2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
39 #if defined(CONFIG_USER_ONLY)
43 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_UNASSIGNED
48 /* make various TB consistency checks */
49 //#define DEBUG_TB_CHECK
50 //#define DEBUG_TLB_CHECK
52 //#define DEBUG_IOPORT
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
56 /* TB consistency checks only implemented for usermode emulation. */
60 /* threshold to flush the translated code buffer */
61 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - code_gen_max_block_size())
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #define MMAP_AREA_START 0x00000000
66 #define MMAP_AREA_END 0xa8000000
68 #if defined(TARGET_SPARC64)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 41
70 #elif defined(TARGET_SPARC)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 36
72 #elif defined(TARGET_ALPHA)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #define TARGET_VIRT_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_PPC64)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 36
82 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83 #define TARGET_PHYS_ADDR_SPACE_BITS 32
86 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
87 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
92 uint8_t code_gen_prologue[1024] __attribute__((aligned (32)));
93 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
94 uint8_t *code_gen_ptr;
96 ram_addr_t phys_ram_size;
98 uint8_t *phys_ram_base;
99 uint8_t *phys_ram_dirty;
100 static ram_addr_t phys_ram_alloc_offset = 0;
103 /* current CPU in the current thread. It is only valid inside
105 CPUState *cpu_single_env;
107 typedef struct PageDesc {
108 /* list of TBs intersecting this ram page */
109 TranslationBlock *first_tb;
110 /* in order to optimize self modifying code, we count the number
111 of lookups we do to a given page to use a bitmap */
112 unsigned int code_write_count;
113 uint8_t *code_bitmap;
114 #if defined(CONFIG_USER_ONLY)
119 typedef struct PhysPageDesc {
120 /* offset in host memory of the page + io_index in the low 12 bits */
121 ram_addr_t phys_offset;
125 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
126 /* XXX: this is a temporary hack for alpha target.
127 * In the future, this is to be replaced by a multi-level table
128 * to actually be able to handle the complete 64 bits address space.
130 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
132 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
135 #define L1_SIZE (1 << L1_BITS)
136 #define L2_SIZE (1 << L2_BITS)
138 static void io_mem_init(void);
140 unsigned long qemu_real_host_page_size;
141 unsigned long qemu_host_page_bits;
142 unsigned long qemu_host_page_size;
143 unsigned long qemu_host_page_mask;
145 /* XXX: for system emulation, it could just be an array */
146 static PageDesc *l1_map[L1_SIZE];
147 PhysPageDesc **l1_phys_map;
149 /* io memory support */
150 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
151 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
152 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
153 static int io_mem_nb;
154 #if defined(CONFIG_SOFTMMU)
155 static int io_mem_watch;
159 char *logfilename = "/tmp/qemu.log";
162 static int log_append = 0;
165 static int tlb_flush_count;
166 static int tb_flush_count;
167 static int tb_phys_invalidate_count;
169 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
170 typedef struct subpage_t {
171 target_phys_addr_t base;
172 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
173 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
174 void *opaque[TARGET_PAGE_SIZE][2][4];
178 static void map_exec(void *addr, long size)
181 VirtualProtect(addr, size,
182 PAGE_EXECUTE_READWRITE, &old_protect);
186 static void map_exec(void *addr, long size)
188 unsigned long start, end;
190 start = (unsigned long)addr;
191 start &= ~(qemu_real_host_page_size - 1);
193 end = (unsigned long)addr + size;
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
202 static void page_init(void)
204 /* NOTE: we can always suppose that qemu_host_page_size >=
208 SYSTEM_INFO system_info;
211 GetSystemInfo(&system_info);
212 qemu_real_host_page_size = system_info.dwPageSize;
215 qemu_real_host_page_size = getpagesize();
217 map_exec(code_gen_buffer, sizeof(code_gen_buffer));
218 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
220 if (qemu_host_page_size == 0)
221 qemu_host_page_size = qemu_real_host_page_size;
222 if (qemu_host_page_size < TARGET_PAGE_SIZE)
223 qemu_host_page_size = TARGET_PAGE_SIZE;
224 qemu_host_page_bits = 0;
225 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
226 qemu_host_page_bits++;
227 qemu_host_page_mask = ~(qemu_host_page_size - 1);
228 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
229 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
231 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
233 long long startaddr, endaddr;
237 f = fopen("/proc/self/maps", "r");
240 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
242 startaddr = MIN(startaddr,
243 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
244 endaddr = MIN(endaddr,
245 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
246 page_set_flags(TARGET_PAGE_ALIGN(startaddr),
247 TARGET_PAGE_ALIGN(endaddr),
257 static inline PageDesc *page_find_alloc(target_ulong index)
261 lp = &l1_map[index >> L2_BITS];
264 /* allocate if not found */
265 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
266 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
269 return p + (index & (L2_SIZE - 1));
272 static inline PageDesc *page_find(target_ulong index)
276 p = l1_map[index >> L2_BITS];
279 return p + (index & (L2_SIZE - 1));
282 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
287 p = (void **)l1_phys_map;
288 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
290 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
291 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
293 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
296 /* allocate if not found */
299 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
300 memset(p, 0, sizeof(void *) * L1_SIZE);
304 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
308 /* allocate if not found */
311 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
313 for (i = 0; i < L2_SIZE; i++)
314 pd[i].phys_offset = IO_MEM_UNASSIGNED;
316 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
319 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
321 return phys_page_find_alloc(index, 0);
324 #if !defined(CONFIG_USER_ONLY)
325 static void tlb_protect_code(ram_addr_t ram_addr);
326 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
330 void cpu_exec_init(CPUState *env)
337 code_gen_ptr = code_gen_buffer;
341 env->next_cpu = NULL;
344 while (*penv != NULL) {
345 penv = (CPUState **)&(*penv)->next_cpu;
348 env->cpu_index = cpu_index;
349 env->nb_watchpoints = 0;
353 static inline void invalidate_page_bitmap(PageDesc *p)
355 if (p->code_bitmap) {
356 qemu_free(p->code_bitmap);
357 p->code_bitmap = NULL;
359 p->code_write_count = 0;
362 /* set to NULL all the 'first_tb' fields in all PageDescs */
363 static void page_flush_tb(void)
368 for(i = 0; i < L1_SIZE; i++) {
371 for(j = 0; j < L2_SIZE; j++) {
373 invalidate_page_bitmap(p);
380 /* flush all the translation blocks */
381 /* XXX: tb_flush is currently not thread safe */
382 void tb_flush(CPUState *env1)
385 #if defined(DEBUG_FLUSH)
386 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
387 (unsigned long)(code_gen_ptr - code_gen_buffer),
389 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
391 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > CODE_GEN_BUFFER_SIZE)
392 cpu_abort(env1, "Internal error: code buffer overflow\n");
396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
397 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
400 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
403 code_gen_ptr = code_gen_buffer;
404 /* XXX: flush processor icache at this point if cache flush is
409 #ifdef DEBUG_TB_CHECK
411 static void tb_invalidate_check(target_ulong address)
413 TranslationBlock *tb;
415 address &= TARGET_PAGE_MASK;
416 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
417 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
418 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
419 address >= tb->pc + tb->size)) {
420 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
421 address, (long)tb->pc, tb->size);
