb128 encoder do a better job.
102 * When restoring the CPU state, we shift it back up.
104 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
105 #define ARM_INSN_START_WORD2_SHIFT 14
107 /* We currently assume float and double are IEEE single and double
108 precision respectively.
109 Doing runtime conversions is tricky because VFP registers may contain
110 integer values (eg. as the result of a FTOSI instruction).
111 s<2n> maps to the least significant half of d<n>
112 s<2n+1> maps to the most significant half of d<n>
115 /* CPU state for each instance of a generic timer (in cp15 c14) */
116 typedef struct ARMGenericTimer {
117 uint64_t cval; /* Timer CompareValue register */
118 uint64_t ctl; /* Timer Control register */
121 #define GTIMER_PHYS 0
122 #define GTIMER_VIRT 1
125 #define NUM_GTIMERS 4
133 typedef struct CPUARMState {
134 /* Regs for current mode. */
137 /* 32/64 switch only happens when taking and returning from
138 * exceptions so the overlap semantics are taken care of then
139 * instead of having a complicated union.
141 /* Regs for A64 mode. */
144 /* PSTATE isn't an architectural register for ARMv8. However, it is
145 * convenient for us to assemble the underlying state into a 32 bit format
146 * identical to the architectural format used for the SPSR. (This is also
147 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
148 * 'pstate' register are.) Of the PSTATE bits:
149 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
150 * semantics as for AArch32, as described in the comments on each field)
151 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
152 * DAIF (exception masks) are kept in env->daif
153 * all other bits are stored in their correct places in env->pstate
156 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
158 /* Frequently accessed CPSR bits are stored separately for efficiency.
159 This contains all the other bits. Use cpsr_{read,write} to access
161 uint32_t uncached_cpsr;
164 /* Banked registers. */
165 uint64_t banked_spsr[8];
166 uint32_t banked_r13[8];
167 uint32_t banked_r14[8];
169 /* These hold r8-r12. */
170 uint32_t usr_regs[5];
171 uint32_t fiq_regs[5];
173 /* cpsr flag cache for faster execution */
174 uint32_t CF; /* 0 or 1 */
175 uint32_t VF; /* V is the bit 31. All other bits are undefined */
176 uint32_t NF; /* N is bit 31. All other bits are undefined. */
177 uint32_t ZF; /* Z set if zero. */
178 uint32_t QF; /* 0 or 1 */
179 uint32_t GE; /* cpsr[19:16] */
180 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
181 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
182 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
184 uint64_t elr_el[4]; /* AArch64 exception link regs */
185 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
187 /* System control coprocessor (cp15) */
190 union { /* Cache size selection */
192 uint64_t _unused_csselr0;
194 uint64_t _unused_csselr1;
197 uint64_t csselr_el[4];
199 union { /* System control register. */
201 uint64_t _unused_sctlr;
206 uint64_t sctlr_el[4];
208 uint64_t cpacr_el1; /* Architectural feature access control register */
209 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
210 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
211 uint64_t sder; /* Secure debug enable register. */
212 uint32_t nsacr; /* Non-secure access control register. */
213 union { /* MMU translation table base 0. */
215 uint64_t _unused_ttbr0_0;
217 uint64_t _unused_ttbr0_1;
220 uint64_t ttbr0_el[4];
222 union { /* MMU translation table base 1. */
224 uint64_t _unused_ttbr1_0;
226 uint64_t _unused_ttbr1_1;
229 uint64_t ttbr1_el[4];
231 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
232 /* MMU translation table base control. */
234 TCR vtcr_el2; /* Virtualization Translation Control. */
235 uint32_t c2_data; /* MPU data cacheable bits. */
236 uint32_t c2_insn; /* MPU instruction cacheable bits. */
237 union { /* MMU domain access control register
238 * MPU write buffer control.
248 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
249 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
250 uint64_t hcr_el2; /* Hypervisor configuration register */
251 uint64_t scr_el3; /* Secure configuration register. */
252 union { /* Fault status registers. */
263 uint64_t _unused_dfsr;
270 uint32_t c6_region[8]; /* MPU base/size registers. */
271 union { /* Fault address registers. */
273 uint64_t _unused_far0;
274 #ifdef HOST_WORDS_BIGENDIAN
285 uint64_t _unused_far3;
291 union { /* Translation result. */
293 uint64_t _unused_par_0;
295 uint64_t _unused_par_1;
303 uint32_t c9_insn; /* Cache lockdown registers. */
305 uint64_t c9_pmcr; /* performance monitor control register */
306 uint64_t c9_pmcnten; /* perf monitor counter enables */
307 uint32_t c9_pmovsr; /* perf monitor overflow status */
308 uint32_t c9_pmxevtyper; /* perf monitor event type */
309 uint32_t c9_pmuserenr; /* perf monitor user enable */
310 uint32_t c9_pminten; /* perf monitor interrupt enables */
311 union { /* Memory attribute redirection */
313 #ifdef HOST_WORDS_BIGENDIAN
314 uint64_t _unused_mair_0;
317 uint64_t _unused_mair_1;
321 uint64_t _unused_mair_0;
324 uint64_t _unused_mair_1;
331 union { /* vector base address register */
333 uint64_t _unused_vbar;
340 uint32_t mvbar; /* (monitor) vector base address register */
341 struct { /* FCSE PID. */
345 union { /* Context ID. */
347 uint64_t _unused_contextidr_0;
348 uint64_t contextidr_ns;
349 uint64_t _unused_contextidr_1;
350 uint64_t contextidr_s;
352 uint64_t contextidr_el[4];
354 union { /* User RW Thread register. */
356 uint64_t tpidrurw_ns;
357 uint64_t tpidrprw_ns;
361 uint64_t tpidr_el[4];
363 /* The secure banks of these registers don't map anywhere */
368 union { /* User RO Thread register. */
369 uint64_t tpidruro_ns;
370 uint64_t tpidrro_el[1];
372 uint64_t c14_cntfrq; /* Counter Frequency register */
373 uint64_t c14_cntkctl; /* Timer Control register */
374 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
375 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
376 ARMGenericTimer c14_timer[NUM_GTIMERS];
377 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
378 uint32_t c15_ticonfig; /* TI925T configuration byte. */
379 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
380 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
381 uint32_t c15_threadid; /* TI debugger thread-ID. */
382 uint32_t c15_config_base_address; /* SCU base address. */
383 uint32_t c15_diagnostic; /* diagnostic register */
384 uint32_t c15_power_diagnostic;
385 uint32_t c15_power_control; /* power control */
386 uint64_t dbgbvr[16]; /* breakpoint value registers */
387 uint64_t dbgbcr[16]; /* breakpoint control registers */
388 uint64_t dbgwvr[16]; /* watchpoint value registers */
389 uint64_t dbgwcr[16]; /* watchpoint control registers */
391 uint64_t oslsr_el1; /* OS Lock Status */
394 /* If the counter is enabled, this stores the last time the counter
395 * was reset. Otherwise it stores the counter value
398 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
399 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
400 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
412 /* Information associated with an exception about to be taken:
413 * code which raises an exception must set cs->exception_index and
414 * the relevant parts of this structure; the cpu_do_interrupt function
415 * will then set the guest-visible registers as part of the exception
419 uint32_t syndrome; /* AArch64 format syndrome register */
420 uint32_t fsr; /* AArch32 format fault status register info */
421 uint64_t vaddress; /* virtual addr associated with exception, if any */
422 uint32_t target_el; /* EL the exception should be targeted for */
423 /* If we implement EL2 we will also need to store information
424 * about the intermediate physical address for stage 2 faults.
