]> Git Repo - qemu.git/blob - hw/block/nvme.c
hw/block/nvme: Include "qemu/cutils.h" directly in the source file
[qemu.git] / hw / block / nvme.c
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <[email protected]>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13  *
14  *  http://www.nvmexpress.org/resources/
15  */
16
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21  *              cmb_size_mb=<cmb_size_mb[optional]>
22  *
23  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
24  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
25  */
26
27 #include "qemu/osdep.h"
28 #include "hw/block/block.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci.h"
32 #include "sysemu/sysemu.h"
33 #include "qapi/error.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/block-backend.h"
36
37 #include "qemu/log.h"
38 #include "qemu/cutils.h"
39 #include "trace.h"
40 #include "nvme.h"
41
42 #define NVME_GUEST_ERR(trace, fmt, ...) \
43     do { \
44         (trace_##trace)(__VA_ARGS__); \
45         qemu_log_mask(LOG_GUEST_ERROR, #trace \
46             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
47     } while (0)
48
49 static void nvme_process_sq(void *opaque);
50
51 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
52 {
53     if (n->cmbsz && addr >= n->ctrl_mem.addr &&
54                 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
55         memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
56     } else {
57         pci_dma_read(&n->parent_obj, addr, buf, size);
58     }
59 }
60
61 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
62 {
63     return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
64 }
65
66 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
67 {
68     return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
69 }
70
71 static void nvme_inc_cq_tail(NvmeCQueue *cq)
72 {
73     cq->tail++;
74     if (cq->tail >= cq->size) {
75         cq->tail = 0;
76         cq->phase = !cq->phase;
77     }
78 }
79
80 static void nvme_inc_sq_head(NvmeSQueue *sq)
81 {
82     sq->head = (sq->head + 1) % sq->size;
83 }
84
85 static uint8_t nvme_cq_full(NvmeCQueue *cq)
86 {
87     return (cq->tail + 1) % cq->size == cq->head;
88 }
89
90 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
91 {
92     return sq->head == sq->tail;
93 }
94
95 static void nvme_irq_check(NvmeCtrl *n)
96 {
97     if (msix_enabled(&(n->parent_obj))) {
98         return;
99     }
100     if (~n->bar.intms & n->irq_status) {
101         pci_irq_assert(&n->parent_obj);
102     } else {
103         pci_irq_deassert(&n->parent_obj);
104     }
105 }
106
107 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
108 {
109     if (cq->irq_enabled) {
110         if (msix_enabled(&(n->parent_obj))) {
111             trace_nvme_irq_msix(cq->vector);
112             msix_notify(&(n->parent_obj), cq->vector);
113         } else {
114             trace_nvme_irq_pin();
115             assert(cq->cqid < 64);
116             n->irq_status |= 1 << cq->cqid;
117             nvme_irq_check(n);
118         }
119     } else {
120         trace_nvme_irq_masked();
121     }
122 }
123
124 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
125 {
126     if (cq->irq_enabled) {
127         if (msix_enabled(&(n->parent_obj))) {
128             return;
129         } else {
130             assert(cq->cqid < 64);
131             n->irq_status &= ~(1 << cq->cqid);
132             nvme_irq_check(n);
133         }
134     }
135 }
136
137 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
138                              uint64_t prp2, uint32_t len, NvmeCtrl *n)
139 {
140     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
141     trans_len = MIN(len, trans_len);
142     int num_prps = (len >> n->page_bits) + 1;
143
144     if (unlikely(!prp1)) {
145         trace_nvme_err_invalid_prp();
146         return NVME_INVALID_FIELD | NVME_DNR;
147     } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
148                prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
149         qsg->nsg = 0;
150         qemu_iovec_init(iov, num_prps);
151         qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
152     } else {
153         pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
154         qemu_sglist_add(qsg, prp1, trans_len);
155     }
156     len -= trans_len;
157     if (len) {
158         if (unlikely(!prp2)) {
159             trace_nvme_err_invalid_prp2_missing();
160             goto unmap;
161         }
162         if (len > n->page_size) {
163             uint64_t prp_list[n->max_prp_ents];
164             uint32_t nents, prp_trans;
165             int i = 0;
166
167             nents = (len + n->page_size - 1) >> n->page_bits;
168             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
169             nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
170             while (len != 0) {
171                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
172
173                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
174                     if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
175                         trace_nvme_err_invalid_prplist_ent(prp_ent);
176                         goto unmap;
177                     }
178
179                     i = 0;
180                     nents = (len + n->page_size - 1) >> n->page_bits;
181                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
182                     nvme_addr_read(n, prp_ent, (void *)prp_list,
183                         prp_trans);
184                     prp_ent = le64_to_cpu(prp_list[i]);
185                 }
186
187                 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
188                     trace_nvme_err_invalid_prplist_ent(prp_ent);
189                     goto unmap;
190                 }
191
192                 trans_len = MIN(len, n->page_size);
193                 if (qsg->nsg){
194                     qemu_sglist_add(qsg, prp_ent, trans_len);
195                 } else {
196                     qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
197                 }
198                 len -= trans_len;
199                 i++;
200             }
201         } else {
202             if (unlikely(prp2 & (n->page_size - 1))) {