427 /* verify that all the pages have correct rights for code */
428 static void tb_page_check(void)
430 TranslationBlock *tb;
431 int i, flags1, flags2;
433 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
434 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
435 flags1 = page_get_flags(tb->pc);
436 flags2 = page_get_flags(tb->pc + tb->size - 1);
437 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
438 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
439 (long)tb->pc, tb->size, flags1, flags2);
445 void tb_jmp_check(TranslationBlock *tb)
447 TranslationBlock *tb1;
450 /* suppress any remaining jumps to this TB */
454 tb1 = (TranslationBlock *)((long)tb1 & ~3);
457 tb1 = tb1->jmp_next[n1];
459 /* check end of list */
461 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
467 /* invalidate one TB */
468 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
471 TranslationBlock *tb1;
475 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
478 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
482 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
484 TranslationBlock *tb1;
490 tb1 = (TranslationBlock *)((long)tb1 & ~3);
492 *ptb = tb1->page_next[n1];
495 ptb = &tb1->page_next[n1];
499 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
501 TranslationBlock *tb1, **ptb;
504 ptb = &tb->jmp_next[n];
507 /* find tb(n) in circular list */
511 tb1 = (TranslationBlock *)((long)tb1 & ~3);
512 if (n1 == n && tb1 == tb)
515 ptb = &tb1->jmp_first;
517 ptb = &tb1->jmp_next[n1];
520 /* now we can suppress tb(n) from the list */
521 *ptb = tb->jmp_next[n];
523 tb->jmp_next[n] = NULL;
527 /* reset the jump entry 'n' of a TB so that it is not chained to
529 static inline void tb_reset_jump(TranslationBlock *tb, int n)
531 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
534 static inline void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
539 target_phys_addr_t phys_pc;
540 TranslationBlock *tb1, *tb2;
542 /* remove the TB from the hash list */
543 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
544 h = tb_phys_hash_func(phys_pc);
545 tb_remove(&tb_phys_hash[h], tb,
546 offsetof(TranslationBlock, phys_hash_next));
548 /* remove the TB from the page list */
549 if (tb->page_addr[0] != page_addr) {
550 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
551 tb_page_remove(&p->first_tb, tb);
552 invalidate_page_bitmap(p);
554 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
555 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
556 tb_page_remove(&p->first_tb, tb);
557 invalidate_page_bitmap(p);
560 tb_invalidated_flag = 1;
562 /* remove the TB from the hash list */
563 h = tb_jmp_cache_hash_func(tb->pc);
564 for(env = first_cpu; env != NULL; env = env->next_cpu) {
565 if (env->tb_jmp_cache[h] == tb)
566 env->tb_jmp_cache[h] = NULL;
569 /* suppress this TB from the two jump lists */
570 tb_jmp_remove(tb, 0);
571 tb_jmp_remove(tb, 1);
573 /* suppress any remaining jumps to this TB */
579 tb1 = (TranslationBlock *)((long)tb1 & ~3);
580 tb2 = tb1->jmp_next[n1];
581 tb_reset_jump(tb1, n1);
582 tb1->jmp_next[n1] = NULL;
585 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
587 tb_phys_invalidate_count++;
590 static inline void set_bits(uint8_t *tab, int start, int len)
596 mask = 0xff << (start & 7);
597 if ((start & ~7) == (end & ~7)) {
599 mask &= ~(0xff << (end & 7));
604 start = (start + 8) & ~7;
606 while (start < end1) {
611 mask = ~(0xff << (end & 7));
617 static void build_page_bitmap(PageDesc *p)
619 int n, tb_start, tb_end;
620 TranslationBlock *tb;
622 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
625 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
630 tb = (TranslationBlock *)((long)tb & ~3);
631 /* NOTE: this is subtle as a TB may span two physical pages */
633 /* NOTE: tb_end may be after the end of the page, but
634 it is not a problem */
635 tb_start = tb->pc & ~TARGET_PAGE_MASK;
636 tb_end = tb_start + tb->size;
637 if (tb_end > TARGET_PAGE_SIZE)
638 tb_end = TARGET_PAGE_SIZE;
641 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
643 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
644 tb = tb->page_next[n];
648 #ifdef TARGET_HAS_PRECISE_SMC
650 static void tb_gen_code(CPUState *env,
651 target_ulong pc, target_ulong cs_base, int flags,
654 TranslationBlock *tb;
656 target_ulong phys_pc, phys_page2, virt_page2;
659 phys_pc = get_phys_addr_code(env, pc);
662 /* flush must be done */
664 /* cannot fail at this point */
667 tc_ptr = code_gen_ptr;
669 tb->cs_base = cs_base;
672 cpu_gen_code(env, tb, &code_gen_size);
673 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
675 /* check next page if needed */
676 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
678 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
679 phys_page2 = get_phys_addr_code(env, virt_page2);
681 tb_link_phys(tb, phys_pc, phys_page2);
685 /* invalidate all TBs which intersect with the target physical page
686 starting in range [start;end[. NOTE: start and end must refer to
687 the same physical page. 'is_cpu_write_access' should be true if called
688 from a real cpu write access: the virtual CPU will exit the current
689 TB if code is modified inside this TB. */
690 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
691 int is_cpu_write_access)
693 int n, current_tb_modified, current_tb_not_found, current_flags;
694 CPUState *env = cpu_single_env;
696 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
697 target_ulong tb_start, tb_end;
698 target_ulong current_pc, current_cs_base;
700 p = page_find(start >> TARGET_PAGE_BITS);
703 if (!p->code_bitmap &&
704 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
705 is_cpu_write_access) {
706 /* build code bitmap */
707 build_page_bitmap(p);
710 /* we remove all the TBs in the range [start, end[ */
711 /* XXX: see if in some cases it could be faster to invalidate all the code */
712 current_tb_not_found = is_cpu_write_access;
713 current_tb_modified = 0;
714 current_tb = NULL; /* avoid warning */
715 current_pc = 0; /* avoid warning */
716 current_cs_base = 0; /* avoid warning */
717 current_flags = 0; /* avoid warning */
721 tb = (TranslationBlock *)((long)tb & ~3);
722 tb_next = tb->page_next[n];
723 /* NOTE: this is subtle as a TB may span two physical pages */
725 /* NOTE: tb_end may be after the end of the page, but
726 it is not a problem */
727 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
728 tb_end = tb_start + tb->size;
730 tb_start = tb->page_addr[1];
731 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
733 if (!(tb_end <= start || tb_start >= end)) {
734 #ifdef TARGET_HAS_PRECISE_SMC
735 if (current_tb_not_found) {
736 current_tb_not_found = 0;
738 if (env->mem_write_pc) {
739 /* now we have a real cpu fault */
740 current_tb = tb_find_pc(env->mem_write_pc);
743 if (current_tb == tb &&
744 !(current_tb->cflags & CF_SINGLE_INSN)) {
745 /* If we are modifying the current TB, we must stop
746 its execution. We could be more precise by checking
747 that the modification is after the current PC, but it
748 would require a specialized function to partially
749 restore the CPU state */
751 current_tb_modified = 1;
752 cpu_restore_state(current_tb, env,
753 env->mem_write_pc, NULL);
754 #if defined(TARGET_I386)
755 current_flags = env->hflags;
756 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
757 current_cs_base = (target_ulong)env->segs[R_CS].base;
758 current_pc = current_cs_base + env->eip;
760 #error unsupported CPU
763 #endif /* TARGET_HAS_PRECISE_SMC */
764 /* we need to do that to handle the case where a signal
765 occurs while doing tb_phys_invalidate() */
768 saved_tb = env->current_tb;
769 env->current_tb = NULL;
771 tb_phys_invalidate(tb, -1);
773 env->current_tb = saved_tb;
774 if (env->interrupt_request && env->current_tb)
775 cpu_interrupt(env, env->interrupt_request);
780 #if !defined(CONFIG_USER_ONLY)
781 /* if no code remaining, no need to continue to use slow writes */
783 invalidate_page_bitmap(p);
784 if (is_cpu_write_access) {
785 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
789 #ifdef TARGET_HAS_PRECISE_SMC
790 if (current_tb_modified) {
791 /* we generate a block containing just the instruction
792 modifying the memory. It will ensure that it cannot modify
794 env->current_tb = NULL;
795 tb_gen_code(env, current_pc, current_cs_base, current_flags,
797 cpu_resume_from_signal(env, NULL);
802 /* len must be <= 8 and start must be a multiple of len */
