1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
4 #include "exec/exec-all.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
23 for (i = 0; i < 32; i++)
24 qemu_get_betls(f, &env->gpr[i]);
25 #if !defined(TARGET_PPC64)
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gprh[i]);
29 qemu_get_betls(f, &env->lr);
30 qemu_get_betls(f, &env->ctr);
31 for (i = 0; i < 8; i++)
32 qemu_get_be32s(f, &env->crf[i]);
33 qemu_get_betls(f, &xer);
34 cpu_write_xer(env, xer);
35 qemu_get_betls(f, &env->reserve_addr);
36 qemu_get_betls(f, &env->msr);
37 for (i = 0; i < 4; i++)
38 qemu_get_betls(f, &env->tgpr[i]);
39 for (i = 0; i < 32; i++) {
44 u.l = qemu_get_be64(f);
47 qemu_get_be32s(f, &fpscr);
49 qemu_get_sbe32s(f, &env->access_type);
50 #if defined(TARGET_PPC64)
51 qemu_get_betls(f, &env->spr[SPR_ASR]);
52 qemu_get_sbe32s(f, &env->slb_nr);
54 qemu_get_betls(f, &sdr1);
55 for (i = 0; i < 32; i++)
56 qemu_get_betls(f, &env->sr[i]);
57 for (i = 0; i < 2; i++)
58 for (j = 0; j < 8; j++)
59 qemu_get_betls(f, &env->DBAT[i][j]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->IBAT[i][j]);
63 qemu_get_sbe32s(f, &env->nb_tlb);
64 qemu_get_sbe32s(f, &env->tlb_per_way);
65 qemu_get_sbe32s(f, &env->nb_ways);
66 qemu_get_sbe32s(f, &env->last_way);
67 qemu_get_sbe32s(f, &env->id_tlbs);
68 qemu_get_sbe32s(f, &env->nb_pids);
71 for (i = 0; i < env->nb_tlb; i++) {
72 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
73 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
74 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
77 for (i = 0; i < 4; i++)
78 qemu_get_betls(f, &env->pb[i]);
79 for (i = 0; i < 1024; i++)
80 qemu_get_betls(f, &env->spr[i]);
82 ppc_store_sdr1(env, sdr1);
84 qemu_get_be32s(f, &env->vscr);
85 qemu_get_be64s(f, &env->spe_acc);
86 qemu_get_be32s(f, &env->spe_fscr);
87 qemu_get_betls(f, &env->msr_mask);
88 qemu_get_be32s(f, &env->flags);
89 qemu_get_sbe32s(f, &env->error_code);
90 qemu_get_be32s(f, &env->pending_interrupts);
91 qemu_get_be32s(f, &env->irq_input_state);
92 for (i = 0; i < POWERPC_EXCP_NB; i++)
93 qemu_get_betls(f, &env->excp_vectors[i]);
94 qemu_get_betls(f, &env->excp_prefix);
95 qemu_get_betls(f, &env->ivor_mask);
96 qemu_get_betls(f, &env->ivpr_mask);
97 qemu_get_betls(f, &env->hreset_vector);
98 qemu_get_betls(f, &env->nip);
99 qemu_get_betls(f, &env->hflags);
100 qemu_get_betls(f, &env->hflags_nmsr);
101 qemu_get_sbe32(f); /* Discard unused mmu_idx */
102 qemu_get_sbe32(f); /* Discard unused power_mode */
104 /* Recompute mmu indices */
105 hreg_compute_mem_idx(env);
110 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
114 v->u64[0] = qemu_get_be64(f);
115 v->u64[1] = qemu_get_be64(f);
120 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
125 qemu_put_be64(f, v->u64[0]);
126 qemu_put_be64(f, v->u64[1]);
130 static const VMStateInfo vmstate_info_avr = {
136 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
137 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
139 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
140 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
142 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
144 PowerPCCPU *cpu = opaque;
146 return cpu->pre_2_8_migration;
149 static int cpu_pre_save(void *opaque)
151 PowerPCCPU *cpu = opaque;
152 CPUPPCState *env = &cpu->env;
154 uint64_t insns_compat_mask =
155 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
156 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
157 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
158 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
159 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
160 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
161 | PPC_64B | PPC_64BX | PPC_ALTIVEC