203                 trace_nvme_err_invalid_prp2_align(prp2);
204                 goto unmap;
205             }
206             if (qsg->nsg) {
207                 qemu_sglist_add(qsg, prp2, len);
208             } else {
209                 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
210             }
211         }
212     }
213     return NVME_SUCCESS;
214
215  unmap:
216     qemu_sglist_destroy(qsg);
217     return NVME_INVALID_FIELD | NVME_DNR;
218 }
219
220 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
221     uint64_t prp1, uint64_t prp2)
222 {
223     QEMUSGList qsg;
224     QEMUIOVector iov;
225     uint16_t status = NVME_SUCCESS;
226
227     trace_nvme_dma_read(prp1, prp2);
228
229     if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
230         return NVME_INVALID_FIELD | NVME_DNR;
231     }
232     if (qsg.nsg > 0) {
233         if (unlikely(dma_buf_read(ptr, len, &qsg))) {
234             trace_nvme_err_invalid_dma();
235             status = NVME_INVALID_FIELD | NVME_DNR;
236         }
237         qemu_sglist_destroy(&qsg);
238     } else {
239         if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
240             trace_nvme_err_invalid_dma();
241             status = NVME_INVALID_FIELD | NVME_DNR;
242         }
243         qemu_iovec_destroy(&iov);
244     }
245     return status;
246 }
247
248 static void nvme_post_cqes(void *opaque)
249 {
250     NvmeCQueue *cq = opaque;
251     NvmeCtrl *n = cq->ctrl;
252     NvmeRequest *req, *next;
253
254     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
255         NvmeSQueue *sq;
256         hwaddr addr;
257
258         if (nvme_cq_full(cq)) {
259             break;
260         }
261
262         QTAILQ_REMOVE(&cq->req_list, req, entry);
263         sq = req->sq;
264         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
265         req->cqe.sq_id = cpu_to_le16(sq->sqid);
266         req->cqe.sq_head = cpu_to_le16(sq->head);
267         addr = cq->dma_addr + cq->tail * n->cqe_size;
268         nvme_inc_cq_tail(cq);
269         pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
270             sizeof(req->cqe));
271         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
272     }
273     nvme_irq_assert(n, cq);
274 }
275
276 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
277 {
278     assert(cq->cqid == req->sq->cqid);
279     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
280     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
281     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
282 }
283
284 static void nvme_rw_cb(void *opaque, int ret)
285 {
286     NvmeRequest *req = opaque;
287     NvmeSQueue *sq = req->sq;
288     NvmeCtrl *n = sq->ctrl;
289     NvmeCQueue *cq = n->cq[sq->cqid];
290
291     if (!ret) {
292         block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
293         req->status = NVME_SUCCESS;
294     } else {
295         block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
296         req->status = NVME_INTERNAL_DEV_ERROR;
297     }
298     if (req->has_sg) {
299         qemu_sglist_destroy(&req->qsg);
300     }
301     nvme_enqueue_req_completion(cq, req);
302 }
303
304 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
305     NvmeRequest *req)
306 {
307     req->has_sg = false;
308     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
309          BLOCK_ACCT_FLUSH);
310     req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
311
312     return NVME_NO_COMPLETE;
313 }
314
315 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
316     NvmeRequest *req)
317 {
318     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
319     const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
320     const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
321     uint64_t slba = le64_to_cpu(rw->slba);
322     uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
323     uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
324     uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
325
326     if (unlikely(slba + nlb > ns->id_ns.nsze)) {
327         trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
328         return NVME_LBA_RANGE | NVME_DNR;
329     }
330
331     req->has_sg = false;
332     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
333                      BLOCK_ACCT_WRITE);
334     req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
335                                         BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
336     return NVME_NO_COMPLETE;
337 }
338
339 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
340     NvmeRequest *req)
341 {
342     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
343     uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
344     uint64_t slba = le64_to_cpu(rw->slba);
345     uint64_t prp1 = le64_to_cpu(rw->prp1);
346     uint64_t prp2 = le64_to_cpu(rw->prp2);
347
348     uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
349     uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
350     uint64_t data_size = (uint64_t)nlb << data_shift;
351     uint64_t data_offset = slba << data_shift;
352     int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
353     enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
354
355     trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
356
357     if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
358         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
359         trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
360         return NVME_LBA_RANGE | NVME_DNR;
361     }
362
363     if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
364         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
365         return NVME_INVALID_FIELD | NVME_DNR;
366     }
367
368     dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
369     if (req->qsg.nsg > 0) {
370         req->has_sg = true;
371         req->aiocb = is_write ?
372             dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
373                           nvme_rw_cb, req) :
374             dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
375                          nvme_rw_cb, req);
376     } else {
377         req->has_sg = false;
378         req->aiocb = is_write ?