428 /* Thumb-2 EE state. */
432 /* VFP coprocessor state. */
434 /* VFP/Neon register state. Note that the mapping between S, D and Q
435 * views of the register bank differs between AArch64 and AArch32:
437 * Qn = regs[2n+1]:regs[2n]
439 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
440 * (and regs[32] to regs[63] are inaccessible)
442 * Qn = regs[2n+1]:regs[2n]
444 * Sn = regs[2n] bits 31..0
445 * This corresponds to the architecturally defined mapping between
446 * the two execution states, and means we do not need to explicitly
447 * map these registers when changing states.
452 /* We store these fpcsr fields separately for convenience. */
456 /* scratch space when Tn are not sufficient. */
459 /* fp_status is the "normal" fp status. standard_fp_status retains
460 * values corresponding to the ARM "Standard FPSCR Value", ie
461 * default-NaN, flush-to-zero, round-to-nearest and is used by
462 * any operations (generally Neon) which the architecture defines
463 * as controlled by the standard FPSCR value rather than the FPSCR.
465 * To avoid having to transfer exception bits around, we simply
466 * say that the FPSCR cumulative exception flags are the logical
467 * OR of the flags in the two fp statuses. This relies on the
468 * only thing which needs to read the exception flags being
469 * an explicit FPSCR read.
471 float_status fp_status;
472 float_status standard_fp_status;
474 uint64_t exclusive_addr;
475 uint64_t exclusive_val;
476 uint64_t exclusive_high;
478 /* iwMMXt coprocessor state. */
486 #if defined(CONFIG_USER_ONLY)
487 /* For usermode syscall translation. */
491 struct CPUBreakpoint *cpu_breakpoint[16];
492 struct CPUWatchpoint *cpu_watchpoint[16];
494 /* Fields up to this point are cleared by a CPU reset */
495 struct {} end_reset_fields;
499 /* Fields after CPU_COMMON are preserved across CPU reset. */
501 /* Internal CPU feature flags. */
512 const struct arm_boot_info *boot_info;
517 * type of a function which can be registered via arm_register_el_change_hook()
518 * to get callbacks when the CPU changes its exception level or mode.
520 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
535 /* Coprocessor information */
537 /* For marshalling (mostly coprocessor) register state between the
538 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
539 * we use these arrays.
541 /* List of register indexes managed via these arrays; (full KVM style
542 * 64 bit indexes, not CPRegInfo 32 bit indexes)
544 uint64_t *cpreg_indexes;
545 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
546 uint64_t *cpreg_values;
547 /* Length of the indexes, values, reset_values arrays */
548 int32_t cpreg_array_len;
549 /* These are used only for migration: incoming data arrives in
550 * these fields and is sanity checked in post_load before copying
551 * to the working data structures above.
553 uint64_t *cpreg_vmstate_indexes;
554 uint64_t *cpreg_vmstate_values;
555 int32_t cpreg_vmstate_array_len;
557 /* Timers used by the generic (architected) timer */
558 QEMUTimer *gt_timer[NUM_GTIMERS];
559 /* GPIO outputs for generic timer */
560 qemu_irq gt_timer_outputs[NUM_GTIMERS];
561 /* GPIO output for GICv3 maintenance interrupt signal */
562 qemu_irq gicv3_maintenance_interrupt;
564 /* MemoryRegion to use for secure physical accesses */
565 MemoryRegion *secure_memory;
567 /* 'compatible' string for this CPU for Linux device trees */
568 const char *dtb_compatible;
570 /* PSCI version for this CPU
571 * Bits[31:16] = Major Version
572 * Bits[15:0] = Minor Version
574 uint32_t psci_version;
576 /* Should CPU start in PSCI powered-off state? */
577 bool start_powered_off;
578 /* CPU currently in PSCI powered-off state */
580 /* CPU has virtualization extension */
582 /* CPU has security extension */
584 /* CPU has PMU (Performance Monitor Unit) */
587 /* CPU has memory protection unit */
589 /* PMSAv7 MPU number of supported regions */
590 uint32_t pmsav7_dregion;
592 /* PSCI conduit used to invoke PSCI methods
593 * 0 - disabled, 1 - smc, 2 - hvc
595 uint32_t psci_conduit;
597 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
598 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
602 /* KVM init features for this CPU */
603 uint32_t kvm_init_features[7];
605 /* Uniprocessor system with MP extensions */
608 /* The instance init functions for implementation-specific subclasses
609 * set these fields to specify the implementation-dependent values of
610 * various constant registers and reset values of non-constant
612 * Some of these might become QOM properties eventually.
613 * Field names match the official register names as defined in the
614 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
615 * is used for reset values of non-constant registers; no reset_
616 * prefix means a constant register.
620 uint32_t reset_fpsid;
625 uint32_t reset_sctlr;
643 uint64_t id_aa64pfr0;
644 uint64_t id_aa64pfr1;
645 uint64_t id_aa64dfr0;
646 uint64_t id_aa64dfr1;
647 uint64_t id_aa64afr0;
648 uint64_t id_aa64afr1;
649 uint64_t id_aa64isar0;
650 uint64_t id_aa64isar1;
651 uint64_t id_aa64mmfr0;
652 uint64_t id_aa64mmfr1;
655 uint64_t mp_affinity; /* MP ID without feature bits */
656 /* The elements of this array are the CCSIDR values for each cache,
657 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
661 uint32_t reset_auxcr;
663 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
664 uint32_t dcz_blocksize;
667 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
668 int gic_num_lrs; /* number of list registers */
669 int gic_vpribits; /* number of virtual priority bits */
670 int gic_vprebits; /* number of virtual preemption bits */
672 ARMELChangeHook *el_change_hook;
673 void *el_change_hook_opaque;
676 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
678 return container_of(env, ARMCPU, env);
681 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
683 #define ENV_OFFSET offsetof(ARMCPU, env)
685 #ifndef CONFIG_USER_ONLY
686 extern const struct VMStateDescription vmstate_arm_cpu;
689 void arm_cpu_do_interrupt(CPUState *cpu);
690 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
691 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
693 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
696 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
699 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
700 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
702 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
703 int cpuid, void *opaque);
704 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
705 int cpuid, void *opaque);
707 #ifdef TARGET_AARCH64
708 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
709 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
712 ARMCPU *cpu_arm_init(const char *cpu_model);
713 target_ulong do_arm_semihosting(CPUARMState *env);
714 void aarch64_sync_32_to_64(CPUARMState *env);
715 void aarch64_sync_64_to_32(CPUARMState *env);
717 static inline bool is_a64(CPUARMState *env)
722 /* you can call this signal handler from your SIGBUS and SIGSEGV
723 signal handlers to inform the virtual CPU of exceptions. non zero
724 is returned if the signal was handled by the virtual CPU. */
725 int cpu_arm_signal_handler(int host_signum, void *pinfo,
732 * Synchronises the counter in the PMCCNTR. This must always be called twice,
733 * once before any action that might affect the timer and again afterwards.
734 * The function is used to swap the state of the register if required.
735 * This only happens when not in user mode (!CONFIG_USER_ONLY)
737 void pmccntr_sync(CPUARMState *env);
739 /* SCTLR bit meanings. Several bits have been reused in newer
740 * versions of the architecture; in that case we define constants
741 * for both old and new bit meanings. Code which tests against those
742 * bits should probably check or otherwise arrange that the CPU
743 * is the architectural version it expects.