803 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
810 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
811 cpu_single_env->mem_write_vaddr, len,
813 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
817 p = page_find(start >> TARGET_PAGE_BITS);
820 if (p->code_bitmap) {
821 offset = start & ~TARGET_PAGE_MASK;
822 b = p->code_bitmap[offset >> 3] >> (offset & 7);
823 if (b & ((1 << len) - 1))
827 tb_invalidate_phys_page_range(start, start + len, 1);
831 #if !defined(CONFIG_SOFTMMU)
832 static void tb_invalidate_phys_page(target_phys_addr_t addr,
833 unsigned long pc, void *puc)
835 int n, current_flags, current_tb_modified;
836 target_ulong current_pc, current_cs_base;
838 TranslationBlock *tb, *current_tb;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 CPUState *env = cpu_single_env;
843 addr &= TARGET_PAGE_MASK;
844 p = page_find(addr >> TARGET_PAGE_BITS);
848 current_tb_modified = 0;
850 current_pc = 0; /* avoid warning */
851 current_cs_base = 0; /* avoid warning */
852 current_flags = 0; /* avoid warning */
853 #ifdef TARGET_HAS_PRECISE_SMC
855 current_tb = tb_find_pc(pc);
860 tb = (TranslationBlock *)((long)tb & ~3);
861 #ifdef TARGET_HAS_PRECISE_SMC
862 if (current_tb == tb &&
863 !(current_tb->cflags & CF_SINGLE_INSN)) {
864 /* If we are modifying the current TB, we must stop
865 its execution. We could be more precise by checking
866 that the modification is after the current PC, but it
867 would require a specialized function to partially
868 restore the CPU state */
870 current_tb_modified = 1;
871 cpu_restore_state(current_tb, env, pc, puc);
872 #if defined(TARGET_I386)
873 current_flags = env->hflags;
874 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
875 current_cs_base = (target_ulong)env->segs[R_CS].base;
876 current_pc = current_cs_base + env->eip;
878 #error unsupported CPU
881 #endif /* TARGET_HAS_PRECISE_SMC */
882 tb_phys_invalidate(tb, addr);
883 tb = tb->page_next[n];
886 #ifdef TARGET_HAS_PRECISE_SMC
887 if (current_tb_modified) {
888 /* we generate a block containing just the instruction
889 modifying the memory. It will ensure that it cannot modify
891 env->current_tb = NULL;
892 tb_gen_code(env, current_pc, current_cs_base, current_flags,
894 cpu_resume_from_signal(env, puc);
900 /* add the tb in the target page and protect it if necessary */
901 static inline void tb_alloc_page(TranslationBlock *tb,
902 unsigned int n, target_ulong page_addr)
905 TranslationBlock *last_first_tb;
907 tb->page_addr[n] = page_addr;
908 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
909 tb->page_next[n] = p->first_tb;
910 last_first_tb = p->first_tb;
911 p->first_tb = (TranslationBlock *)((long)tb | n);
912 invalidate_page_bitmap(p);
914 #if defined(TARGET_HAS_SMC) || 1
916 #if defined(CONFIG_USER_ONLY)
917 if (p->flags & PAGE_WRITE) {
922 /* force the host page as non writable (writes will have a
923 page fault + mprotect overhead) */
924 page_addr &= qemu_host_page_mask;
926 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
927 addr += TARGET_PAGE_SIZE) {
929 p2 = page_find (addr >> TARGET_PAGE_BITS);
933 p2->flags &= ~PAGE_WRITE;
934 page_get_flags(addr);
936 mprotect(g2h(page_addr), qemu_host_page_size,
937 (prot & PAGE_BITS) & ~PAGE_WRITE);
938 #ifdef DEBUG_TB_INVALIDATE
939 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
944 /* if some code is already present, then the pages are already
945 protected. So we handle the case where only the first TB is
946 allocated in a physical page */
947 if (!last_first_tb) {
948 tlb_protect_code(page_addr);
952 #endif /* TARGET_HAS_SMC */
955 /* Allocate a new translation block. Flush the translation buffer if
956 too many translation blocks or too much generated code. */
957 TranslationBlock *tb_alloc(target_ulong pc)
959 TranslationBlock *tb;
961 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
962 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
970 /* add a new TB and link it to the physical page tables. phys_page2 is
971 (-1) to indicate that only one page contains the TB. */
972 void tb_link_phys(TranslationBlock *tb,
973 target_ulong phys_pc, target_ulong phys_page2)
976 TranslationBlock **ptb;
978 /* add in the physical hash table */
979 h = tb_phys_hash_func(phys_pc);
980 ptb = &tb_phys_hash[h];
981 tb->phys_hash_next = *ptb;
984 /* add in the page list */
985 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
986 if (phys_page2 != -1)
987 tb_alloc_page(tb, 1, phys_page2);
989 tb->page_addr[1] = -1;
991 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
992 tb->jmp_next[0] = NULL;
993 tb->jmp_next[1] = NULL;
995 /* init original jump addresses */
996 if (tb->tb_next_offset[0] != 0xffff)
997 tb_reset_jump(tb, 0);
998 if (tb->tb_next_offset[1] != 0xffff)
999 tb_reset_jump(tb, 1);
1001 #ifdef DEBUG_TB_CHECK
1006 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1007 tb[1].tc_ptr. Return NULL if not found */
1008 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1010 int m_min, m_max, m;
1012 TranslationBlock *tb;
1016 if (tc_ptr < (unsigned long)code_gen_buffer ||
1017 tc_ptr >= (unsigned long)code_gen_ptr)
1019 /* binary search (cf Knuth) */
1022 while (m_min <= m_max) {
1023 m = (m_min + m_max) >> 1;
1025 v = (unsigned long)tb->tc_ptr;
1028 else if (tc_ptr < v) {
1037 static void tb_reset_jump_recursive(TranslationBlock *tb);
1039 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1041 TranslationBlock *tb1, *tb_next, **ptb;
1044 tb1 = tb->jmp_next[n];
1046 /* find head of list */
1049 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1052 tb1 = tb1->jmp_next[n1];
1054 /* we are now sure now that tb jumps to tb1 */
1057 /* remove tb from the jmp_first list */
1058 ptb = &tb_next->jmp_first;
1062 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1063 if (n1 == n && tb1 == tb)
1065 ptb = &tb1->jmp_next[n1];
1067 *ptb = tb->jmp_next[n];
1068 tb->jmp_next[n] = NULL;
1070 /* suppress the jump to next tb in generated code */
1071 tb_reset_jump(tb, n);
1073 /* suppress jumps in the tb on which we could have jumped */
1074 tb_reset_jump_recursive(tb_next);
1078 static void tb_reset_jump_recursive(TranslationBlock *tb)
1080 tb_reset_jump_recursive2(tb, 0);
1081 tb_reset_jump_recursive2(tb, 1);
1084 #if defined(TARGET_HAS_ICE)
1085 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1087 target_phys_addr_t addr;
1089 ram_addr_t ram_addr;
1092 addr = cpu_get_phys_page_debug(env, pc);
1093 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1095 pd = IO_MEM_UNASSIGNED;
1097 pd = p->phys_offset;
1099 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1100 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1104 /* Add a watchpoint. */
1105 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1109 for (i = 0; i < env->nb_watchpoints; i++) {
1110 if (addr == env->watchpoint[i].vaddr)
1113 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1116 i = env->nb_watchpoints++;
1117 env->watchpoint[i].vaddr = addr;
1118 tlb_flush_page(env, addr);
1119 /* FIXME: This flush is needed because of the hack to make memory ops
1120 terminate the TB. It can be removed once the proper IO trap and
1121 re-execute bits are in. */
1126 /* Remove a watchpoint. */
1127 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1131 for (i = 0; i < env->nb_watchpoints; i++) {
1132 if (addr == env->watchpoint[i].vaddr) {
1133 env->nb_watchpoints--;
1134 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1135 tlb_flush_page(env, addr);
1142 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1143 breakpoint is reached */
1144 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1146 #if defined(TARGET_HAS_ICE)
1149 for(i = 0; i < env->nb_breakpoints; i++) {
1150 if (env->breakpoints[i] == pc)
1154 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1156 env->breakpoints[env->nb_breakpoints++] = pc;
1158 breakpoint_invalidate(env, pc);
1165 /* remove a breakpoint */
1166 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1168 #if defined(TARGET_HAS_ICE)
1170 for(i = 0; i < env->nb_breakpoints; i++) {
1171 if (env->breakpoints[i] == pc)
1176 env->nb_breakpoints--;
1177 if (i < env->nb_breakpoints)
1178 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1180 breakpoint_invalidate(env, pc);
1187 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1188 CPU loop after each instruction */
1189 void cpu_single_step(CPUState *env, int enabled)
1191 #if defined(TARGET_HAS_ICE)
1192 if (env->singlestep_enabled != enabled) {
1193 env->singlestep_enabled = enabled;
