2 * MIPS Boston development board emulation.
4 * Copyright (c) 2016 Imagination Technologies
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/cps.h"
31 #include "hw/mips/cpudevs.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-properties.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41 #include "sysemu/runstate.h"
45 #define TYPE_MIPS_BOSTON "mips-boston"
46 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
49 SysBusDevice parent_obj;
55 CharBackend lcd_display;
63 enum boston_plat_reg {
64 PLAT_FPGA_BUILD = 0x00,
66 PLAT_WRAPPER_CL = 0x08,
67 PLAT_SYSCLK_STATUS = 0x0c,
68 PLAT_SOFTRST_CTL = 0x10,
69 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
70 PLAT_DDR3_STATUS = 0x14,
71 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
72 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
73 PLAT_PCIE_STATUS = 0x18,
74 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
75 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
76 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
77 PLAT_FLASH_CTL = 0x1c,
83 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
84 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
85 #define PLAT_MMCM_DIV_MUL_SHIFT 16
86 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
87 PLAT_BUILD_CFG = 0x34,
88 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
89 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
90 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
91 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
93 #define PLAT_DDR_CFG_SIZE (0xf << 0)
94 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
95 PLAT_NOC_PCIE0_ADDR = 0x3c,
96 PLAT_NOC_PCIE1_ADDR = 0x40,
97 PLAT_NOC_PCIE2_ADDR = 0x44,
101 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
103 BostonState *s = opaque;
104 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
105 qemu_chr_fe_printf(&s->lcd_display, " ");
106 s->lcd_inited = true;
110 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
113 BostonState *s = opaque;
118 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
119 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
120 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
121 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
124 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
125 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
128 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
131 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
138 static void boston_lcd_write(void *opaque, hwaddr addr,
139 uint64_t val, unsigned size)
141 BostonState *s = opaque;
145 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
146 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
147 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
148 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
151 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
152 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
155 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
158 s->lcd_content[(addr + 0) & 0x7] = val;
162 qemu_chr_fe_printf(&s->lcd_display,
163 "\r%-8.8s", s->lcd_content);
166 static const MemoryRegionOps boston_lcd_ops = {
167 .read = boston_lcd_read,
168 .write = boston_lcd_write,
169 .endianness = DEVICE_NATIVE_ENDIAN,
172 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
175 BostonState *s = opaque;
176 uint32_t gic_freq, val;
179 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
183 switch (addr & 0xffff) {
184 case PLAT_FPGA_BUILD:
186 case PLAT_WRAPPER_CL:
188 case PLAT_DDR3_STATUS:
189 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
191 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
192 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
193 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
194 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
195 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
198 val = PLAT_BUILD_CFG_PCIE0_EN;
199 val |= PLAT_BUILD_CFG_PCIE1_EN;
200 val |= PLAT_BUILD_CFG_PCIE2_EN;
203 val = s->mach->ram_size / GiB;
204 assert(!(val & ~PLAT_DDR_CFG_SIZE));
205 val |= PLAT_DDR_CFG_MHZ;
208 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
214 static void boston_platreg_write(void *opaque, hwaddr addr,
215 uint64_t val, unsigned size)
218 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
222 switch (addr & 0xffff) {
223 case PLAT_FPGA_BUILD:
225 case PLAT_WRAPPER_CL:
226 case PLAT_DDR3_STATUS:
227 case PLAT_PCIE_STATUS:
233 case PLAT_SOFTRST_CTL:
234 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
235 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
239 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
240 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
245 static const MemoryRegionOps boston_platreg_ops = {
246 .read = boston_platreg_read,
247 .write = boston_platreg_write,
248 .endianness = DEVICE_NATIVE_ENDIAN,
251 static const TypeInfo boston_device = {
252 .name = TYPE_MIPS_BOSTON,
253 .parent = TYPE_SYS_BUS_DEVICE,
254 .instance_size = sizeof(BostonState),
257 static void boston_register_types(void)
259 type_register_static(&boston_device);
261 type_init(boston_register_types)
263 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
266 const uint32_t cm_base = 0x16100000;
267 const uint32_t gic_base = 0x16120000;
268 const uint32_t cpc_base = 0x16200000;
272 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
273 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
275 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
276 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
278 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
279 stl_p(p++, 0x01094025); /* or $8, $9 */
280 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
282 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
284 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
286 stl_p(p++, 0x012a4025); /* or $8, $10 */
288 /* Move & enable GIC GCRs */
289 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
290 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
292 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
294 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
297 /* Move & enable CPC GCRs */
298 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
299 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
301 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
303 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
307 * Setup argument registers to follow the UHI boot protocol:
310 * a1/$5 = virtual address of FDT
314 stl_p(p++, 0x2404fffe); /* li $4, -2 */
315 /* lui $5, hi(fdt_addr) */
316 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
317 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
318 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
320 stl_p(p++, 0x34060000); /* li $6, 0 */
321 stl_p(p++, 0x34070000); /* li $7, 0 */
323 /* Load kernel entry address & jump to it */
324 /* lui $25, hi(kernel_entry) */
325 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
326 /* ori $25, lo(kernel_entry) */
327 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
328 stl_p(p++, 0x03200009); /* jr $25 */
331 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
332 const void *match_data, hwaddr *load_addr)
334 BostonState *s = BOSTON(opaque);
335 MachineState *machine = s->mach;
339 size_t fdt_sz, ram_low_sz, ram_high_sz;
341 fdt_sz = fdt_totalsize(fdt_orig) * 2;
342 fdt = g_malloc0(fdt_sz);
344 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
346 fprintf(stderr, "unable to open FDT\n");
350 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
351 ? machine->kernel_cmdline : " ";
352 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
354 fprintf(stderr, "couldn't set /chosen/bootargs\n");
358 ram_low_sz = MIN(256 * MiB, machine->ram_size);
359 ram_high_sz = machine->ram_size - ram_low_sz;
360 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
361 1, 0x00000000, 1, ram_low_sz,
362 1, 0x90000000, 1, ram_high_sz);
364 fdt = g_realloc(fdt, fdt_totalsize(fdt));
365 qemu_fdt_dumpdtb(fdt, fdt_sz);
367 s->fdt_base = *load_addr;
372 static const void *boston_kernel_filter(void *opaque, const void *kernel,
373 hwaddr *load_addr, hwaddr *entry_addr)
375 BostonState *s = BOSTON(opaque);
377 s->kernel_entry = *entry_addr;
382 static const struct fit_loader_match boston_matches[] = {
387 static const struct fit_loader boston_fit_loader = {
388 .matches = boston_matches,
389 .addr_to_phys = cpu_mips_kseg0_to_phys,
390 .fdt_filter = boston_fdt_filter,
391 .kernel_filter = boston_kernel_filter,
394 static inline XilinxPCIEHost *
395 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
396 hwaddr cfg_base, uint64_t cfg_size,
397 hwaddr mmio_base, uint64_t mmio_size,
398 qemu_irq irq, bool link_up)
401 MemoryRegion *cfg, *mmio;
403 dev = qdev_new(TYPE_XILINX_PCIE_HOST);
405 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
406 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
407 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
408 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
409 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
410 qdev_prop_set_bit(dev, "link_up", link_up);
412 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
414 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
415 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
417 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
418 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
420 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
422 return XILINX_PCIE_HOST(dev);
425 static void boston_mach_init(MachineState *machine)
429 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
430 MemoryRegion *sys_mem = get_system_memory();
431 XilinxPCIEHost *pcie2;
435 int fw_size, fit_err;
438 if ((machine->ram_size % GiB) ||
439 (machine->ram_size > (2 * GiB))) {
440 error_report("Memory size must be 1GB or 2GB");
444 dev = qdev_new(TYPE_MIPS_BOSTON);
445 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
450 if (!cpu_supports_cps_smp(machine->cpu_type)) {
451 error_report("Boston requires CPUs which support CPS");
455 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
457 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
458 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
460 object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
462 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
464 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
466 flash = g_new(MemoryRegion, 1);
467 memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
469 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
471 memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
473 ddr_low_alias = g_new(MemoryRegion, 1);
474 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
476 MIN(machine->ram_size, (256 * MiB)));
477 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
479 xilinx_pcie_init(sys_mem, 0,
480 0x10000000, 32 * MiB,
482 get_cps_irq(&s->cps, 2), false);
484 xilinx_pcie_init(sys_mem, 1,
485 0x12000000, 32 * MiB,
486 0x20000000, 512 * MiB,
487 get_cps_irq(&s->cps, 1), false);
489 pcie2 = xilinx_pcie_init(sys_mem, 2,
490 0x14000000, 32 * MiB,
492 get_cps_irq(&s->cps, 0), true);
494 platreg = g_new(MemoryRegion, 1);
495 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
496 "boston-platregs", 0x1000);
497 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
499 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
500 get_cps_irq(&s->cps, 3), 10000000,
501 serial_hd(0), DEVICE_NATIVE_ENDIAN);
503 lcd = g_new(MemoryRegion, 1);
504 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
505 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
507 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
508 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
509 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
510 boston_lcd_event, NULL, s, NULL, true);
512 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
514 true, TYPE_ICH9_AHCI);
515 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
516 ide_drive_get(hd, ahci_get_num_ports(ahci));
517 ahci_ide_create_devs(ahci, hd);
519 if (machine->firmware) {
520 fw_size = load_image_targphys(machine->firmware,
521 0x1fc00000, 4 * MiB);
523 error_report("unable to load firmware image '%s'",
527 } else if (machine->kernel_filename) {
528 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
530 error_report("unable to load FIT image");
534 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
535 s->kernel_entry, s->fdt_base, is_64b);
536 } else if (!qtest_enabled()) {
537 error_report("Please provide either a -kernel or -bios argument");
542 static void boston_mach_class_init(MachineClass *mc)
544 mc->desc = "MIPS Boston";
545 mc->init = boston_mach_init;
546 mc->block_default_type = IF_IDE;
547 mc->default_ram_size = 1 * GiB;
548 mc->default_ram_id = "boston.ddr";
550 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
553 DEFINE_MACHINE("boston", boston_mach_class_init)