745 #define SCTLR_M (1U << 0)
746 #define SCTLR_A (1U << 1)
747 #define SCTLR_C (1U << 2)
748 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
749 #define SCTLR_SA (1U << 3)
750 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
751 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
752 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
753 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
754 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
755 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
756 #define SCTLR_ITD (1U << 7) /* v8 onward */
757 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
758 #define SCTLR_SED (1U << 8) /* v8 onward */
759 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
760 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
761 #define SCTLR_F (1U << 10) /* up to v6 */
762 #define SCTLR_SW (1U << 10) /* v7 onward */
763 #define SCTLR_Z (1U << 11)
764 #define SCTLR_I (1U << 12)
765 #define SCTLR_V (1U << 13)
766 #define SCTLR_RR (1U << 14) /* up to v7 */
767 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
768 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
769 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
770 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
771 #define SCTLR_nTWI (1U << 16) /* v8 onward */
772 #define SCTLR_HA (1U << 17)
773 #define SCTLR_BR (1U << 17) /* PMSA only */
774 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
775 #define SCTLR_nTWE (1U << 18) /* v8 onward */
776 #define SCTLR_WXN (1U << 19)
777 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
778 #define SCTLR_UWXN (1U << 20) /* v7 onward */
779 #define SCTLR_FI (1U << 21)
780 #define SCTLR_U (1U << 22)
781 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
782 #define SCTLR_VE (1U << 24) /* up to v7 */
783 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
784 #define SCTLR_EE (1U << 25)
785 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
786 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
787 #define SCTLR_NMFI (1U << 27)
788 #define SCTLR_TRE (1U << 28)
789 #define SCTLR_AFE (1U << 29)
790 #define SCTLR_TE (1U << 30)
792 #define CPTR_TCPAC (1U << 31)
793 #define CPTR_TTA (1U << 20)
794 #define CPTR_TFP (1U << 10)
796 #define MDCR_EPMAD (1U << 21)
797 #define MDCR_EDAD (1U << 20)
798 #define MDCR_SPME (1U << 17)
799 #define MDCR_SDD (1U << 16)
800 #define MDCR_SPD (3U << 14)
801 #define MDCR_TDRA (1U << 11)
802 #define MDCR_TDOSA (1U << 10)
803 #define MDCR_TDA (1U << 9)
804 #define MDCR_TDE (1U << 8)
805 #define MDCR_HPME (1U << 7)
806 #define MDCR_TPM (1U << 6)
807 #define MDCR_TPMCR (1U << 5)
809 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
810 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
812 #define CPSR_M (0x1fU)
813 #define CPSR_T (1U << 5)
814 #define CPSR_F (1U << 6)
815 #define CPSR_I (1U << 7)
816 #define CPSR_A (1U << 8)
817 #define CPSR_E (1U << 9)
818 #define CPSR_IT_2_7 (0xfc00U)
819 #define CPSR_GE (0xfU << 16)
820 #define CPSR_IL (1U << 20)
821 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
822 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
823 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
824 * where it is live state but not accessible to the AArch32 code.
826 #define CPSR_RESERVED (0x7U << 21)
827 #define CPSR_J (1U << 24)
828 #define CPSR_IT_0_1 (3U << 25)
829 #define CPSR_Q (1U << 27)
830 #define CPSR_V (1U << 28)
831 #define CPSR_C (1U << 29)
832 #define CPSR_Z (1U << 30)
833 #define CPSR_N (1U << 31)
834 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
835 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
837 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
838 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
840 /* Bits writable in user mode. */
841 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
842 /* Execution state bits. MRS read as zero, MSR writes ignored. */
843 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
844 /* Mask of bits which may be set by exception return copying them from SPSR */
845 #define CPSR_ERET_MASK (~CPSR_RESERVED)
847 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
848 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
849 #define TTBCR_PD0 (1U << 4)
850 #define TTBCR_PD1 (1U << 5)
851 #define TTBCR_EPD0 (1U << 7)
852 #define TTBCR_IRGN0 (3U << 8)
853 #define TTBCR_ORGN0 (3U << 10)
854 #define TTBCR_SH0 (3U << 12)
855 #define TTBCR_T1SZ (3U << 16)
856 #define TTBCR_A1 (1U << 22)
857 #define TTBCR_EPD1 (1U << 23)
858 #define TTBCR_IRGN1 (3U << 24)
859 #define TTBCR_ORGN1 (3U << 26)
860 #define TTBCR_SH1 (1U << 28)
861 #define TTBCR_EAE (1U << 31)
863 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
864 * Only these are valid when in AArch64 mode; in
865 * AArch32 mode SPSRs are basically CPSR-format.
867 #define PSTATE_SP (1U)
868 #define PSTATE_M (0xFU)
869 #define PSTATE_nRW (1U << 4)
870 #define PSTATE_F (1U << 6)
871 #define PSTATE_I (1U << 7)
872 #define PSTATE_A (1U << 8)
873 #define PSTATE_D (1U << 9)
874 #define PSTATE_IL (1U << 20)
875 #define PSTATE_SS (1U << 21)
876 #define PSTATE_V (1U << 28)
877 #define PSTATE_C (1U << 29)
878 #define PSTATE_Z (1U << 30)
879 #define PSTATE_N (1U << 31)
880 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
881 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
882 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
883 /* Mode values for AArch64 */
884 #define PSTATE_MODE_EL3h 13
885 #define PSTATE_MODE_EL3t 12
886 #define PSTATE_MODE_EL2h 9
887 #define PSTATE_MODE_EL2t 8
888 #define PSTATE_MODE_EL1h 5
889 #define PSTATE_MODE_EL1t 4
890 #define PSTATE_MODE_EL0t 0
892 /* Map EL and handler into a PSTATE_MODE. */
893 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
895 return (el << 2) | handler;
898 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
899 * interprocessing, so we don't attempt to sync with the cpsr state used by
900 * the 32 bit decoder.