379             blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
380                             req) :
381             blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
382                            req);
383     }
384
385     return NVME_NO_COMPLETE;
386 }
387
388 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
389 {
390     NvmeNamespace *ns;
391     uint32_t nsid = le32_to_cpu(cmd->nsid);
392
393     if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
394         trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
395         return NVME_INVALID_NSID | NVME_DNR;
396     }
397
398     ns = &n->namespaces[nsid - 1];
399     switch (cmd->opcode) {
400     case NVME_CMD_FLUSH:
401         return nvme_flush(n, ns, cmd, req);
402     case NVME_CMD_WRITE_ZEROS:
403         return nvme_write_zeros(n, ns, cmd, req);
404     case NVME_CMD_WRITE:
405     case NVME_CMD_READ:
406         return nvme_rw(n, ns, cmd, req);
407     default:
408         trace_nvme_err_invalid_opc(cmd->opcode);
409         return NVME_INVALID_OPCODE | NVME_DNR;
410     }
411 }
412
413 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
414 {
415     n->sq[sq->sqid] = NULL;
416     timer_del(sq->timer);
417     timer_free(sq->timer);
418     g_free(sq->io_req);
419     if (sq->sqid) {
420         g_free(sq);
421     }
422 }
423
424 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
425 {
426     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
427     NvmeRequest *req, *next;
428     NvmeSQueue *sq;
429     NvmeCQueue *cq;
430     uint16_t qid = le16_to_cpu(c->qid);
431
432     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
433         trace_nvme_err_invalid_del_sq(qid);
434         return NVME_INVALID_QID | NVME_DNR;
435     }
436
437     trace_nvme_del_sq(qid);
438
439     sq = n->sq[qid];
440     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
441         req = QTAILQ_FIRST(&sq->out_req_list);
442         assert(req->aiocb);
443         blk_aio_cancel(req->aiocb);
444     }
445     if (!nvme_check_cqid(n, sq->cqid)) {
446         cq = n->cq[sq->cqid];
447         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
448
449         nvme_post_cqes(cq);
450         QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
451             if (req->sq == sq) {
452                 QTAILQ_REMOVE(&cq->req_list, req, entry);
453                 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
454             }
455         }
456     }
457
458     nvme_free_sq(sq, n);
459     return NVME_SUCCESS;
460 }
461
462 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
463     uint16_t sqid, uint16_t cqid, uint16_t size)
464 {
465     int i;
466     NvmeCQueue *cq;
467
468     sq->ctrl = n;
469     sq->dma_addr = dma_addr;
470     sq->sqid = sqid;
471     sq->size = size;
472     sq->cqid = cqid;
473     sq->head = sq->tail = 0;
474     sq->io_req = g_new(NvmeRequest, sq->size);
475
476     QTAILQ_INIT(&sq->req_list);
477     QTAILQ_INIT(&sq->out_req_list);
478     for (i = 0; i < sq->size; i++) {
479         sq->io_req[i].sq = sq;
480         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
481     }
482     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
483
484     assert(n->cq[cqid]);
485     cq = n->cq[cqid];
486     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
487     n->sq[sqid] = sq;
488 }
489
490 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
491 {
492     NvmeSQueue *sq;
493     NvmeCreateSq *c = (NvmeCreateSq *)cmd;
494
495     uint16_t cqid = le16_to_cpu(c->cqid);
496     uint16_t sqid = le16_to_cpu(c->sqid);
497     uint16_t qsize = le16_to_cpu(c->qsize);
498     uint16_t qflags = le16_to_cpu(c->sq_flags);
499     uint64_t prp1 = le64_to_cpu(c->prp1);
500
501     trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
502
503     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
504         trace_nvme_err_invalid_create_sq_cqid(cqid);
505         return NVME_INVALID_CQID | NVME_DNR;
506     }
507     if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
508         trace_nvme_err_invalid_create_sq_sqid(sqid);
509         return NVME_INVALID_QID | NVME_DNR;
510     }
511     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
512         trace_nvme_err_invalid_create_sq_size(qsize);
513         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
514     }
515     if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
516         trace_nvme_err_invalid_create_sq_addr(prp1);
517         return NVME_INVALID_FIELD | NVME_DNR;
518     }
519     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
520         trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
521         return NVME_INVALID_FIELD | NVME_DNR;
522     }
523     sq = g_malloc0(sizeof(*sq));
524     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
525     return NVME_SUCCESS;
526 }
527
528 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
529 {
530     n->cq[cq->cqid] = NULL;
531     timer_del(cq->timer);
532     timer_free(cq->timer);
533     msix_vector_unuse(&n->parent_obj, cq->vector);
534     if (cq->cqid) {
535         g_free(cq);
536     }
537 }
538
539 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
540 {
541     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
542     NvmeCQueue *cq;
543     uint16_t qid = le16_to_cpu(c->qid);
544
545     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
546         trace_nvme_err_invalid_del_cq_cqid(qid);
547         return NVME_INVALID_CQID | NVME_DNR;
548     }
549
550     cq = n->cq[qid];
551     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
552         trace_nvme_err_invalid_del_cq_notempty(qid);
553         return NVME_INVALID_QUEUE_DEL;
554     }
555     trace_nvme_del_cq(qid);
556     nvme_free_cq(cq, n);
557     return NVME_SUCCESS;
558 }
559
560 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
561     uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
562 {
563     cq->ctrl = n;
564     cq->cqid = cqid;
565     cq->size = size;