1194 /* must flush all the translated code to avoid inconsistancies */
1195 /* XXX: only flush what is necessary */
1201 /* enable or disable low levels log */
1202 void cpu_set_log(int log_flags)
1204 loglevel = log_flags;
1205 if (loglevel && !logfile) {
1206 logfile = fopen(logfilename, log_append ? "a" : "w");
1208 perror(logfilename);
1211 #if !defined(CONFIG_SOFTMMU)
1212 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1214 static uint8_t logfile_buf[4096];
1215 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1218 setvbuf(logfile, NULL, _IOLBF, 0);
1222 if (!loglevel && logfile) {
1228 void cpu_set_log_filename(const char *filename)
1230 logfilename = strdup(filename);
1235 cpu_set_log(loglevel);
1238 /* mask must never be zero, except for A20 change call */
1239 void cpu_interrupt(CPUState *env, int mask)
1241 TranslationBlock *tb;
1242 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1244 env->interrupt_request |= mask;
1245 /* if the cpu is currently executing code, we must unlink it and
1246 all the potentially executing TB */
1247 tb = env->current_tb;
1248 if (tb && !testandset(&interrupt_lock)) {
1249 env->current_tb = NULL;
1250 tb_reset_jump_recursive(tb);
1251 resetlock(&interrupt_lock);
1255 void cpu_reset_interrupt(CPUState *env, int mask)
1257 env->interrupt_request &= ~mask;
1260 CPULogItem cpu_log_items[] = {
1261 { CPU_LOG_TB_OUT_ASM, "out_asm",
1262 "show generated host assembly code for each compiled TB" },
1263 { CPU_LOG_TB_IN_ASM, "in_asm",
1264 "show target assembly code for each compiled TB" },
1265 { CPU_LOG_TB_OP, "op",
1266 "show micro ops for each compiled TB" },
1267 { CPU_LOG_TB_OP_OPT, "op_opt",
1270 "before eflags optimization and "
1272 "after liveness analysis" },
1273 { CPU_LOG_INT, "int",
1274 "show interrupts/exceptions in short format" },
1275 { CPU_LOG_EXEC, "exec",
1276 "show trace before each executed TB (lots of logs)" },
1277 { CPU_LOG_TB_CPU, "cpu",
1278 "show CPU state before block translation" },
1280 { CPU_LOG_PCALL, "pcall",
1281 "show protected mode far calls/returns/exceptions" },
1284 { CPU_LOG_IOPORT, "ioport",
1285 "show all i/o ports accesses" },
1290 static int cmp1(const char *s1, int n, const char *s2)
1292 if (strlen(s2) != n)
1294 return memcmp(s1, s2, n) == 0;
1297 /* takes a comma separated list of log masks. Return 0 if error. */
1298 int cpu_str_to_log_mask(const char *str)
1307 p1 = strchr(p, ',');
1310 if(cmp1(p,p1-p,"all")) {
1311 for(item = cpu_log_items; item->mask != 0; item++) {
1315 for(item = cpu_log_items; item->mask != 0; item++) {
1316 if (cmp1(p, p1 - p, item->name))
1330 void cpu_abort(CPUState *env, const char *fmt, ...)
1337 fprintf(stderr, "qemu: fatal: ");
1338 vfprintf(stderr, fmt, ap);
1339 fprintf(stderr, "\n");
1341 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1343 cpu_dump_state(env, stderr, fprintf, 0);
1346 fprintf(logfile, "qemu: fatal: ");
1347 vfprintf(logfile, fmt, ap2);
1348 fprintf(logfile, "\n");
1350 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1352 cpu_dump_state(env, logfile, fprintf, 0);
1362 CPUState *cpu_copy(CPUState *env)
1364 CPUState *new_env = cpu_init(env->cpu_model_str);
1365 /* preserve chaining and index */
1366 CPUState *next_cpu = new_env->next_cpu;
1367 int cpu_index = new_env->cpu_index;
1368 memcpy(new_env, env, sizeof(CPUState));
1369 new_env->next_cpu = next_cpu;
1370 new_env->cpu_index = cpu_index;
1374 #if !defined(CONFIG_USER_ONLY)
1376 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1380 /* Discard jump cache entries for any tb which might potentially
1381 overlap the flushed page. */
1382 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1383 memset (&env->tb_jmp_cache[i], 0,
1384 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1386 i = tb_jmp_cache_hash_page(addr);
1387 memset (&env->tb_jmp_cache[i], 0,
1388 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1391 /* NOTE: if flush_global is true, also flush global entries (not
1393 void tlb_flush(CPUState *env, int flush_global)
1397 #if defined(DEBUG_TLB)
1398 printf("tlb_flush:\n");
1400 /* must reset current TB so that interrupts cannot modify the
1401 links while we are modifying them */
1402 env->current_tb = NULL;
1404 for(i = 0; i < CPU_TLB_SIZE; i++) {
1405 env->tlb_table[0][i].addr_read = -1;
1406 env->tlb_table[0][i].addr_write = -1;
1407 env->tlb_table[0][i].addr_code = -1;
1408 env->tlb_table[1][i].addr_read = -1;
1409 env->tlb_table[1][i].addr_write = -1;
1410 env->tlb_table[1][i].addr_code = -1;
1411 #if (NB_MMU_MODES >= 3)
1412 env->tlb_table[2][i].addr_read = -1;
1413 env->tlb_table[2][i].addr_write = -1;
1414 env->tlb_table[2][i].addr_code = -1;
1415 #if (NB_MMU_MODES == 4)
1416 env->tlb_table[3][i].addr_read = -1;
1417 env->tlb_table[3][i].addr_write = -1;
1418 env->tlb_table[3][i].addr_code = -1;
1423 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1425 #if !defined(CONFIG_SOFTMMU)
1426 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1429 if (env->kqemu_enabled) {
1430 kqemu_flush(env, flush_global);
1436 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1438 if (addr == (tlb_entry->addr_read &
1439 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1440 addr == (tlb_entry->addr_write &
1441 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1442 addr == (tlb_entry->addr_code &
1443 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1444 tlb_entry->addr_read = -1;
1445 tlb_entry->addr_write = -1;
1446 tlb_entry->addr_code = -1;
1450 void tlb_flush_page(CPUState *env, target_ulong addr)
1454 #if defined(DEBUG_TLB)
1455 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1457 /* must reset current TB so that interrupts cannot modify the
1458 links while we are modifying them */
1459 env->current_tb = NULL;
1461 addr &= TARGET_PAGE_MASK;
1462 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1463 tlb_flush_entry(&env->tlb_table[0][i], addr);
1464 tlb_flush_entry(&env->tlb_table[1][i], addr);
1465 #if (NB_MMU_MODES >= 3)
1466 tlb_flush_entry(&env->tlb_table[2][i], addr);
1467 #if (NB_MMU_MODES == 4)
1468 tlb_flush_entry(&env->tlb_table[3][i], addr);
1472 tlb_flush_jmp_cache(env, addr);
1474 #if !defined(CONFIG_SOFTMMU)
1475 if (addr < MMAP_AREA_END)
1476 munmap((void *)addr, TARGET_PAGE_SIZE);
1479 if (env->kqemu_enabled) {
1480 kqemu_flush_page(env, addr);
1485 /* update the TLBs so that writes to code in the virtual page 'addr'
1487 static void tlb_protect_code(ram_addr_t ram_addr)
1489 cpu_physical_memory_reset_dirty(ram_addr,
1490 ram_addr + TARGET_PAGE_SIZE,
1494 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1495 tested for self modifying code */
1496 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1499 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1502 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1503 unsigned long start, unsigned long length)
1506 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1507 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1508 if ((addr - start) < length) {
1509 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1514 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1518 unsigned long length, start1;
1522 start &= TARGET_PAGE_MASK;
1523 end = TARGET_PAGE_ALIGN(end);
1525 length = end - start;
1528 len = length >> TARGET_PAGE_BITS;
1530 /* XXX: should not depend on cpu context */
1532 if (env->kqemu_enabled) {
1535 for(i = 0; i < len; i++) {
1536 kqemu_set_notdirty(env, addr);
1537 addr += TARGET_PAGE_SIZE;
1541 mask = ~dirty_flags;
1542 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1543 for(i = 0; i < len; i++)
1546 /* we modify the TLB cache so that the dirty bit will be set again
1547 when accessing the range */
1548 start1 = start + (unsigned long)phys_ram_base;
1549 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1550 for(i = 0; i < CPU_TLB_SIZE; i++)
1551 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1552 for(i = 0; i < CPU_TLB_SIZE; i++)
1553 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1554 #if (NB_MMU_MODES >= 3)
1555 for(i = 0; i < CPU_TLB_SIZE; i++)
1556 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1557 #if (NB_MMU_MODES == 4)
1558 for(i = 0; i < CPU_TLB_SIZE; i++)
1559 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1564 #if !defined(CONFIG_SOFTMMU)
1565 /* XXX: this is expensive */
1571 for(i = 0; i < L1_SIZE; i++) {
1574 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1575 for(j = 0; j < L2_SIZE; j++) {
1576 if (p->valid_tag == virt_valid_tag &&