902 static inline uint32_t pstate_read(CPUARMState *env)
907 return (env->NF & 0x80000000) | (ZF << 30)
908 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
909 | env->pstate | env->daif;
912 static inline void pstate_write(CPUARMState *env, uint32_t val)
914 env->ZF = (~val) & PSTATE_Z;
916 env->CF = (val >> 29) & 1;
917 env->VF = (val << 3) & 0x80000000;
918 env->daif = val & PSTATE_DAIF;
919 env->pstate = val & ~CACHED_PSTATE_BITS;
922 /* Return the current CPSR value. */
923 uint32_t cpsr_read(CPUARMState *env);
925 typedef enum CPSRWriteType {
926 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
927 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
928 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
929 CPSRWriteByGDBStub = 3, /* from the GDB stub */
932 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
933 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
934 CPSRWriteType write_type);
936 /* Return the current xPSR value. */
937 static inline uint32_t xpsr_read(CPUARMState *env)
941 return (env->NF & 0x80000000) | (ZF << 30)
942 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
943 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
944 | ((env->condexec_bits & 0xfc) << 8)
945 | env->v7m.exception;
948 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
949 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
951 if (mask & CPSR_NZCV) {
952 env->ZF = (~val) & CPSR_Z;
954 env->CF = (val >> 29) & 1;
955 env->VF = (val << 3) & 0x80000000;
958 env->QF = ((val & CPSR_Q) != 0);
959 if (mask & (1 << 24))
960 env->thumb = ((val & (1 << 24)) != 0);
961 if (mask & CPSR_IT_0_1) {
962 env->condexec_bits &= ~3;
963 env->condexec_bits |= (val >> 25) & 3;
965 if (mask & CPSR_IT_2_7) {
966 env->condexec_bits &= 3;
967 env->condexec_bits |= (val >> 8) & 0xfc;
970 env->v7m.exception = val & 0x1ff;
974 #define HCR_VM (1ULL << 0)
975 #define HCR_SWIO (1ULL << 1)
976 #define HCR_PTW (1ULL << 2)
977 #define HCR_FMO (1ULL << 3)
978 #define HCR_IMO (1ULL << 4)
979 #define HCR_AMO (1ULL << 5)
980 #define HCR_VF (1ULL << 6)
981 #define HCR_VI (1ULL << 7)
982 #define HCR_VSE (1ULL << 8)
983 #define HCR_FB (1ULL << 9)
984 #define HCR_BSU_MASK (3ULL << 10)
985 #define HCR_DC (1ULL << 12)
986 #define HCR_TWI (1ULL << 13)
987 #define HCR_TWE (1ULL << 14)
988 #define HCR_TID0 (1ULL << 15)
989 #define HCR_TID1 (1ULL << 16)
990 #define HCR_TID2 (1ULL << 17)
991 #define HCR_TID3 (1ULL << 18)
992 #define HCR_TSC (1ULL << 19)
993 #define HCR_TIDCP (1ULL << 20)
994 #define HCR_TACR (1ULL << 21)
995 #define HCR_TSW (1ULL << 22)
996 #define HCR_TPC (1ULL << 23)
997 #define HCR_TPU (1ULL << 24)
998 #define HCR_TTLB (1ULL << 25)
999 #define HCR_TVM (1ULL << 26)
1000 #define HCR_TGE (1ULL << 27)
1001 #define HCR_TDZ (1ULL << 28)
1002 #define HCR_HCD (1ULL << 29)
1003 #define HCR_TRVM (1ULL << 30)
1004 #define HCR_RW (1ULL << 31)
1005 #define HCR_CD (1ULL << 32)
1006 #define HCR_ID (1ULL << 33)
1007 #define HCR_MASK ((1ULL << 34) - 1)
1009 #define SCR_NS (1U << 0)
1010 #define SCR_IRQ (1U << 1)
1011 #define SCR_FIQ (1U << 2)
1012 #define SCR_EA (1U << 3)
1013 #define SCR_FW (1U << 4)
1014 #define SCR_AW (1U << 5)
1015 #define SCR_NET (1U << 6)
1016 #define SCR_SMD (1U << 7)
1017 #define SCR_HCE (1U << 8)
1018 #define SCR_SIF (1U << 9)
1019 #define SCR_RW (1U << 10)
1020 #define SCR_ST (1U << 11)
1021 #define SCR_TWI (1U << 12)
1022 #define SCR_TWE (1U << 13)
1023 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1024 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1026 /* Return the current FPSCR value. */
1027 uint32_t vfp_get_fpscr(CPUARMState *env);
1028 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1030 /* For A64 the FPSCR is split into two logically distinct registers,
1031 * FPCR and FPSR. However since they still use non-overlapping bits
1032 * we store the underlying state in fpscr and just mask on read/write.
1034 #define FPSR_MASK 0xf800009f
1035 #define FPCR_MASK 0x07f79f00
1036 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1038 return vfp_get_fpscr(env) & FPSR_MASK;
1041 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1043 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1044 vfp_set_fpscr(env, new_fpscr);
1047 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1049 return vfp_get_fpscr(env) & FPCR_MASK;
1052 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1054 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1055 vfp_set_fpscr(env, new_fpscr);
1059 ARM_CPU_MODE_USR = 0x10,
1060 ARM_CPU_MODE_FIQ = 0x11,
1061 ARM_CPU_MODE_IRQ = 0x12,
1062 ARM_CPU_MODE_SVC = 0x13,
1063 ARM_CPU_MODE_MON = 0x16,
1064 ARM_CPU_MODE_ABT = 0x17,
1065 ARM_CPU_MODE_HYP = 0x1a,
1066 ARM_CPU_MODE_UND = 0x1b,
1067 ARM_CPU_MODE_SYS = 0x1f
1070 /* VFP system registers. */
1071 #define ARM_VFP_FPSID 0
1072 #define ARM_VFP_FPSCR 1
1073 #define ARM_VFP_MVFR2 5
1074 #define ARM_VFP_MVFR1 6
1075 #define ARM_VFP_MVFR0 7
1076 #define ARM_VFP_FPEXC 8
1077 #define ARM_VFP_FPINST 9
1078 #define ARM_VFP_FPINST2 10
1080 /* iwMMXt coprocessor control registers. */
1081 #define ARM_IWMMXT_wCID 0
1082 #define ARM_IWMMXT_wCon 1
1083 #define ARM_IWMMXT_wCSSF 2
1084 #define ARM_IWMMXT_wCASF 3
1085 #define ARM_IWMMXT_wCGR0 8
1086 #define ARM_IWMMXT_wCGR1 9
1087 #define ARM_IWMMXT_wCGR2 10
1088 #define ARM_IWMMXT_wCGR3 11
1090 /* If adding a feature bit which corresponds to a Linux ELF
1091 * HWCAP bit, remember to update the feature-bit-to-hwcap
1092 * mapping in linux-user/elfload.c:get_elf_hwcap().
1096 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1097 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1098 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1103 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
1105 ARM_FEATURE_VFP_FP16,
1107 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1108 ARM_FEATURE_M, /* Microcontroller profile. */
1109 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1110 ARM_FEATURE_THUMB2EE,
1111 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1114 ARM_FEATURE_STRONGARM,
1115 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1116 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1117 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1118 ARM_FEATURE_GENERIC_TIMER,
1119 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1120 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1121 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1122 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1123 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1124 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1125 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1126 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1128 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1129 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1130 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1131 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1132 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1133 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1134 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1135 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1136 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1137 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1138 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1139 ARM_FEATURE_PMU, /* has PMU support */
1140 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1143 static inline int arm_feature(CPUARMState *env, int feature)
1145 return (env->features & (1ULL << feature)) != 0;
1148 #if !defined(CONFIG_USER_ONLY)
1149 /* Return true if exception levels below EL3 are in secure state,
1150 * or would be following an exception return to that level.
1151 * Unlike arm_is_secure() (which is always a question about the
1152 * _current_ state of the CPU) this doesn't care about the current
1155 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1157 if (arm_feature(env, ARM_FEATURE_EL3)) {
1158 return !(env->cp15.scr_el3 & SCR_NS);
1160 /* If EL3 is not supported then the secure state is implementation
1161 * defined, in which case QEMU defaults to non-secure.
1167 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1168 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1170 if (arm_feature(env, ARM_FEATURE_EL3)) {
1171 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1172 /* CPU currently in AArch64 state and EL3 */
1174 } else if (!is_a64(env) &&
1175 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1176 /* CPU currently in AArch32 state and monitor mode */
1183 /* Return true if the processor is in secure state */
1184 static inline bool arm_is_secure(CPUARMState *env)
1186 if (arm_is_el3_or_mon(env)) {
1189 return arm_is_secure_below_el3(env);
1193 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1198 static inline bool arm_is_secure(CPUARMState *env)
1204 /* Return true if the specified exception level is running in AArch64 state. */
1205 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1207 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1208 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1210 assert(el >= 1 && el <= 3);
1211 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1213 /* The highest exception level is always at the maximum supported
1214 * register width, and then lower levels have a register width controlled
1215 * by bits in the SCR or HCR registers.
1221 if (arm_feature(env, ARM_FEATURE_EL3)) {
1222 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1229 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1230 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1236 /* Function for determing whether guest cp register reads and writes should
1237 * access the secure or non-secure bank of a cp register. When EL3 is
1238 * operating in AArch32 state, the NS-bit determines whether the secure
1239 * instance of a cp register should be used. When EL3 is AArch64 (or if
1240 * it doesn't exist at all) then there is no register banking, and all
1241 * accesses are to the non-secure version.