162 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
163 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
164 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
165 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
166 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
167 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
168 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
170 env->spr[SPR_LR] = env->lr;
171 env->spr[SPR_CTR] = env->ctr;
172 env->spr[SPR_XER] = cpu_read_xer(env);
173 #if defined(TARGET_PPC64)
174 env->spr[SPR_CFAR] = env->cfar;
176 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
178 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
179 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
180 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
181 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
182 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
184 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
185 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
186 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
187 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
188 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
191 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
192 if (cpu->pre_2_8_migration) {
193 /* Mask out bits that got added to msr_mask since the versions
194 * which stupidly included it in the migration stream. */
195 target_ulong metamask = 0
196 #if defined(TARGET_PPC64)
201 cpu->mig_msr_mask = env->msr_mask & ~metamask;
202 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
203 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
204 cpu->mig_nb_BATs = env->nb_BATs;
211 * Determine if a given PVR is a "close enough" match to the CPU
212 * object. For TCG and KVM PR it would probably be sufficient to
213 * require an exact PVR match. However for KVM HV the user is
214 * restricted to a PVR exactly matching the host CPU. The correct way
215 * to handle this is to put the guest into an architected
216 * compatibility mode. However, to allow a more forgiving transition
217 * and migration from before this was widely done, we allow migration
218 * between sufficiently similar PVRs, as determined by the CPU class's
221 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
223 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
225 if (pvr == pcc->pvr) {
228 return pcc->pvr_match(pcc, pvr);
231 static int cpu_post_load(void *opaque, int version_id)
233 PowerPCCPU *cpu = opaque;
234 CPUPPCState *env = &cpu->env;
239 * If we're operating in compat mode, we should be ok as long as
240 * the destination supports the same compatiblity mode.
242 * Otherwise, however, we require that the destination has exactly
243 * the same CPU model as the source.
246 #if defined(TARGET_PPC64)
247 if (cpu->compat_pvr) {
248 uint32_t compat_pvr = cpu->compat_pvr;
249 Error *local_err = NULL;
252 ppc_set_compat(cpu, compat_pvr, &local_err);
254 error_report_err(local_err);
260 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
266 * If we're running with KVM HV, there is a chance that the guest
267 * is running with KVM HV and its kernel does not have the
268 * capability of dealing with a different PVR other than this
269 * exact host PVR in KVM_SET_SREGS. If that happens, the
270 * guest freezes after migration.
272 * The function kvmppc_pvr_workaround_required does this verification
273 * by first checking if the kernel has the cap, returning true immediately
274 * if that is the case. Otherwise, it checks if we're running in KVM PR.
275 * If the guest kernel does not have the cap and we're not running KVM-PR
276 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
277 * receive the PVR it expects as a workaround.