566     cq->dma_addr = dma_addr;
567     cq->phase = 1;
568     cq->irq_enabled = irq_enabled;
569     cq->vector = vector;
570     cq->head = cq->tail = 0;
571     QTAILQ_INIT(&cq->req_list);
572     QTAILQ_INIT(&cq->sq_list);
573     msix_vector_use(&n->parent_obj, cq->vector);
574     n->cq[cqid] = cq;
575     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
576 }
577
578 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
579 {
580     NvmeCQueue *cq;
581     NvmeCreateCq *c = (NvmeCreateCq *)cmd;
582     uint16_t cqid = le16_to_cpu(c->cqid);
583     uint16_t vector = le16_to_cpu(c->irq_vector);
584     uint16_t qsize = le16_to_cpu(c->qsize);
585     uint16_t qflags = le16_to_cpu(c->cq_flags);
586     uint64_t prp1 = le64_to_cpu(c->prp1);
587
588     trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
589                          NVME_CQ_FLAGS_IEN(qflags) != 0);
590
591     if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
592         trace_nvme_err_invalid_create_cq_cqid(cqid);
593         return NVME_INVALID_CQID | NVME_DNR;
594     }
595     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
596         trace_nvme_err_invalid_create_cq_size(qsize);
597         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
598     }
599     if (unlikely(!prp1)) {
600         trace_nvme_err_invalid_create_cq_addr(prp1);
601         return NVME_INVALID_FIELD | NVME_DNR;
602     }
603     if (unlikely(vector > n->num_queues)) {
604         trace_nvme_err_invalid_create_cq_vector(vector);
605         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
606     }
607     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
608         trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
609         return NVME_INVALID_FIELD | NVME_DNR;
610     }
611
612     cq = g_malloc0(sizeof(*cq));
613     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
614         NVME_CQ_FLAGS_IEN(qflags));
615     return NVME_SUCCESS;
616 }
617
618 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
619 {
620     uint64_t prp1 = le64_to_cpu(c->prp1);
621     uint64_t prp2 = le64_to_cpu(c->prp2);
622
623     trace_nvme_identify_ctrl();
624
625     return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
626         prp1, prp2);
627 }
628
629 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
630 {
631     NvmeNamespace *ns;
632     uint32_t nsid = le32_to_cpu(c->nsid);
633     uint64_t prp1 = le64_to_cpu(c->prp1);
634     uint64_t prp2 = le64_to_cpu(c->prp2);
635
636     trace_nvme_identify_ns(nsid);
637
638     if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
639         trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
640         return NVME_INVALID_NSID | NVME_DNR;
641     }
642
643     ns = &n->namespaces[nsid - 1];
644
645     return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
646         prp1, prp2);
647 }
648
649 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
650 {
651     static const int data_len = 4096;
652     uint32_t min_nsid = le32_to_cpu(c->nsid);
653     uint64_t prp1 = le64_to_cpu(c->prp1);
654     uint64_t prp2 = le64_to_cpu(c->prp2);
655     uint32_t *list;
656     uint16_t ret;
657     int i, j = 0;
658
659     trace_nvme_identify_nslist(min_nsid);
660
661     list = g_malloc0(data_len);
662     for (i = 0; i < n->num_namespaces; i++) {
663         if (i < min_nsid) {
664             continue;
665         }
666         list[j++] = cpu_to_le32(i + 1);
667         if (j == data_len / sizeof(uint32_t)) {
668             break;
669         }
670     }
671     ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
672     g_free(list);
673     return ret;
674 }
675
676
677 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
678 {
679     NvmeIdentify *c = (NvmeIdentify *)cmd;
680
681     switch (le32_to_cpu(c->cns)) {
682     case 0x00:
683         return nvme_identify_ns(n, c);
684     case 0x01:
685         return nvme_identify_ctrl(n, c);
686     case 0x02:
687         return nvme_identify_nslist(n, c);
688     default:
689         trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
690         return NVME_INVALID_FIELD | NVME_DNR;
691     }
692 }
693
694 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
695 {
696     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
697     uint32_t result;
698
699     switch (dw10) {
700     case NVME_VOLATILE_WRITE_CACHE:
701         result = blk_enable_write_cache(n->conf.blk);
702         trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
703         break;
704     case NVME_NUMBER_OF_QUEUES:
705         result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
706         trace_nvme_getfeat_numq(result);
707         break;
708     default:
709         trace_nvme_err_invalid_getfeat(dw10);
710         return NVME_INVALID_FIELD | NVME_DNR;
711     }
712
713     req->cqe.result = result;
714     return NVME_SUCCESS;
715 }
716
717 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
718 {
719     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
720     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
721
722     switch (dw10) {
723     case NVME_VOLATILE_WRITE_CACHE:
724         blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
725         break;
726     case NVME_NUMBER_OF_QUEUES:
727         trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
728                                 ((dw11 >> 16) & 0xFFFF) + 1,
729                                 n->num_queues - 1, n->num_queues - 1);
730         req->cqe.result =
731             cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
732         break;
733     default:
734         trace_nvme_err_invalid_setfeat(dw10);
735         return NVME_INVALID_FIELD | NVME_DNR;
736     }
737     return NVME_SUCCESS;
738 }
739
740 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
741 {
742     switch (cmd->opcode) {
743     case NVME_ADM_CMD_DELETE_SQ:
744         return nvme_del_sq(n, cmd);
745     case NVME_ADM_CMD_CREATE_SQ:
746         return nvme_create_sq(n, cmd);