1243 static inline bool access_secure_reg(CPUARMState *env)
1245 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1246 !arm_el_is_aa64(env, 3) &&
1247 !(env->cp15.scr_el3 & SCR_NS));
1252 /* Macros for accessing a specified CP register bank */
1253 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1254 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1256 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1259 (_env)->cp15._regname##_s = (_val); \
1261 (_env)->cp15._regname##_ns = (_val); \
1265 /* Macros for automatically accessing a specific CP register bank depending on
1266 * the current secure state of the system. These macros are not intended for
1267 * supporting instruction translation reads/writes as these are dependent
1268 * solely on the SCR.NS bit and not the mode.
1270 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1271 A32_BANKED_REG_GET((_env), _regname, \
1272 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1274 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1275 A32_BANKED_REG_SET((_env), _regname, \
1276 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1279 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1280 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1281 uint32_t cur_el, bool secure);
1283 /* Interface between CPU and Interrupt controller. */
1284 void armv7m_nvic_set_pending(void *opaque, int irq);
1285 int armv7m_nvic_acknowledge_irq(void *opaque);
1286 void armv7m_nvic_complete_irq(void *opaque, int irq);
1288 /* Interface for defining coprocessor registers.
1289 * Registers are defined in tables of arm_cp_reginfo structs
1290 * which are passed to define_arm_cp_regs().
1293 /* When looking up a coprocessor register we look for it
1294 * via an integer which encodes all of:
1295 * coprocessor number
1296 * Crn, Crm, opc1, opc2 fields
1297 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1298 * or via MRRC/MCRR?)
1299 * non-secure/secure bank (AArch32 only)
1300 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1301 * (In this case crn and opc2 should be zero.)
1302 * For AArch64, there is no 32/64 bit size distinction;
1303 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1304 * and 4 bit CRn and CRm. The encoding patterns are chosen
1305 * to be easy to convert to and from the KVM encodings, and also
1306 * so that the hashtable can contain both AArch32 and AArch64
1307 * registers (to allow for interprocessing where we might run
1308 * 32 bit code on a 64 bit core).
1310 /* This bit is private to our hashtable cpreg; in KVM register
1311 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1312 * in the upper bits of the 64 bit ID.
1314 #define CP_REG_AA64_SHIFT 28
1315 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1317 /* To enable banking of coprocessor registers depending on ns-bit we
1318 * add a bit to distinguish between secure and non-secure cpregs in the
1321 #define CP_REG_NS_SHIFT 29
1322 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1324 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1325 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1326 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1328 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1329 (CP_REG_AA64_MASK | \
1330 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1331 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1332 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1333 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1334 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1335 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1337 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1338 * version used as a key for the coprocessor register hashtable
1340 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1342 uint32_t cpregid = kvmid;
1343 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1344 cpregid |= CP_REG_AA64_MASK;
1346 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1347 cpregid |= (1 << 15);
1350 /* KVM is always non-secure so add the NS flag on AArch32 register
1353 cpregid |= 1 << CP_REG_NS_SHIFT;
1358 /* Convert a truncated 32 bit hashtable key into the full
1359 * 64 bit KVM register ID.
1361 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1365 if (cpregid & CP_REG_AA64_MASK) {
1366 kvmid = cpregid & ~CP_REG_AA64_MASK;
1367 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1369 kvmid = cpregid & ~(1 << 15);
1370 if (cpregid & (1 << 15)) {
1371 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1373 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1379 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1380 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1381 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1382 * TCG can assume the value to be constant (ie load at translate time)
1383 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1384 * indicates that the TB should not be ended after a write to this register
1385 * (the default is that the TB ends after cp writes). OVERRIDE permits
1386 * a register definition to override a previous definition for the
1387 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1388 * old must have the OVERRIDE bit set.
1389 * ALIAS indicates that this register is an alias view of some underlying
1390 * state which is also visible via another register, and that the other
1391 * register is handling migration and reset; registers marked ALIAS will not be
1392 * migrated but may have their state set by syncing of register state from KVM.
1393 * NO_RAW indicates that this register has no underlying state and does not
1394 * support raw access for state saving/loading; it will not be used for either
1395 * migration or KVM state synchronization. (Typically this is for "registers"
1396 * which are actually used as instructions for cache maintenance and so on.)
1397 * IO indicates that this register does I/O and therefore its accesses
1398 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1399 * registers which implement clocks or timers require this.
1401 #define ARM_CP_SPECIAL 1
1402 #define ARM_CP_CONST 2
1403 #define ARM_CP_64BIT 4
1404 #define ARM_CP_SUPPRESS_TB_END 8
1405 #define ARM_CP_OVERRIDE 16
1406 #define ARM_CP_ALIAS 32
1407 #define ARM_CP_IO 64
1408 #define ARM_CP_NO_RAW 128
1409 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1410 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1411 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1412 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1413 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1414 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1415 /* Used only as a terminator for ARMCPRegInfo lists */
1416 #define ARM_CP_SENTINEL 0xffff
1417 /* Mask of only the flag bits in a type field */
1418 #define ARM_CP_FLAG_MASK 0xff
1420 /* Valid values for ARMCPRegInfo state field, indicating which of
1421 * the AArch32 and AArch64 execution states this register is visible in.
1422 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1423 * If the reginfo is declared to be visible in both states then a second
1424 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1425 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1426 * Note that we rely on the values of these enums as we iterate through
1427 * the various states in some places.
1430 ARM_CP_STATE_AA32 = 0,
1431 ARM_CP_STATE_AA64 = 1,
1432 ARM_CP_STATE_BOTH = 2,
1435 /* ARM CP register secure state flags. These flags identify security state
1436 * attributes for a given CP register entry.
1437 * The existence of both or neither secure and non-secure flags indicates that
1438 * the register has both a secure and non-secure hash entry. A single one of
1439 * these flags causes the register to only be hashed for the specified
1441 * Although definitions may have any combination of the S/NS bits, each
1442 * registered entry will only have one to identify whether the entry is secure
1446 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1447 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1450 /* Return true if cptype is a valid type field. This is used to try to
1451 * catch errors where the sentinel has been accidentally left off the end
1452 * of a list of registers.
1454 static inline bool cptype_valid(int cptype)
1456 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1457 || ((cptype & ARM_CP_SPECIAL) &&
1458 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1462 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1463 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1464 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1465 * (ie any of the privileged modes in Secure state, or Monitor mode).
1466 * If a register is accessible in one privilege level it's always accessible
1467 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1468 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1469 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1470 * terminology a little and call this PL3.
1471 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1472 * with the ELx exception levels.
1474 * If access permissions for a register are more complex than can be
1475 * described with these bits, then use a laxer set of restrictions, and
1476 * do the more restrictive/complex check inside a helper function.
1480 #define PL2_R (0x20 | PL3_R)
1481 #define PL2_W (0x10 | PL3_W)
1482 #define PL1_R (0x08 | PL2_R)
1483 #define PL1_W (0x04 | PL2_W)
1484 #define PL0_R (0x02 | PL1_R)
1485 #define PL0_W (0x01 | PL1_W)
1487 #define PL3_RW (PL3_R | PL3_W)
1488 #define PL2_RW (PL2_R | PL2_W)
1489 #define PL1_RW (PL1_R | PL1_W)
1490 #define PL0_RW (PL0_R | PL0_W)
1492 /* Return the highest implemented Exception Level */
1493 static inline int arm_highest_el(CPUARMState *env)
1495 if (arm_feature(env, ARM_FEATURE_EL3)) {
1498 if (arm_feature(env, ARM_FEATURE_EL2)) {
1504 /* Return the current Exception Level (as per ARMv8; note that this differs
1505 * from the ARMv7 Privilege Level).