280 #if defined(CONFIG_KVM)
281 if (kvmppc_pvr_workaround_required(cpu)) {
282 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
286 env->lr = env->spr[SPR_LR];
287 env->ctr = env->spr[SPR_CTR];
288 cpu_write_xer(env, env->spr[SPR_XER]);
289 #if defined(TARGET_PPC64)
290 env->cfar = env->spr[SPR_CFAR];
292 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
294 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
295 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
296 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
297 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
298 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
300 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
301 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
302 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
303 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
304 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
308 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
311 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
313 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
314 ppc_store_msr(env, msr);
316 hreg_compute_mem_idx(env);
321 static bool fpu_needed(void *opaque)
323 PowerPCCPU *cpu = opaque;
325 return (cpu->env.insns_flags & PPC_FLOAT);
328 static const VMStateDescription vmstate_fpu = {
331 .minimum_version_id = 1,
332 .needed = fpu_needed,
333 .fields = (VMStateField[]) {
334 VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
335 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
336 VMSTATE_END_OF_LIST()
340 static bool altivec_needed(void *opaque)
342 PowerPCCPU *cpu = opaque;
344 return (cpu->env.insns_flags & PPC_ALTIVEC);
347 static const VMStateDescription vmstate_altivec = {
348 .name = "cpu/altivec",
350 .minimum_version_id = 1,
351 .needed = altivec_needed,
352 .fields = (VMStateField[]) {
353 VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
354 VMSTATE_UINT32(env.vscr, PowerPCCPU),
355 VMSTATE_END_OF_LIST()
359 static bool vsx_needed(void *opaque)
361 PowerPCCPU *cpu = opaque;
363 return (cpu->env.insns_flags2 & PPC2_VSX);
366 static const VMStateDescription vmstate_vsx = {
369 .minimum_version_id = 1,
370 .needed = vsx_needed,
371 .fields = (VMStateField[]) {
372 VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
373 VMSTATE_END_OF_LIST()
378 /* Transactional memory state */
379 static bool tm_needed(void *opaque)
381 PowerPCCPU *cpu = opaque;
382 CPUPPCState *env = &cpu->env;
386 static const VMStateDescription vmstate_tm = {
389 .minimum_version_id = 1,
390 .minimum_version_id_old = 1,
392 .fields = (VMStateField []) {
393 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
394 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
395 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
396 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
397 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
398 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
399 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
400 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
401 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
402 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
403 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
404 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
405 VMSTATE_END_OF_LIST()
410 static bool sr_needed(void *opaque)
413 PowerPCCPU *cpu = opaque;
415 return !(cpu->env.mmu_model & POWERPC_MMU_64);
421 static const VMStateDescription vmstate_sr = {
424 .minimum_version_id = 1,
426 .fields = (VMStateField[]) {
427 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
428 VMSTATE_END_OF_LIST()
433 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
437 v->esid = qemu_get_be64(f);
438 v->vsid = qemu_get_be64(f);
443 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
448 qemu_put_be64(f, v->esid);
449 qemu_put_be64(f, v->vsid);
453 static const VMStateInfo vmstate_info_slbe = {
459 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
460 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
462 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
463 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
465 static bool slb_needed(void *opaque)
467 PowerPCCPU *cpu = opaque;
469 /* We don't support any of the old segment table based 64-bit CPUs */
470 return (cpu->env.mmu_model & POWERPC_MMU_64);
473 static int slb_post_load(void *opaque, int version_id)
475 PowerPCCPU *cpu = opaque;
476 CPUPPCState *env = &cpu->env;
479 /* We've pulled in the raw esid and vsid values from the migration
480 * stream, but we need to recompute the page size pointers */
481 for (i = 0; i < env->slb_nr; i++) {
482 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
483 /* Migration source had bad values in its SLB */
491 static const VMStateDescription vmstate_slb = {
494 .minimum_version_id = 1,
495 .needed = slb_needed,
496 .post_load = slb_post_load,
497 .fields = (VMStateField[]) {
498 VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
499 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