747     case NVME_ADM_CMD_DELETE_CQ:
748         return nvme_del_cq(n, cmd);
749     case NVME_ADM_CMD_CREATE_CQ:
750         return nvme_create_cq(n, cmd);
751     case NVME_ADM_CMD_IDENTIFY:
752         return nvme_identify(n, cmd);
753     case NVME_ADM_CMD_SET_FEATURES:
754         return nvme_set_feature(n, cmd, req);
755     case NVME_ADM_CMD_GET_FEATURES:
756         return nvme_get_feature(n, cmd, req);
757     default:
758         trace_nvme_err_invalid_admin_opc(cmd->opcode);
759         return NVME_INVALID_OPCODE | NVME_DNR;
760     }
761 }
762
763 static void nvme_process_sq(void *opaque)
764 {
765     NvmeSQueue *sq = opaque;
766     NvmeCtrl *n = sq->ctrl;
767     NvmeCQueue *cq = n->cq[sq->cqid];
768
769     uint16_t status;
770     hwaddr addr;
771     NvmeCmd cmd;
772     NvmeRequest *req;
773
774     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
775         addr = sq->dma_addr + sq->head * n->sqe_size;
776         nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
777         nvme_inc_sq_head(sq);
778
779         req = QTAILQ_FIRST(&sq->req_list);
780         QTAILQ_REMOVE(&sq->req_list, req, entry);
781         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
782         memset(&req->cqe, 0, sizeof(req->cqe));
783         req->cqe.cid = cmd.cid;
784
785         status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
786             nvme_admin_cmd(n, &cmd, req);
787         if (status != NVME_NO_COMPLETE) {
788             req->status = status;
789             nvme_enqueue_req_completion(cq, req);
790         }
791     }
792 }
793
794 static void nvme_clear_ctrl(NvmeCtrl *n)
795 {
796     int i;
797
798     for (i = 0; i < n->num_queues; i++) {
799         if (n->sq[i] != NULL) {
800             nvme_free_sq(n->sq[i], n);
801         }
802     }
803     for (i = 0; i < n->num_queues; i++) {
804         if (n->cq[i] != NULL) {
805             nvme_free_cq(n->cq[i], n);
806         }
807     }
808
809     blk_flush(n->conf.blk);
810     n->bar.cc = 0;
811 }
812
813 static int nvme_start_ctrl(NvmeCtrl *n)
814 {
815     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
816     uint32_t page_size = 1 << page_bits;
817
818     if (unlikely(n->cq[0])) {
819         trace_nvme_err_startfail_cq();
820         return -1;
821     }
822     if (unlikely(n->sq[0])) {
823         trace_nvme_err_startfail_sq();
824         return -1;
825     }
826     if (unlikely(!n->bar.asq)) {
827         trace_nvme_err_startfail_nbarasq();
828         return -1;
829     }
830     if (unlikely(!n->bar.acq)) {
831         trace_nvme_err_startfail_nbaracq();
832         return -1;
833     }
834     if (unlikely(n->bar.asq & (page_size - 1))) {
835         trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
836         return -1;
837     }
838     if (unlikely(n->bar.acq & (page_size - 1))) {
839         trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
840         return -1;
841     }
842     if (unlikely(NVME_CC_MPS(n->bar.cc) <
843                  NVME_CAP_MPSMIN(n->bar.cap))) {
844         trace_nvme_err_startfail_page_too_small(
845                     NVME_CC_MPS(n->bar.cc),
846                     NVME_CAP_MPSMIN(n->bar.cap));
847         return -1;
848     }
849     if (unlikely(NVME_CC_MPS(n->bar.cc) >
850                  NVME_CAP_MPSMAX(n->bar.cap))) {
851         trace_nvme_err_startfail_page_too_large(
852                     NVME_CC_MPS(n->bar.cc),
853                     NVME_CAP_MPSMAX(n->bar.cap));
854         return -1;
855     }
856     if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
857                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
858         trace_nvme_err_startfail_cqent_too_small(
859                     NVME_CC_IOCQES(n->bar.cc),
860                     NVME_CTRL_CQES_MIN(n->bar.cap));
861         return -1;
862     }
863     if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
864                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
865         trace_nvme_err_startfail_cqent_too_large(
866                     NVME_CC_IOCQES(n->bar.cc),
867                     NVME_CTRL_CQES_MAX(n->bar.cap));
868         return -1;
869     }
870     if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
871                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
872         trace_nvme_err_startfail_sqent_too_small(
873                     NVME_CC_IOSQES(n->bar.cc),
874                     NVME_CTRL_SQES_MIN(n->bar.cap));
875         return -1;
876     }
877     if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
878                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
879         trace_nvme_err_startfail_sqent_too_large(
880                     NVME_CC_IOSQES(n->bar.cc),
881                     NVME_CTRL_SQES_MAX(n->bar.cap));
882         return -1;
883     }
884     if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
885         trace_nvme_err_startfail_asqent_sz_zero();
886         return -1;
887     }
888     if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
889         trace_nvme_err_startfail_acqent_sz_zero();
890         return -1;
891     }
892
893     n->page_bits = page_bits;
894     n->page_size = page_size;
895     n->max_prp_ents = n->page_size / sizeof(uint64_t);
896     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
897     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
898     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
899         NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
900     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
901         NVME_AQA_ASQS(n->bar.aqa) + 1);
902
903     return 0;
904 }
905
906 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
907     unsigned size)
908 {
909     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
910         NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
911                        "MMIO write not 32-bit aligned,"
912                        " offset=0x%"PRIx64"", offset);