1577 p->phys_addr >= start && p->phys_addr < end &&
1578 (p->prot & PROT_WRITE)) {
1579 if (addr < MMAP_AREA_END) {
1580 mprotect((void *)addr, TARGET_PAGE_SIZE,
1581 p->prot & ~PROT_WRITE);
1584 addr += TARGET_PAGE_SIZE;
1593 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1595 ram_addr_t ram_addr;
1597 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1598 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1599 tlb_entry->addend - (unsigned long)phys_ram_base;
1600 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1601 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1606 /* update the TLB according to the current state of the dirty bits */
1607 void cpu_tlb_update_dirty(CPUState *env)
1610 for(i = 0; i < CPU_TLB_SIZE; i++)
1611 tlb_update_dirty(&env->tlb_table[0][i]);
1612 for(i = 0; i < CPU_TLB_SIZE; i++)
1613 tlb_update_dirty(&env->tlb_table[1][i]);
1614 #if (NB_MMU_MODES >= 3)
1615 for(i = 0; i < CPU_TLB_SIZE; i++)
1616 tlb_update_dirty(&env->tlb_table[2][i]);
1617 #if (NB_MMU_MODES == 4)
1618 for(i = 0; i < CPU_TLB_SIZE; i++)
1619 tlb_update_dirty(&env->tlb_table[3][i]);
1624 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1625 unsigned long start)
1628 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1629 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1630 if (addr == start) {
1631 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1636 /* update the TLB corresponding to virtual page vaddr and phys addr
1637 addr so that it is no longer dirty */
1638 static inline void tlb_set_dirty(CPUState *env,
1639 unsigned long addr, target_ulong vaddr)
1643 addr &= TARGET_PAGE_MASK;
1644 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1645 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1646 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1647 #if (NB_MMU_MODES >= 3)
1648 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1649 #if (NB_MMU_MODES == 4)
1650 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1655 /* add a new TLB entry. At most one entry for a given virtual address
1656 is permitted. Return 0 if OK or 2 if the page could not be mapped
1657 (can only happen in non SOFTMMU mode for I/O pages or pages
1658 conflicting with the host address space). */
1659 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1660 target_phys_addr_t paddr, int prot,
1661 int mmu_idx, int is_softmmu)
1666 target_ulong address;
1667 target_phys_addr_t addend;
1672 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1674 pd = IO_MEM_UNASSIGNED;
1676 pd = p->phys_offset;
1678 #if defined(DEBUG_TLB)
1679 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1680 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1684 #if !defined(CONFIG_SOFTMMU)
1688 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1689 /* IO memory case */
1690 address = vaddr | pd;
1693 /* standard memory */
1695 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1698 /* Make accesses to pages with watchpoints go via the
1699 watchpoint trap routines. */
1700 for (i = 0; i < env->nb_watchpoints; i++) {
1701 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1702 if (address & ~TARGET_PAGE_MASK) {
1703 env->watchpoint[i].addend = 0;
1704 address = vaddr | io_mem_watch;
1706 env->watchpoint[i].addend = pd - paddr +
1707 (unsigned long) phys_ram_base;
1708 /* TODO: Figure out how to make read watchpoints coexist
1710 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1715 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1717 te = &env->tlb_table[mmu_idx][index];
1718 te->addend = addend;
1719 if (prot & PAGE_READ) {
1720 te->addr_read = address;
1725 if (te->addr_code != -1) {
1726 tlb_flush_jmp_cache(env, te->addr_code);
1728 if (prot & PAGE_EXEC) {
1729 te->addr_code = address;
1733 if (prot & PAGE_WRITE) {
1734 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1735 (pd & IO_MEM_ROMD)) {
1736 /* write access calls the I/O callback */
1737 te->addr_write = vaddr |
1738 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1739 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1740 !cpu_physical_memory_is_dirty(pd)) {
1741 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1743 te->addr_write = address;
1746 te->addr_write = -1;
1749 #if !defined(CONFIG_SOFTMMU)
1751 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1752 /* IO access: no mapping is done as it will be handled by the
1754 if (!(env->hflags & HF_SOFTMMU_MASK))
1759 if (vaddr >= MMAP_AREA_END) {
1762 if (prot & PROT_WRITE) {
1763 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1764 #if defined(TARGET_HAS_SMC) || 1
1767 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1768 !cpu_physical_memory_is_dirty(pd))) {
1769 /* ROM: we do as if code was inside */
1770 /* if code is present, we only map as read only and save the
1774 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1777 vp->valid_tag = virt_valid_tag;
1778 prot &= ~PAGE_WRITE;
1781 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1782 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1783 if (map_addr == MAP_FAILED) {
1784 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1794 /* called from signal handler: invalidate the code and unprotect the
1795 page. Return TRUE if the fault was succesfully handled. */
1796 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1798 #if !defined(CONFIG_SOFTMMU)
1801 #if defined(DEBUG_TLB)
1802 printf("page_unprotect: addr=0x%08x\n", addr);
1804 addr &= TARGET_PAGE_MASK;
1806 /* if it is not mapped, no need to worry here */
1807 if (addr >= MMAP_AREA_END)
1809 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1812 /* NOTE: in this case, validate_tag is _not_ tested as it
1813 validates only the code TLB */
1814 if (vp->valid_tag != virt_valid_tag)
1816 if (!(vp->prot & PAGE_WRITE))
1818 #if defined(DEBUG_TLB)
1819 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1820 addr, vp->phys_addr, vp->prot);
1822 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1823 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1824 (unsigned long)addr, vp->prot);
1825 /* set the dirty bit */
1826 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1827 /* flush the code inside */
1828 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1837 void tlb_flush(CPUState *env, int flush_global)
1841 void tlb_flush_page(CPUState *env, target_ulong addr)
1845 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1846 target_phys_addr_t paddr, int prot,
1847 int mmu_idx, int is_softmmu)
1852 /* dump memory mappings */
1853 void page_dump(FILE *f)
1855 unsigned long start, end;
1856 int i, j, prot, prot1;
1859 fprintf(f, "%-8s %-8s %-8s %s\n",
1860 "start", "end", "size", "prot");
1864 for(i = 0; i <= L1_SIZE; i++) {
1869 for(j = 0;j < L2_SIZE; j++) {
1874 if (prot1 != prot) {
1875 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1877 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1878 start, end, end - start,
1879 prot & PAGE_READ ? 'r' : '-',
1880 prot & PAGE_WRITE ? 'w' : '-',
1881 prot & PAGE_EXEC ? 'x' : '-');
1895 int page_get_flags(target_ulong address)
1899 p = page_find(address >> TARGET_PAGE_BITS);
1905 /* modify the flags of a page and invalidate the code if
1906 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1907 depending on PAGE_WRITE */
1908 void page_set_flags(target_ulong start, target_ulong end, int flags)
1913 start = start & TARGET_PAGE_MASK;
1914 end = TARGET_PAGE_ALIGN(end);
1915 if (flags & PAGE_WRITE)
1916 flags |= PAGE_WRITE_ORG;
1917 spin_lock(&tb_lock);
1918 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1919 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1920 /* if the write protection is set, then we invalidate the code
1922 if (!(p->flags & PAGE_WRITE) &&
1923 (flags & PAGE_WRITE) &&
1925 tb_invalidate_phys_page(addr, 0, NULL);
1929 spin_unlock(&tb_lock);
1932 int page_check_range(target_ulong start, target_ulong len, int flags)
1938 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1939 start = start & TARGET_PAGE_MASK;
1942 /* we've wrapped around */
1944 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1945 p = page_find(addr >> TARGET_PAGE_BITS);
1948 if( !(p->flags & PAGE_VALID) )
1951 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1953 if (flags & PAGE_WRITE) {
1954 if (!(p->flags & PAGE_WRITE_ORG))
1956 /* unprotect the page if it was put read-only because it
1957 contains translated code */
1958 if (!(p->flags & PAGE_WRITE)) {
1959 if (!page_unprotect(addr, 0, NULL))