1507 static inline int arm_current_el(CPUARMState *env)
1509 if (arm_feature(env, ARM_FEATURE_M)) {
1510 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1514 return extract32(env->pstate, 2, 2);
1517 switch (env->uncached_cpsr & 0x1f) {
1518 case ARM_CPU_MODE_USR:
1520 case ARM_CPU_MODE_HYP:
1522 case ARM_CPU_MODE_MON:
1525 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1526 /* If EL3 is 32-bit then all secure privileged modes run in
1536 typedef struct ARMCPRegInfo ARMCPRegInfo;
1538 typedef enum CPAccessResult {
1539 /* Access is permitted */
1541 /* Access fails due to a configurable trap or enable which would
1542 * result in a categorized exception syndrome giving information about
1543 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1544 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1545 * PL1 if in EL0, otherwise to the current EL).
1548 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1549 * Note that this is not a catch-all case -- the set of cases which may
1550 * result in this failure is specifically defined by the architecture.
1552 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1553 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1554 CP_ACCESS_TRAP_EL2 = 3,
1555 CP_ACCESS_TRAP_EL3 = 4,
1556 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1557 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1558 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1559 /* Access fails and results in an exception syndrome for an FP access,
1560 * trapped directly to EL2 or EL3
1562 CP_ACCESS_TRAP_FP_EL2 = 7,
1563 CP_ACCESS_TRAP_FP_EL3 = 8,
1566 /* Access functions for coprocessor registers. These cannot fail and
1567 * may not raise exceptions.
1569 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1570 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1572 /* Access permission check functions for coprocessor registers. */
1573 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1574 const ARMCPRegInfo *opaque,
1576 /* Hook function for register reset */
1577 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1581 /* Definition of an ARM coprocessor register */
1582 struct ARMCPRegInfo {
1583 /* Name of register (useful mainly for debugging, need not be unique) */
1585 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1586 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1587 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1588 * will be decoded to this register. The register read and write
1589 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1590 * used by the program, so it is possible to register a wildcard and
1591 * then behave differently on read/write if necessary.
1592 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1593 * must both be zero.
1594 * For AArch64-visible registers, opc0 is also used.
1595 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1596 * way to distinguish (for KVM's benefit) guest-visible system registers
1597 * from demuxed ones provided to preserve the "no side effects on
1598 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1599 * visible (to match KVM's encoding); cp==0 will be converted to
1600 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1608 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1610 /* Register type: ARM_CP_* bits/values */
1612 /* Access rights: PL*_[RW] */
1614 /* Security state: ARM_CP_SECSTATE_* bits/values */
1616 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1617 * this register was defined: can be used to hand data through to the
1618 * register read/write functions, since they are passed the ARMCPRegInfo*.
1621 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1622 * fieldoffset is non-zero, the reset value of the register.
1624 uint64_t resetvalue;
1625 /* Offset of the field in CPUARMState for this register.
1627 * This is not needed if either:
1628 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1629 * 2. both readfn and writefn are specified
1631 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1633 /* Offsets of the secure and non-secure fields in CPUARMState for the
1634 * register if it is banked. These fields are only used during the static
1635 * registration of a register. During hashing the bank associated
1636 * with a given security state is copied to fieldoffset which is used from
1639 * It is expected that register definitions use either fieldoffset or
1640 * bank_fieldoffsets in the definition but not both. It is also expected
1641 * that both bank offsets are set when defining a banked register. This
1642 * use indicates that a register is banked.
1644 ptrdiff_t bank_fieldoffsets[2];
1646 /* Function for making any access checks for this register in addition to
1647 * those specified by the 'access' permissions bits. If NULL, no extra
1648 * checks required. The access check is performed at runtime, not at
1651 CPAccessFn *accessfn;
1652 /* Function for handling reads of this register. If NULL, then reads
1653 * will be done by loading from the offset into CPUARMState specified
1657 /* Function for handling writes of this register. If NULL, then writes
1658 * will be done by writing to the offset into CPUARMState specified
1662 /* Function for doing a "raw" read; used when we need to copy
1663 * coprocessor state to the kernel for KVM or out for
1664 * migration. This only needs to be provided if there is also a
1665 * readfn and it has side effects (for instance clear-on-read bits).
1667 CPReadFn *raw_readfn;
1668 /* Function for doing a "raw" write; used when we need to copy KVM
1669 * kernel coprocessor state into userspace, or for inbound
1670 * migration. This only needs to be provided if there is also a
1671 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1672 * or similar behaviour.
1674 CPWriteFn *raw_writefn;
1675 /* Function for resetting the register. If NULL, then reset will be done
1676 * by writing resetvalue to the field specified in fieldoffset. If
1677 * fieldoffset is 0 then no reset will be done.
1682 /* Macros which are lvalues for the field in CPUARMState for the
1685 #define CPREG_FIELD32(env, ri) \
1686 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1687 #define CPREG_FIELD64(env, ri) \
1688 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1690 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1692 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1693 const ARMCPRegInfo *regs, void *opaque);
1694 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1695 const ARMCPRegInfo *regs, void *opaque);
1696 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1698 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1700 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1702 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1704 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1706 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1707 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1709 /* CPReadFn that can be used for read-as-zero behaviour */
1710 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1712 /* CPResetFn that does nothing, for use if no reset is required even
1713 * if fieldoffset is non zero.
1715 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1717 /* Return true if this reginfo struct's field in the cpu state struct
1720 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1722 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1725 static inline bool cp_access_ok(int current_el,
1726 const ARMCPRegInfo *ri, int isread)
1728 return (ri->access >> ((current_el * 2) + isread)) & 1;
1731 /* Raw read of a coprocessor register (as needed for migration, etc) */
1732 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1735 * write_list_to_cpustate
1738 * For each register listed in the ARMCPU cpreg_indexes list, write
1739 * its value from the cpreg_values list into the ARMCPUState structure.
1740 * This updates TCG's working data structures from KVM data or
1741 * from incoming migration state.
1743 * Returns: true if all register values were updated correctly,
1744 * false if some register was unknown or could not be written.
1745 * Note that we do not stop early on failure -- we will attempt
1746 * writing all registers in the list.
1748 bool write_list_to_cpustate(ARMCPU *cpu);
1751 * write_cpustate_to_list:
1754 * For each register listed in the ARMCPU cpreg_indexes list, write
1755 * its value from the ARMCPUState structure into the cpreg_values list.
1756 * This is used to copy info from TCG's working data structures into
1757 * KVM or for outbound migration.
1759 * Returns: true if all register values were read correctly,
1760 * false if some register was unknown or could not be read.
1761 * Note that we do not stop early on failure -- we will attempt
1762 * reading all registers in the list.
1764 bool write_cpustate_to_list(ARMCPU *cpu);
1766 /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1767 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1768 conventional cores (ie. Application or Realtime profile). */
1770 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1772 #define ARM_CPUID_TI915T 0x54029152
1773 #define ARM_CPUID_TI925T 0x54029252
1775 #if defined(CONFIG_USER_ONLY)
1776 #define TARGET_PAGE_BITS 12
1778 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1779 * have to support 1K tiny pages.
1781 #define TARGET_PAGE_BITS_VARY
1782 #define TARGET_PAGE_BITS_MIN 10
1785 #if defined(TARGET_AARCH64)
1786 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1787 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1789 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1790 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1793 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1794 unsigned int target_el)
1796 CPUARMState *env = cs->env_ptr;
1797 unsigned int cur_el = arm_current_el(env);
1798 bool secure = arm_is_secure(env);
1799 bool pstate_unmasked;
1800 int8_t unmasked = 0;
1802 /* Don't take exceptions if they target a lower EL.