913         /* should be ignored, fall through for now */
914     }
915
916     if (unlikely(size < sizeof(uint32_t))) {
917         NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
918                        "MMIO write smaller than 32-bits,"
919                        " offset=0x%"PRIx64", size=%u",
920                        offset, size);
921         /* should be ignored, fall through for now */
922     }
923
924     switch (offset) {
925     case 0xc:   /* INTMS */
926         if (unlikely(msix_enabled(&(n->parent_obj)))) {
927             NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
928                            "undefined access to interrupt mask set"
929                            " when MSI-X is enabled");
930             /* should be ignored, fall through for now */
931         }
932         n->bar.intms |= data & 0xffffffff;
933         n->bar.intmc = n->bar.intms;
934         trace_nvme_mmio_intm_set(data & 0xffffffff,
935                                  n->bar.intmc);
936         nvme_irq_check(n);
937         break;
938     case 0x10:  /* INTMC */
939         if (unlikely(msix_enabled(&(n->parent_obj)))) {
940             NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
941                            "undefined access to interrupt mask clr"
942                            " when MSI-X is enabled");
943             /* should be ignored, fall through for now */
944         }
945         n->bar.intms &= ~(data & 0xffffffff);
946         n->bar.intmc = n->bar.intms;
947         trace_nvme_mmio_intm_clr(data & 0xffffffff,
948                                  n->bar.intmc);
949         nvme_irq_check(n);
950         break;
951     case 0x14:  /* CC */
952         trace_nvme_mmio_cfg(data & 0xffffffff);
953         /* Windows first sends data, then sends enable bit */
954         if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
955             !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
956         {
957             n->bar.cc = data;
958         }
959
960         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
961             n->bar.cc = data;
962             if (unlikely(nvme_start_ctrl(n))) {
963                 trace_nvme_err_startfail();
964                 n->bar.csts = NVME_CSTS_FAILED;
965             } else {
966                 trace_nvme_mmio_start_success();
967                 n->bar.csts = NVME_CSTS_READY;
968             }
969         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
970             trace_nvme_mmio_stopped();
971             nvme_clear_ctrl(n);
972             n->bar.csts &= ~NVME_CSTS_READY;
973         }
974         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
975             trace_nvme_mmio_shutdown_set();
976             nvme_clear_ctrl(n);
977             n->bar.cc = data;
978             n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
979         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
980             trace_nvme_mmio_shutdown_cleared();
981             n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
982             n->bar.cc = data;
983         }
984         break;
985     case 0x1C:  /* CSTS */
986         if (data & (1 << 4)) {
987             NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
988                            "attempted to W1C CSTS.NSSRO"
989                            " but CAP.NSSRS is zero (not supported)");
990         } else if (data != 0) {
991             NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
992                            "attempted to set a read only bit"
993                            " of controller status");
994         }
995         break;
996     case 0x20:  /* NSSR */
997         if (data == 0x4E564D65) {
998             trace_nvme_ub_mmiowr_ssreset_unsupported();
999         } else {
1000             /* The spec says that writes of other values have no effect */
1001             return;
1002         }
1003         break;
1004     case 0x24:  /* AQA */
1005         n->bar.aqa = data & 0xffffffff;
1006         trace_nvme_mmio_aqattr(data & 0xffffffff);
1007         break;
1008     case 0x28:  /* ASQ */
1009         n->bar.asq = data;
1010         trace_nvme_mmio_asqaddr(data);
1011         break;
1012     case 0x2c:  /* ASQ hi */
1013         n->bar.asq |= data << 32;
1014         trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1015         break;
1016     case 0x30:  /* ACQ */
1017         trace_nvme_mmio_acqaddr(data);
1018         n->bar.acq = data;
1019         break;
1020     case 0x34:  /* ACQ hi */
1021         n->bar.acq |= data << 32;
1022         trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1023         break;
1024     case 0x38:  /* CMBLOC */
1025         NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1026                        "invalid write to reserved CMBLOC"
1027                        " when CMBSZ is zero, ignored");
1028         return;
1029     case 0x3C:  /* CMBSZ */
1030         NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1031                        "invalid write to read only CMBSZ, ignored");
1032         return;
1033     default:
1034         NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1035                        "invalid MMIO write,"
1036                        " offset=0x%"PRIx64", data=%"PRIx64"",
1037                        offset, data);
1038         break;
1039     }
1040 }
1041
1042 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1043 {
1044     NvmeCtrl *n = (NvmeCtrl *)opaque;
1045     uint8_t *ptr = (uint8_t *)&n->bar;
1046     uint64_t val = 0;
1047
1048     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1049         NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1050                        "MMIO read not 32-bit aligned,"
1051                        " offset=0x%"PRIx64"", addr);
1052         /* should RAZ, fall through for now */
1053     } else if (unlikely(size < sizeof(uint32_t))) {
1054         NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1055                        "MMIO read smaller than 32-bits,"