1968 /* called from signal handler: invalidate the code and unprotect the
1969 page. Return TRUE if the fault was succesfully handled. */
1970 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1972 unsigned int page_index, prot, pindex;
1974 target_ulong host_start, host_end, addr;
1976 host_start = address & qemu_host_page_mask;
1977 page_index = host_start >> TARGET_PAGE_BITS;
1978 p1 = page_find(page_index);
1981 host_end = host_start + qemu_host_page_size;
1984 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1988 /* if the page was really writable, then we change its
1989 protection back to writable */
1990 if (prot & PAGE_WRITE_ORG) {
1991 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1992 if (!(p1[pindex].flags & PAGE_WRITE)) {
1993 mprotect((void *)g2h(host_start), qemu_host_page_size,
1994 (prot & PAGE_BITS) | PAGE_WRITE);
1995 p1[pindex].flags |= PAGE_WRITE;
1996 /* and since the content will be modified, we must invalidate
1997 the corresponding translated code. */
1998 tb_invalidate_phys_page(address, pc, puc);
1999 #ifdef DEBUG_TB_CHECK
2000 tb_invalidate_check(address);
2008 static inline void tlb_set_dirty(CPUState *env,
2009 unsigned long addr, target_ulong vaddr)
2012 #endif /* defined(CONFIG_USER_ONLY) */
2014 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2016 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2017 ram_addr_t orig_memory);
2018 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2021 if (addr > start_addr) \
2024 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2025 if (start_addr2 > 0) \
2029 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2030 end_addr2 = TARGET_PAGE_SIZE - 1; \
2032 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2033 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2038 /* register physical memory. 'size' must be a multiple of the target
2039 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2041 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2043 ram_addr_t phys_offset)
2045 target_phys_addr_t addr, end_addr;
2048 ram_addr_t orig_size = size;
2051 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2052 end_addr = start_addr + (target_phys_addr_t)size;
2053 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2054 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2055 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2056 ram_addr_t orig_memory = p->phys_offset;
2057 target_phys_addr_t start_addr2, end_addr2;
2058 int need_subpage = 0;
2060 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2062 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2063 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2064 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2065 &p->phys_offset, orig_memory);
2067 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2070 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2072 p->phys_offset = phys_offset;
2073 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2074 (phys_offset & IO_MEM_ROMD))
2075 phys_offset += TARGET_PAGE_SIZE;
2078 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2079 p->phys_offset = phys_offset;
2080 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2081 (phys_offset & IO_MEM_ROMD))
2082 phys_offset += TARGET_PAGE_SIZE;
2084 target_phys_addr_t start_addr2, end_addr2;
2085 int need_subpage = 0;
2087 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2088 end_addr2, need_subpage);
2090 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2091 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2092 &p->phys_offset, IO_MEM_UNASSIGNED);
2093 subpage_register(subpage, start_addr2, end_addr2,
2100 /* since each CPU stores ram addresses in its TLB cache, we must
2101 reset the modified entries */
2103 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2108 /* XXX: temporary until new memory mapping API */
2109 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2113 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2115 return IO_MEM_UNASSIGNED;
2116 return p->phys_offset;
2119 /* XXX: better than nothing */
2120 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2123 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2124 fprintf(stderr, "Not enough memory (requested_size = %lu, max memory = %ld)\n",
2125 size, phys_ram_size);
2128 addr = phys_ram_alloc_offset;
2129 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2133 void qemu_ram_free(ram_addr_t addr)
2137 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2139 #ifdef DEBUG_UNASSIGNED
2140 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2143 do_unassigned_access(addr, 0, 0, 0);
2145 do_unassigned_access(addr, 0, 0, 0);
2150 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2152 #ifdef DEBUG_UNASSIGNED
2153 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2156 do_unassigned_access(addr, 1, 0, 0);
2158 do_unassigned_access(addr, 1, 0, 0);
2162 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2163 unassigned_mem_readb,
2164 unassigned_mem_readb,
2165 unassigned_mem_readb,
2168 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2169 unassigned_mem_writeb,
2170 unassigned_mem_writeb,
2171 unassigned_mem_writeb,
2174 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2176 unsigned long ram_addr;
2178 ram_addr = addr - (unsigned long)phys_ram_base;
2179 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2180 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2181 #if !defined(CONFIG_USER_ONLY)
2182 tb_invalidate_phys_page_fast(ram_addr, 1);
2183 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2186 stb_p((uint8_t *)(long)addr, val);
2188 if (cpu_single_env->kqemu_enabled &&
2189 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2190 kqemu_modify_page(cpu_single_env, ram_addr);
2192 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2193 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2194 /* we remove the notdirty callback only if the code has been
2196 if (dirty_flags == 0xff)
2197 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2200 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2202 unsigned long ram_addr;
2204 ram_addr = addr - (unsigned long)phys_ram_base;
2205 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2206 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2207 #if !defined(CONFIG_USER_ONLY)
2208 tb_invalidate_phys_page_fast(ram_addr, 2);
2209 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2212 stw_p((uint8_t *)(long)addr, val);
2214 if (cpu_single_env->kqemu_enabled &&
2215 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2216 kqemu_modify_page(cpu_single_env, ram_addr);
2218 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2219 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2220 /* we remove the notdirty callback only if the code has been
2222 if (dirty_flags == 0xff)
2223 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2226 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2228 unsigned long ram_addr;
2230 ram_addr = addr - (unsigned long)phys_ram_base;
2231 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2232 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2233 #if !defined(CONFIG_USER_ONLY)
2234 tb_invalidate_phys_page_fast(ram_addr, 4);
2235 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2238 stl_p((uint8_t *)(long)addr, val);
2240 if (cpu_single_env->kqemu_enabled &&
2241 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2242 kqemu_modify_page(cpu_single_env, ram_addr);
2244 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2245 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2246 /* we remove the notdirty callback only if the code has been
2248 if (dirty_flags == 0xff)
2249 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2252 static CPUReadMemoryFunc *error_mem_read[3] = {
2253 NULL, /* never used */
2254 NULL, /* never used */
2255 NULL, /* never used */
2258 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2259 notdirty_mem_writeb,
2260 notdirty_mem_writew,
2261 notdirty_mem_writel,
2264 #if defined(CONFIG_SOFTMMU)
2265 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2266 so these check for a hit then pass through to the normal out-of-line
2268 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2270 return ldub_phys(addr);
2273 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2275 return lduw_phys(addr);
2278 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2280 return ldl_phys(addr);
2283 /* Generate a debug exception if a watchpoint has been hit.