1803 * This check should catch any exceptions that would not be taken but left
1806 if (cur_el > target_el) {
1812 pstate_unmasked = !(env->daif & PSTATE_F);
1816 pstate_unmasked = !(env->daif & PSTATE_I);
1820 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1821 /* VFIQs are only taken when hypervized and non-secure. */
1824 return !(env->daif & PSTATE_F);
1826 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1827 /* VIRQs are only taken when hypervized and non-secure. */
1830 return !(env->daif & PSTATE_I);
1832 g_assert_not_reached();
1835 /* Use the target EL, current execution state and SCR/HCR settings to
1836 * determine whether the corresponding CPSR bit is used to mask the
1839 if ((target_el > cur_el) && (target_el != 1)) {
1840 /* Exceptions targeting a higher EL may not be maskable */
1841 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1842 /* 64-bit masking rules are simple: exceptions to EL3
1843 * can't be masked, and exceptions to EL2 can only be
1844 * masked from Secure state. The HCR and SCR settings
1845 * don't affect the masking logic, only the interrupt routing.
1847 if (target_el == 3 || !secure) {
1851 /* The old 32-bit-only environment has a more complicated
1852 * masking setup. HCR and SCR bits not only affect interrupt
1853 * routing but also change the behaviour of masking.
1859 /* If FIQs are routed to EL3 or EL2 then there are cases where
1860 * we override the CPSR.F in determining if the exception is
1861 * masked or not. If neither of these are set then we fall back
1862 * to the CPSR.F setting otherwise we further assess the state
1865 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1866 scr = (env->cp15.scr_el3 & SCR_FIQ);
1868 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1869 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1870 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1871 * when non-secure but only when FIQs are only routed to EL3.
1873 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1876 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1877 * we may override the CPSR.I masking when in non-secure state.
1878 * The SCR.IRQ setting has already been taken into consideration
1879 * when setting the target EL, so it does not have a further
1882 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1886 g_assert_not_reached();
1889 if ((scr || hcr) && !secure) {
1895 /* The PSTATE bits only mask the interrupt if we have not overriden the
1898 return unmasked || pstate_unmasked;
1901 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1903 #define cpu_signal_handler cpu_arm_signal_handler
1904 #define cpu_list arm_cpu_list
1906 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1909 * + NonSecure EL1 & 0 stage 1
1910 * + NonSecure EL1 & 0 stage 2
1912 * + Secure EL1 & EL0
1915 * + NonSecure PL1 & 0 stage 1
1916 * + NonSecure PL1 & 0 stage 2
1918 * + Secure PL0 & PL1
1919 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1921 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1922 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1923 * may differ in access permissions even if the VA->PA map is the same
1924 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1925 * translation, which means that we have one mmu_idx that deals with two
1926 * concatenated translation regimes [this sort of combined s1+2 TLB is
1927 * architecturally permitted]
1928 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1929 * handling via the TLB. The only way to do a stage 1 translation without
1930 * the immediate stage 2 translation is via the ATS or AT system insns,
1931 * which can be slow-pathed and always do a page table walk.
1932 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1933 * translation regimes, because they map reasonably well to each other
1934 * and they can't both be active at the same time.
1935 * This gives us the following list of mmu_idx values:
1937 * NS EL0 (aka NS PL0) stage 1+2
1938 * NS EL1 (aka NS PL1) stage 1+2
1939 * NS EL2 (aka NS PL2)
1942 * S EL1 (not used if EL3 is 32 bit)
1945 * (The last of these is an mmu_idx because we want to be able to use the TLB
1946 * for the accesses done as part of a stage 1 page table walk, rather than
1947 * having to walk the stage 2 page table over and over.)
1949 * Our enumeration includes at the end some entries which are not "true"
1950 * mmu_idx values in that they don't have corresponding TLBs and are only
1951 * valid for doing slow path page table walks.
1953 * The constant names here are patterned after the general style of the names
1954 * of the AT/ATS operations.
1955 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1957 typedef enum ARMMMUIdx {
1958 ARMMMUIdx_S12NSE0 = 0,
1959 ARMMMUIdx_S12NSE1 = 1,
1962 ARMMMUIdx_S1SE0 = 4,
1963 ARMMMUIdx_S1SE1 = 5,
1965 /* Indexes below here don't have TLBs and are used only for AT system
1966 * instructions or for the first stage of an S12 page table walk.
1968 ARMMMUIdx_S1NSE0 = 7,
1969 ARMMMUIdx_S1NSE1 = 8,
1972 #define MMU_USER_IDX 0
1974 /* Return the exception level we're running at if this is our mmu_idx */
1975 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1977 assert(mmu_idx < ARMMMUIdx_S2NS);
1981 /* Determine the current mmu_idx to use for normal loads/stores */
1982 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
1984 int el = arm_current_el(env);
1986 if (el < 2 && arm_is_secure_below_el3(env)) {
1987 return ARMMMUIdx_S1SE0 + el;
1992 /* Indexes used when registering address spaces with cpu_address_space_init */
1993 typedef enum ARMASIdx {
1998 /* Return the Exception Level targeted by debug exceptions. */
1999 static inline int arm_debug_target_el(CPUARMState *env)
2001 bool secure = arm_is_secure(env);
2002 bool route_to_el2 = false;
2004 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2005 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2006 env->cp15.mdcr_el2 & (1 << 8);
2011 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2012 !arm_el_is_aa64(env, 3) && secure) {
2019 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2021 if (arm_is_secure(env)) {
2022 /* MDCR_EL3.SDD disables debug events from Secure state */
2023 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2024 || arm_current_el(env) == 3) {
2029 if (arm_current_el(env) == arm_debug_target_el(env)) {
2030 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2031 || (env->daif & PSTATE_D)) {
2038 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2040 int el = arm_current_el(env);
2042 if (el == 0 && arm_el_is_aa64(env, 1)) {
2043 return aa64_generate_debug_exceptions(env);
2046 if (arm_is_secure(env)) {
2049 if (el == 0 && (env->cp15.sder & 1)) {
2050 /* SDER.SUIDEN means debug exceptions from Secure EL0
2051 * are always enabled. Otherwise they are controlled by
2052 * SDCR.SPD like those from other Secure ELs.
2057 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2060 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2062 /* For 0b00 we return true if external secure invasive debug
2063 * is enabled. On real hardware this is controlled by external
2064 * signals to the core. QEMU always permits debug, and behaves
2065 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2078 /* Return true if debugging exceptions are currently enabled.
2079 * This corresponds to what in ARM ARM pseudocode would be
2080 * if UsingAArch32() then
2081 * return AArch32.GenerateDebugExceptions()
2083 * return AArch64.GenerateDebugExceptions()
2084 * We choose to push the if() down into this function for clarity,
2085 * since the pseudocode has it at all callsites except for the one in
2086 * CheckSoftwareStep(), where it is elided because both branches would
2087 * always return the same value.
2089 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2090 * don't yet implement those exception levels or their associated trap bits.
2092 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2095 return aa64_generate_debug_exceptions(env);
2097 return aa32_generate_debug_exceptions(env);
2101 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2102 * implicitly means this always returns false in pre-v8 CPUs.)
2104 static inline bool arm_singlestep_active(CPUARMState *env)
2106 return extract32(env->cp15.mdscr_el1, 0, 1)
2107 && arm_el_is_aa64(env, arm_debug_target_el(env))
2108 && arm_generate_debug_exceptions(env);
2111 static inline bool arm_sctlr_b(CPUARMState *env)
2114 /* We need not implement SCTLR.ITD in user-mode emulation, so
2115 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2116 * This lets people run BE32 binaries with "-cpu any".