1056                        " offset=0x%"PRIx64"", addr);
1057         /* should RAZ, fall through for now */
1058     }
1059
1060     if (addr < sizeof(n->bar)) {
1061         memcpy(&val, ptr + addr, size);
1062     } else {
1063         NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1064                        "MMIO read beyond last register,"
1065                        " offset=0x%"PRIx64", returning 0", addr);
1066     }
1067
1068     return val;
1069 }
1070
1071 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1072 {
1073     uint32_t qid;
1074
1075     if (unlikely(addr & ((1 << 2) - 1))) {
1076         NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1077                        "doorbell write not 32-bit aligned,"
1078                        " offset=0x%"PRIx64", ignoring", addr);
1079         return;
1080     }
1081
1082     if (((addr - 0x1000) >> 2) & 1) {
1083         /* Completion queue doorbell write */
1084
1085         uint16_t new_head = val & 0xffff;
1086         int start_sqs;
1087         NvmeCQueue *cq;
1088
1089         qid = (addr - (0x1000 + (1 << 2))) >> 3;
1090         if (unlikely(nvme_check_cqid(n, qid))) {
1091             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1092                            "completion queue doorbell write"
1093                            " for nonexistent queue,"
1094                            " sqid=%"PRIu32", ignoring", qid);
1095             return;
1096         }
1097
1098         cq = n->cq[qid];
1099         if (unlikely(new_head >= cq->size)) {
1100             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1101                            "completion queue doorbell write value"
1102                            " beyond queue size, sqid=%"PRIu32","
1103                            " new_head=%"PRIu16", ignoring",
1104                            qid, new_head);
1105             return;
1106         }
1107
1108         start_sqs = nvme_cq_full(cq) ? 1 : 0;
1109         cq->head = new_head;
1110         if (start_sqs) {
1111             NvmeSQueue *sq;
1112             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1113                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1114             }
1115             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1116         }
1117
1118         if (cq->tail == cq->head) {
1119             nvme_irq_deassert(n, cq);
1120         }
1121     } else {
1122         /* Submission queue doorbell write */
1123
1124         uint16_t new_tail = val & 0xffff;
1125         NvmeSQueue *sq;
1126
1127         qid = (addr - 0x1000) >> 3;
1128         if (unlikely(nvme_check_sqid(n, qid))) {
1129             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1130                            "submission queue doorbell write"
1131                            " for nonexistent queue,"
1132                            " sqid=%"PRIu32", ignoring", qid);
1133             return;
1134         }
1135
1136         sq = n->sq[qid];
1137         if (unlikely(new_tail >= sq->size)) {
1138             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1139                            "submission queue doorbell write value"
1140                            " beyond queue size, sqid=%"PRIu32","
1141                            " new_tail=%"PRIu16", ignoring",
1142                            qid, new_tail);
1143             return;
1144         }
1145
1146         sq->tail = new_tail;
1147         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1148     }
1149 }
1150
1151 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1152     unsigned size)
1153 {
1154     NvmeCtrl *n = (NvmeCtrl *)opaque;
1155     if (addr < sizeof(n->bar)) {
1156         nvme_write_bar(n, addr, data, size);
1157     } else if (addr >= 0x1000) {
1158         nvme_process_db(n, addr, data);
1159     }
1160 }
1161
1162 static const MemoryRegionOps nvme_mmio_ops = {
1163     .read = nvme_mmio_read,
1164     .write = nvme_mmio_write,
1165     .endianness = DEVICE_LITTLE_ENDIAN,
1166     .impl = {
1167         .min_access_size = 2,
1168         .max_access_size = 8,
1169     },
1170 };
1171
1172 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1173     unsigned size)
1174 {
1175     NvmeCtrl *n = (NvmeCtrl *)opaque;
1176     memcpy(&n->cmbuf[addr], &data, size);
1177 }
1178
1179 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1180 {
1181     uint64_t val;
1182     NvmeCtrl *n = (NvmeCtrl *)opaque;
1183
1184     memcpy(&val, &n->cmbuf[addr], size);
1185     return val;
1186 }
1187
1188 static const MemoryRegionOps nvme_cmb_ops = {
1189     .read = nvme_cmb_read,
1190     .write = nvme_cmb_write,
1191     .endianness = DEVICE_LITTLE_ENDIAN,
1192     .impl = {
1193         .min_access_size = 2,
1194         .max_access_size = 8,
1195     },
1196 };
1197
1198 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1199 {
1200     NvmeCtrl *n = NVME(pci_dev);
1201     NvmeIdCtrl *id = &n->id_ctrl;
1202
1203     int i;
1204     int64_t bs_size;
1205     uint8_t *pci_conf;
1206
1207     if (!n->conf.blk) {
1208         error_setg(errp, "drive property not set");
1209         return;
1210     }
1211
1212     bs_size = blk_getlength(n->conf.blk);
1213     if (bs_size < 0) {
1214         error_setg(errp, "could not get backing file size");
1215         return;
1216     }
1217
1218     blkconf_serial(&n->conf, &n->serial);
1219     if (!n->serial) {
1220         error_setg(errp, "serial property not set");
1221         return;
1222     }
1223     blkconf_blocksizes(&n->conf);
1224     if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1225                                        false, errp)) {
1226         return;
1227     }
1228
1229     pci_conf = pci_dev->config;
1230     pci_conf[PCI_INTERRUPT_PIN] = 1;
1231     pci_config_set_prog_interface(pci_dev->config, 0x2);
1232     pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1233     pcie_endpoint_cap_init(&n->parent_obj, 0x80);
1234
1235     n->num_namespaces = 1;