2284 Returns the real physical address of the access. addr will be a host
2285 address in case of a RAM location. */
2286 static target_ulong check_watchpoint(target_phys_addr_t addr)
2288 CPUState *env = cpu_single_env;
2290 target_ulong retaddr;
2294 for (i = 0; i < env->nb_watchpoints; i++) {
2295 watch = env->watchpoint[i].vaddr;
2296 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2297 retaddr = addr - env->watchpoint[i].addend;
2298 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2299 cpu_single_env->watchpoint_hit = i + 1;
2300 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2308 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2311 addr = check_watchpoint(addr);
2312 stb_phys(addr, val);
2315 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2318 addr = check_watchpoint(addr);
2319 stw_phys(addr, val);
2322 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2325 addr = check_watchpoint(addr);
2326 stl_phys(addr, val);
2329 static CPUReadMemoryFunc *watch_mem_read[3] = {
2335 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2342 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2348 idx = SUBPAGE_IDX(addr - mmio->base);
2349 #if defined(DEBUG_SUBPAGE)
2350 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2351 mmio, len, addr, idx);
2353 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2358 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2359 uint32_t value, unsigned int len)
2363 idx = SUBPAGE_IDX(addr - mmio->base);
2364 #if defined(DEBUG_SUBPAGE)
2365 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2366 mmio, len, addr, idx, value);
2368 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2371 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2373 #if defined(DEBUG_SUBPAGE)
2374 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2377 return subpage_readlen(opaque, addr, 0);
2380 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2383 #if defined(DEBUG_SUBPAGE)
2384 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2386 subpage_writelen(opaque, addr, value, 0);
2389 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2391 #if defined(DEBUG_SUBPAGE)
2392 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2395 return subpage_readlen(opaque, addr, 1);
2398 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2401 #if defined(DEBUG_SUBPAGE)
2402 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2404 subpage_writelen(opaque, addr, value, 1);
2407 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2409 #if defined(DEBUG_SUBPAGE)
2410 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2413 return subpage_readlen(opaque, addr, 2);
2416 static void subpage_writel (void *opaque,
2417 target_phys_addr_t addr, uint32_t value)
2419 #if defined(DEBUG_SUBPAGE)
2420 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2422 subpage_writelen(opaque, addr, value, 2);
2425 static CPUReadMemoryFunc *subpage_read[] = {
2431 static CPUWriteMemoryFunc *subpage_write[] = {
2437 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2443 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2445 idx = SUBPAGE_IDX(start);
2446 eidx = SUBPAGE_IDX(end);
2447 #if defined(DEBUG_SUBPAGE)
2448 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2449 mmio, start, end, idx, eidx, memory);
2451 memory >>= IO_MEM_SHIFT;
2452 for (; idx <= eidx; idx++) {
2453 for (i = 0; i < 4; i++) {
2454 if (io_mem_read[memory][i]) {
2455 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2456 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2458 if (io_mem_write[memory][i]) {
2459 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2460 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2468 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2469 ram_addr_t orig_memory)
2474 mmio = qemu_mallocz(sizeof(subpage_t));
2477 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2478 #if defined(DEBUG_SUBPAGE)
2479 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2480 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2482 *phys = subpage_memory | IO_MEM_SUBPAGE;
2483 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2489 static void io_mem_init(void)
2491 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2492 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2493 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2496 #if defined(CONFIG_SOFTMMU)
2497 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2498 watch_mem_write, NULL);
2500 /* alloc dirty bits array */
2501 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2502 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2505 /* mem_read and mem_write are arrays of functions containing the
2506 function to access byte (index 0), word (index 1) and dword (index
2507 2). Functions can be omitted with a NULL function pointer. The
2508 registered functions may be modified dynamically later.
2509 If io_index is non zero, the corresponding io zone is
2510 modified. If it is zero, a new io zone is allocated. The return
2511 value can be used with cpu_register_physical_memory(). (-1) is
2512 returned if error. */
2513 int cpu_register_io_memory(int io_index,
2514 CPUReadMemoryFunc **mem_read,
2515 CPUWriteMemoryFunc **mem_write,
2518 int i, subwidth = 0;
2520 if (io_index <= 0) {
2521 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2523 io_index = io_mem_nb++;
2525 if (io_index >= IO_MEM_NB_ENTRIES)
2529 for(i = 0;i < 3; i++) {
2530 if (!mem_read[i] || !mem_write[i])
2531 subwidth = IO_MEM_SUBWIDTH;
2532 io_mem_read[io_index][i] = mem_read[i];
2533 io_mem_write[io_index][i] = mem_write[i];
2535 io_mem_opaque[io_index] = opaque;
2536 return (io_index << IO_MEM_SHIFT) | subwidth;
2539 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2541 return io_mem_write[io_index >> IO_MEM_SHIFT];
2544 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2546 return io_mem_read[io_index >> IO_MEM_SHIFT];
2549 /* physical memory access (slow version, mainly for debug) */
2550 #if defined(CONFIG_USER_ONLY)
2551 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2552 int len, int is_write)
2559 page = addr & TARGET_PAGE_MASK;
2560 l = (page + TARGET_PAGE_SIZE) - addr;
2563 flags = page_get_flags(page);
2564 if (!(flags & PAGE_VALID))
2567 if (!(flags & PAGE_WRITE))
2569 /* XXX: this code should not depend on lock_user */
2570 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2571 /* FIXME - should this return an error rather than just fail? */
2574 unlock_user(p, addr, l);
2576 if (!(flags & PAGE_READ))
2578 /* XXX: this code should not depend on lock_user */
2579 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2580 /* FIXME - should this return an error rather than just fail? */
2583 unlock_user(p, addr, 0);
2592 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2593 int len, int is_write)
2598 target_phys_addr_t page;
2603 page = addr & TARGET_PAGE_MASK;
2604 l = (page + TARGET_PAGE_SIZE) - addr;
2607 p = phys_page_find(page >> TARGET_PAGE_BITS);
2609 pd = IO_MEM_UNASSIGNED;
2611 pd = p->phys_offset;
2615 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2616 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2617 /* XXX: could force cpu_single_env to NULL to avoid
2619 if (l >= 4 && ((addr & 3) == 0)) {
2620 /* 32 bit write access */
2622 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2624 } else if (l >= 2 && ((addr & 1) == 0)) {
2625 /* 16 bit write access */
2627 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2630 /* 8 bit write access */
2632 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2636 unsigned long addr1;
2637 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2639 ptr = phys_ram_base + addr1;
2640 memcpy(ptr, buf, l);
2641 if (!cpu_physical_memory_is_dirty(addr1)) {
2642 /* invalidate code */
2643 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2645 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2646 (0xff & ~CODE_DIRTY_FLAG);
2650 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2651 !(pd & IO_MEM_ROMD)) {
2653 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2654 if (l >= 4 && ((addr & 3) == 0)) {
2655 /* 32 bit read access */
2656 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2659 } else if (l >= 2 && ((addr & 1) == 0)) {
2660 /* 16 bit read access */
2661 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2665 /* 8 bit read access */
2666 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2672 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2673 (addr & ~TARGET_PAGE_MASK);