2118 #ifndef CONFIG_USER_ONLY
2119 !arm_feature(env, ARM_FEATURE_V7) &&
2121 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2124 /* Return true if the processor is in big-endian mode. */
2125 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2129 /* In 32bit endianness is determined by looking at CPSR's E bit */
2132 #ifdef CONFIG_USER_ONLY
2133 /* In system mode, BE32 is modelled in line with the
2134 * architecture (as word-invariant big-endianness), where loads
2135 * and stores are done little endian but from addresses which
2136 * are adjusted by XORing with the appropriate constant. So the
2137 * endianness to use for the raw data access is not affected by
2139 * In user mode, however, we model BE32 as byte-invariant
2140 * big-endianness (because user-only code cannot tell the
2141 * difference), and so we need to use a data access endianness
2142 * that depends on SCTLR.B.
2146 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2149 cur_el = arm_current_el(env);
2152 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2155 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2158 #include "exec/cpu-all.h"
2160 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2161 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2162 * We put flags which are shared between 32 and 64 bit mode at the top
2163 * of the word, and flags which apply to only one mode at the bottom.
2165 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2166 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2167 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2168 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2169 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2170 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2171 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2172 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2173 /* Target EL if we take a floating-point-disabled exception */
2174 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2175 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2177 /* Bit usage when in AArch32 state: */
2178 #define ARM_TBFLAG_THUMB_SHIFT 0
2179 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2180 #define ARM_TBFLAG_VECLEN_SHIFT 1
2181 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2182 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2183 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2184 #define ARM_TBFLAG_VFPEN_SHIFT 7
2185 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2186 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2187 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2188 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2189 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2190 /* We store the bottom two bits of the CPAR as TB flags and handle
2191 * checks on the other bits at runtime
2193 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2194 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2195 /* Indicates whether cp register reads and writes by guest code should access
2196 * the secure or nonsecure bank of banked registers; note that this is not
2197 * the same thing as the current security state of the processor!
2199 #define ARM_TBFLAG_NS_SHIFT 19
2200 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2201 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2202 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2204 /* Bit usage when in AArch64 state */
2205 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2206 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2207 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2208 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2210 /* some convenience accessor macros */
2211 #define ARM_TBFLAG_AARCH64_STATE(F) \
2212 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2213 #define ARM_TBFLAG_MMUIDX(F) \
2214 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2215 #define ARM_TBFLAG_SS_ACTIVE(F) \
2216 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2217 #define ARM_TBFLAG_PSTATE_SS(F) \
2218 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2219 #define ARM_TBFLAG_FPEXC_EL(F) \
2220 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2221 #define ARM_TBFLAG_THUMB(F) \
2222 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2223 #define ARM_TBFLAG_VECLEN(F) \
2224 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2225 #define ARM_TBFLAG_VECSTRIDE(F) \
2226 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2227 #define ARM_TBFLAG_VFPEN(F) \
2228 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2229 #define ARM_TBFLAG_CONDEXEC(F) \
2230 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2231 #define ARM_TBFLAG_SCTLR_B(F) \
2232 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2233 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2234 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2235 #define ARM_TBFLAG_NS(F) \
2236 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2237 #define ARM_TBFLAG_BE_DATA(F) \
2238 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2239 #define ARM_TBFLAG_TBI0(F) \
2240 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2241 #define ARM_TBFLAG_TBI1(F) \
2242 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2244 static inline bool bswap_code(bool sctlr_b)
2246 #ifdef CONFIG_USER_ONLY
2247 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2248 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2249 * would also end up as a mixed-endian mode with BE code, LE data.
2252 #ifdef TARGET_WORDS_BIGENDIAN
2257 /* All code access in ARM is little endian, and there are no loaders
2258 * doing swaps that need to be reversed
2264 /* Return the exception level to which FP-disabled exceptions should
2265 * be taken, or 0 if FP is enabled.
2267 static inline int fp_exception_el(CPUARMState *env)
2270 int cur_el = arm_current_el(env);
2272 /* CPACR and the CPTR registers don't exist before v6, so FP is
2275 if (!arm_feature(env, ARM_FEATURE_V6)) {
2279 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2280 * 0, 2 : trap EL0 and EL1/PL1 accesses
2281 * 1 : trap only EL0 accesses
2282 * 3 : trap no accesses
2284 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2288 if (cur_el == 0 || cur_el == 1) {
2289 /* Trap to PL1, which might be EL1 or EL3 */
2290 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2295 if (cur_el == 3 && !is_a64(env)) {
2296 /* Secure PL1 running at EL3 */
2309 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2310 * check because zero bits in the registers mean "don't trap".
2313 /* CPTR_EL2 : present in v7VE or v8 */
2314 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2315 && !arm_is_secure_below_el3(env)) {
2316 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2320 /* CPTR_EL3 : present in v8 */
2321 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2322 /* Trap all FP ops to EL3 */
2329 #ifdef CONFIG_USER_ONLY
2330 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2333 #ifdef TARGET_WORDS_BIGENDIAN
2336 arm_cpu_data_is_big_endian(env);
2340 #ifndef CONFIG_USER_ONLY
2344 * @mmu_idx: MMU index indicating required translation regime
2346 * Extracts the TBI0 value from the appropriate TCR for the current EL
2348 * Returns: the TBI0 value.
2350 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2355 * @mmu_idx: MMU index indicating required translation regime
2357 * Extracts the TBI1 value from the appropriate TCR for the current EL
2359 * Returns: the TBI1 value.
2361 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2363 /* We can't handle tagged addresses properly in user-only mode */
2364 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2369 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2375 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2376 target_ulong *cs_base, uint32_t *flags)
2378 ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2381 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2382 /* Get control bits for tagged addresses */
2383 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2384 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2386 *pc = env->regs[15];
2387 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2388 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2389 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2390 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2391 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2392 if (!(access_secure_reg(env))) {
2393 *flags |= ARM_TBFLAG_NS_MASK;
2395 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2396 || arm_el_is_aa64(env, 1)) {
2397 *flags |= ARM_TBFLAG_VFPEN_MASK;
2399 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2400 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2403 *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2405 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2406 * states defined in the ARM ARM for software singlestep:
2407 * SS_ACTIVE PSTATE.SS State
2408 * 0 x Inactive (the TB flag for SS is always 0)
2409 * 1 0 Active-pending
2410 * 1 1 Active-not-pending
2412 if (arm_singlestep_active(env)) {
2413 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2415 if (env->pstate & PSTATE_SS) {
2416 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2419 if (env->uncached_cpsr & PSTATE_SS) {
2420 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2424 if (arm_cpu_data_is_big_endian(env)) {
2425 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2427 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2433 QEMU_PSCI_CONDUIT_DISABLED = 0,
2434 QEMU_PSCI_CONDUIT_SMC = 1,
2435 QEMU_PSCI_CONDUIT_HVC = 2,
2438 #ifndef CONFIG_USER_ONLY
2439 /* Return the address space index to use for a memory access */
2440 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2442 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2445 /* Return the AddressSpace to use for a memory access
2446 * (which depends on whether the access is S or NS, and whether
2447 * the board gave us a separate AddressSpace for S accesses).
2449 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2451 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2456 * arm_register_el_change_hook:
2457 * Register a hook function which will be called back whenever this
2458 * CPU changes exception level or mode. The hook function will be
2459 * passed a pointer to the ARMCPU and the opaque data pointer passed
2460 * to this function when the hook was registered.
2462 * Note that we currently only support registering a single hook function,
2463 * and will assert if this function is called twice.
2464 * This facility is intended for the use of the GICv3 emulation.
2466 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2470 * arm_get_el_change_hook_opaque:
2471 * Return the opaque data that will be used by the el_change_hook
2474 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2476 return cpu->el_change_hook_opaque;