1236     n->num_queues = 64;
1237     n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1238     n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1239
1240     n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1241     n->sq = g_new0(NvmeSQueue *, n->num_queues);
1242     n->cq = g_new0(NvmeCQueue *, n->num_queues);
1243
1244     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1245                           "nvme", n->reg_size);
1246     pci_register_bar(&n->parent_obj, 0,
1247         PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1248         &n->iomem);
1249     msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
1250
1251     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1252     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1253     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1254     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1255     strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1256     id->rab = 6;
1257     id->ieee[0] = 0x00;
1258     id->ieee[1] = 0x02;
1259     id->ieee[2] = 0xb3;
1260     id->oacs = cpu_to_le16(0);
1261     id->frmw = 7 << 1;
1262     id->lpa = 1 << 0;
1263     id->sqes = (0x6 << 4) | 0x6;
1264     id->cqes = (0x4 << 4) | 0x4;
1265     id->nn = cpu_to_le32(n->num_namespaces);
1266     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
1267     id->psd[0].mp = cpu_to_le16(0x9c4);
1268     id->psd[0].enlat = cpu_to_le32(0x10);
1269     id->psd[0].exlat = cpu_to_le32(0x4);
1270     if (blk_enable_write_cache(n->conf.blk)) {
1271         id->vwc = 1;
1272     }
1273
1274     n->bar.cap = 0;
1275     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1276     NVME_CAP_SET_CQR(n->bar.cap, 1);
1277     NVME_CAP_SET_AMS(n->bar.cap, 1);
1278     NVME_CAP_SET_TO(n->bar.cap, 0xf);
1279     NVME_CAP_SET_CSS(n->bar.cap, 1);
1280     NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1281
1282     n->bar.vs = 0x00010200;
1283     n->bar.intmc = n->bar.intms = 0;
1284
1285     if (n->cmb_size_mb) {
1286
1287         NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1288         NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1289
1290         NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1291         NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1292         NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1293         NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1294         NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1295         NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1296         NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1297
1298         n->cmbloc = n->bar.cmbloc;
1299         n->cmbsz = n->bar.cmbsz;
1300
1301         n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1302         memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1303                               "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1304         pci_register_bar(&n->parent_obj, NVME_CMBLOC_BIR(n->bar.cmbloc),
1305             PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1306             PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1307
1308     }
1309
1310     for (i = 0; i < n->num_namespaces; i++) {
1311         NvmeNamespace *ns = &n->namespaces[i];
1312         NvmeIdNs *id_ns = &ns->id_ns;
1313         id_ns->nsfeat = 0;
1314         id_ns->nlbaf = 0;
1315         id_ns->flbas = 0;
1316         id_ns->mc = 0;
1317         id_ns->dpc = 0;
1318         id_ns->dps = 0;
1319         id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1320         id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1321             cpu_to_le64(n->ns_size >>
1322                 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1323     }
1324 }
1325
1326 static void nvme_exit(PCIDevice *pci_dev)
1327 {
1328     NvmeCtrl *n = NVME(pci_dev);
1329
1330     nvme_clear_ctrl(n);
1331     g_free(n->namespaces);
1332     g_free(n->cq);
1333     g_free(n->sq);
1334     if (n->cmbsz) {
1335         memory_region_unref(&n->ctrl_mem);
1336     }
1337
1338     msix_uninit_exclusive_bar(pci_dev);
1339 }
1340
1341 static Property nvme_props[] = {
1342     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1343     DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1344     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1345     DEFINE_PROP_END_OF_LIST(),
1346 };
1347
1348 static const VMStateDescription nvme_vmstate = {
1349     .name = "nvme",
1350     .unmigratable = 1,
1351 };
1352
1353 static void nvme_class_init(ObjectClass *oc, void *data)
1354 {
1355     DeviceClass *dc = DEVICE_CLASS(oc);
1356     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1357
1358     pc->realize = nvme_realize;
1359     pc->exit = nvme_exit;
1360     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1361     pc->vendor_id = PCI_VENDOR_ID_INTEL;
1362     pc->device_id = 0x5845;
1363     pc->revision = 2;
1364
1365     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1366     dc->desc = "Non-Volatile Memory Express";
1367     dc->props = nvme_props;
1368     dc->vmsd = &nvme_vmstate;
1369 }
1370
1371 static void nvme_instance_init(Object *obj)
1372 {
1373     NvmeCtrl *s = NVME(obj);
1374
1375     device_add_bootindex_property(obj, &s->conf.bootindex,
1376                                   "bootindex", "/namespace@1,0",
1377                                   DEVICE(obj), &error_abort);
1378 }
1379
1380 static const TypeInfo nvme_info = {
1381     .name          = "nvme",
1382     .parent        = TYPE_PCI_DEVICE,
1383     .instance_size = sizeof(NvmeCtrl),
1384     .class_init    = nvme_class_init,
1385     .instance_init = nvme_instance_init,
1386     .interfaces = (InterfaceInfo[]) {
1387         { INTERFACE_PCIE_DEVICE },
1388         { }
1389     },
1390 };
1391
1392 static void nvme_register_types(void)
1393 {
1394     type_register_static(&nvme_info);
1395 }
1396
1397 type_init(nvme_register_types)
This page took 0.100382 seconds and 4 git commands to generate.