2674 memcpy(buf, ptr, l);
2683 /* used for ROM loading : can write in RAM and ROM */
2684 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2685 const uint8_t *buf, int len)
2689 target_phys_addr_t page;
2694 page = addr & TARGET_PAGE_MASK;
2695 l = (page + TARGET_PAGE_SIZE) - addr;
2698 p = phys_page_find(page >> TARGET_PAGE_BITS);
2700 pd = IO_MEM_UNASSIGNED;
2702 pd = p->phys_offset;
2705 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2706 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2707 !(pd & IO_MEM_ROMD)) {
2710 unsigned long addr1;
2711 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2713 ptr = phys_ram_base + addr1;
2714 memcpy(ptr, buf, l);
2723 /* warning: addr must be aligned */
2724 uint32_t ldl_phys(target_phys_addr_t addr)
2732 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2734 pd = IO_MEM_UNASSIGNED;
2736 pd = p->phys_offset;
2739 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2740 !(pd & IO_MEM_ROMD)) {
2742 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2743 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2746 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2747 (addr & ~TARGET_PAGE_MASK);
2753 /* warning: addr must be aligned */
2754 uint64_t ldq_phys(target_phys_addr_t addr)
2762 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2764 pd = IO_MEM_UNASSIGNED;
2766 pd = p->phys_offset;
2769 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2770 !(pd & IO_MEM_ROMD)) {
2772 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2773 #ifdef TARGET_WORDS_BIGENDIAN
2774 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2775 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2777 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2778 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2782 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2783 (addr & ~TARGET_PAGE_MASK);
2790 uint32_t ldub_phys(target_phys_addr_t addr)
2793 cpu_physical_memory_read(addr, &val, 1);
2798 uint32_t lduw_phys(target_phys_addr_t addr)
2801 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2802 return tswap16(val);
2805 /* warning: addr must be aligned. The ram page is not masked as dirty
2806 and the code inside is not invalidated. It is useful if the dirty
2807 bits are used to track modified PTEs */
2808 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2815 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2817 pd = IO_MEM_UNASSIGNED;
2819 pd = p->phys_offset;
2822 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2823 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2824 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2826 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2827 (addr & ~TARGET_PAGE_MASK);
2832 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2839 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2841 pd = IO_MEM_UNASSIGNED;
2843 pd = p->phys_offset;
2846 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2847 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2848 #ifdef TARGET_WORDS_BIGENDIAN
2849 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2850 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2852 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2853 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2856 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2857 (addr & ~TARGET_PAGE_MASK);
2862 /* warning: addr must be aligned */
2863 void stl_phys(target_phys_addr_t addr, uint32_t val)
2870 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2872 pd = IO_MEM_UNASSIGNED;
2874 pd = p->phys_offset;
2877 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2878 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2879 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2881 unsigned long addr1;
2882 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2884 ptr = phys_ram_base + addr1;
2886 if (!cpu_physical_memory_is_dirty(addr1)) {
2887 /* invalidate code */
2888 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2890 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2891 (0xff & ~CODE_DIRTY_FLAG);
2897 void stb_phys(target_phys_addr_t addr, uint32_t val)
2900 cpu_physical_memory_write(addr, &v, 1);
2904 void stw_phys(target_phys_addr_t addr, uint32_t val)
2906 uint16_t v = tswap16(val);
2907 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2911 void stq_phys(target_phys_addr_t addr, uint64_t val)
2914 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2919 /* virtual memory access for debug */
2920 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2921 uint8_t *buf, int len, int is_write)
2924 target_phys_addr_t phys_addr;
2928 page = addr & TARGET_PAGE_MASK;
2929 phys_addr = cpu_get_phys_page_debug(env, page);
2930 /* if no physical page mapped, return an error */
2931 if (phys_addr == -1)
2933 l = (page + TARGET_PAGE_SIZE) - addr;
2936 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2945 void dump_exec_info(FILE *f,
2946 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2948 int i, target_code_size, max_target_code_size;
2949 int direct_jmp_count, direct_jmp2_count, cross_page;
2950 TranslationBlock *tb;
2952 target_code_size = 0;
2953 max_target_code_size = 0;
2955 direct_jmp_count = 0;
2956 direct_jmp2_count = 0;
2957 for(i = 0; i < nb_tbs; i++) {
2959 target_code_size += tb->size;
2960 if (tb->size > max_target_code_size)
2961 max_target_code_size = tb->size;
2962 if (tb->page_addr[1] != -1)
2964 if (tb->tb_next_offset[0] != 0xffff) {
2966 if (tb->tb_next_offset[1] != 0xffff) {
2967 direct_jmp2_count++;
2971 /* XXX: avoid using doubles ? */
2972 cpu_fprintf(f, "Translation buffer state:\n");
2973 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2974 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2975 nb_tbs ? target_code_size / nb_tbs : 0,
2976 max_target_code_size);
2977 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2978 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2979 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2980 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2982 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2983 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2985 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2987 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2988 cpu_fprintf(f, "\nStatistics:\n");
2989 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2990 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2991 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2992 #ifdef CONFIG_PROFILER
2995 tot = dyngen_interm_time + dyngen_code_time;
2996 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
2998 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
3000 dyngen_tb_count1 - dyngen_tb_count,
3001 dyngen_tb_count1 ? (double)(dyngen_tb_count1 - dyngen_tb_count) / dyngen_tb_count1 * 100.0 : 0);
3002 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
3003 dyngen_tb_count ? (double)dyngen_op_count / dyngen_tb_count : 0, dyngen_op_count_max);
3004 cpu_fprintf(f, "old ops/total ops %0.1f%%\n",
3005 dyngen_op_count ? (double)dyngen_old_op_count / dyngen_op_count * 100.0 : 0);
3006 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3008 (double)dyngen_tcg_del_op_count / dyngen_tb_count : 0);
3009 cpu_fprintf(f, "cycles/op %0.1f\n",
3010 dyngen_op_count ? (double)tot / dyngen_op_count : 0);
3011 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3012 dyngen_code_in_len ? (double)tot / dyngen_code_in_len : 0);
3013 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3014 dyngen_code_out_len ? (double)tot / dyngen_code_out_len : 0);
3017 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3018 (double)dyngen_interm_time / tot * 100.0);
3019 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3020 (double)dyngen_code_time / tot * 100.0);
3021 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3022 dyngen_restore_count);
3023 cpu_fprintf(f, " avg cycles %0.1f\n",
3024 dyngen_restore_count ? (double)dyngen_restore_time / dyngen_restore_count : 0);
3026 extern void dump_op_count(void);
3033 #if !defined(CONFIG_USER_ONLY)
3035 #define MMUSUFFIX _cmmu
3036 #define GETPC() NULL
3037 #define env cpu_single_env
3038 #define SOFTMMU_CODE_ACCESS
3041 #include "softmmu_template.h"
3044 #include "softmmu_template.h"
3047 #include "softmmu_template.h"
3050 #include "softmmu_template.h"