500 VMSTATE_END_OF_LIST()
503 #endif /* TARGET_PPC64 */
505 static const VMStateDescription vmstate_tlb6xx_entry = {
506 .name = "cpu/tlb6xx_entry",
508 .minimum_version_id = 1,
509 .fields = (VMStateField[]) {
510 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
511 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
512 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
513 VMSTATE_END_OF_LIST()
517 static bool tlb6xx_needed(void *opaque)
519 PowerPCCPU *cpu = opaque;
520 CPUPPCState *env = &cpu->env;
522 return env->nb_tlb && (env->tlb_type == TLB_6XX);
525 static const VMStateDescription vmstate_tlb6xx = {
526 .name = "cpu/tlb6xx",
528 .minimum_version_id = 1,
529 .needed = tlb6xx_needed,
530 .fields = (VMStateField[]) {
531 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
532 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
534 vmstate_tlb6xx_entry,
536 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
537 VMSTATE_END_OF_LIST()
541 static const VMStateDescription vmstate_tlbemb_entry = {
542 .name = "cpu/tlbemb_entry",
544 .minimum_version_id = 1,
545 .fields = (VMStateField[]) {
546 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
547 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
548 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
549 VMSTATE_UINTTL(size, ppcemb_tlb_t),
550 VMSTATE_UINT32(prot, ppcemb_tlb_t),
551 VMSTATE_UINT32(attr, ppcemb_tlb_t),
552 VMSTATE_END_OF_LIST()
556 static bool tlbemb_needed(void *opaque)
558 PowerPCCPU *cpu = opaque;
559 CPUPPCState *env = &cpu->env;
561 return env->nb_tlb && (env->tlb_type == TLB_EMB);
564 static bool pbr403_needed(void *opaque)
566 PowerPCCPU *cpu = opaque;
567 uint32_t pvr = cpu->env.spr[SPR_PVR];
569 return (pvr & 0xffff0000) == 0x00200000;
572 static const VMStateDescription vmstate_pbr403 = {
573 .name = "cpu/pbr403",
575 .minimum_version_id = 1,
576 .needed = pbr403_needed,
577 .fields = (VMStateField[]) {
578 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
579 VMSTATE_END_OF_LIST()
583 static const VMStateDescription vmstate_tlbemb = {
584 .name = "cpu/tlb6xx",
586 .minimum_version_id = 1,
587 .needed = tlbemb_needed,
588 .fields = (VMStateField[]) {
589 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
590 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
592 vmstate_tlbemb_entry,
594 /* 403 protection registers */
595 VMSTATE_END_OF_LIST()
597 .subsections = (const VMStateDescription*[]) {
603 static const VMStateDescription vmstate_tlbmas_entry = {
604 .name = "cpu/tlbmas_entry",
606 .minimum_version_id = 1,
607 .fields = (VMStateField[]) {
608 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
609 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
610 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
611 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
612 VMSTATE_END_OF_LIST()
616 static bool tlbmas_needed(void *opaque)
618 PowerPCCPU *cpu = opaque;
619 CPUPPCState *env = &cpu->env;
621 return env->nb_tlb && (env->tlb_type == TLB_MAS);
624 static const VMStateDescription vmstate_tlbmas = {
625 .name = "cpu/tlbmas",
627 .minimum_version_id = 1,
628 .needed = tlbmas_needed,
629 .fields = (VMStateField[]) {
630 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
631 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
633 vmstate_tlbmas_entry,
635 VMSTATE_END_OF_LIST()
639 static bool compat_needed(void *opaque)
641 PowerPCCPU *cpu = opaque;
643 assert(!(cpu->compat_pvr && !cpu->vhyp));
644 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
647 static const VMStateDescription vmstate_compat = {
648 .name = "cpu/compat",
650 .minimum_version_id = 1,
651 .needed = compat_needed,
652 .fields = (VMStateField[]) {
653 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
654 VMSTATE_END_OF_LIST()
658 const VMStateDescription vmstate_ppc_cpu = {
661 .minimum_version_id = 5,
662 .minimum_version_id_old = 4,
663 .load_state_old = cpu_load_old,
664 .pre_save = cpu_pre_save,
665 .post_load = cpu_post_load,
666 .fields = (VMStateField[]) {
667 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
669 /* User mode architected state */
670 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
671 #if !defined(TARGET_PPC64)
672 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
674 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
675 VMSTATE_UINTTL(env.nip, PowerPCCPU),
678 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
679 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
682 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
684 /* Supervisor mode architected state */
685 VMSTATE_UINTTL(env.msr, PowerPCCPU),
688 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
689 /* FIXME: access_type? */
691 /* Sanity checking */
692 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
693 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
694 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
695 cpu_pre_2_8_migration),
696 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
697 VMSTATE_END_OF_LIST()
699 .subsections = (const VMStateDescription*[]) {
707 #endif /* TARGET_PPC64 */