]> Git Repo - qemu.git/blob - softmmu/memory.c
Merge remote-tracking branch 'remotes/kraxel/tags/ui-20210323-pull-request' into...
[qemu.git] / softmmu / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/qemu-print.h"
27 #include "qom/object.h"
28 #include "trace.h"
29
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/runstate.h"
34 #include "sysemu/tcg.h"
35 #include "qemu/accel.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
38
39 //#define DEBUG_UNASSIGNED
40
41 static unsigned memory_region_transaction_depth;
42 static bool memory_region_update_pending;
43 static bool ioeventfd_update_pending;
44 bool global_dirty_log;
45
46 static QTAILQ_HEAD(, MemoryListener) memory_listeners
47     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
48
49 static QTAILQ_HEAD(, AddressSpace) address_spaces
50     = QTAILQ_HEAD_INITIALIZER(address_spaces);
51
52 static GHashTable *flat_views;
53
54 typedef struct AddrRange AddrRange;
55
56 /*
57  * Note that signed integers are needed for negative offsetting in aliases
58  * (large MemoryRegion::alias_offset).
59  */
60 struct AddrRange {
61     Int128 start;
62     Int128 size;
63 };
64
65 static AddrRange addrrange_make(Int128 start, Int128 size)
66 {
67     return (AddrRange) { start, size };
68 }
69
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 {
72     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73 }
74
75 static Int128 addrrange_end(AddrRange r)
76 {
77     return int128_add(r.start, r.size);
78 }
79
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 {
82     int128_addto(&range.start, delta);
83     return range;
84 }
85
86 static bool addrrange_contains(AddrRange range, Int128 addr)
87 {
88     return int128_ge(addr, range.start)
89         && int128_lt(addr, addrrange_end(range));
90 }
91
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 {
94     return addrrange_contains(r1, r2.start)
95         || addrrange_contains(r2, r1.start);
96 }
97
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 {
100     Int128 start = int128_max(r1.start, r2.start);
101     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102     return addrrange_make(start, int128_sub(end, start));
103 }
104
105 enum ListenerDirection { Forward, Reverse };
106
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
108     do {                                                                \
109         MemoryListener *_listener;                                      \
110                                                                         \
111         switch (_direction) {                                           \
112         case Forward:                                                   \
113             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
114                 if (_listener->_callback) {                             \
115                     _listener->_callback(_listener, ##_args);           \
116                 }                                                       \
117             }                                                           \
118             break;                                                      \
119         case Reverse:                                                   \
120             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
121                 if (_listener->_callback) {                             \
122                     _listener->_callback(_listener, ##_args);           \
123                 }                                                       \
124             }                                                           \
125             break;                                                      \
126         default:                                                        \
127             abort();                                                    \
128         }                                                               \
129     } while (0)
130
131 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132     do {                                                                \
133         MemoryListener *_listener;                                      \
134                                                                         \
135         switch (_direction) {                                           \
136         case Forward:                                                   \
137             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
138                 if (_listener->_callback) {                             \
139                     _listener->_callback(_listener, _section, ##_args); \
140                 }                                                       \
141             }                                                           \
142             break;                                                      \
143         case Reverse:                                                   \
144             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
145                 if (_listener->_callback) {                             \
146                     _listener->_callback(_listener, _section, ##_args); \
147                 }                                                       \
148             }                                                           \
149             break;                                                      \
150         default:                                                        \
151             abort();                                                    \
152         }                                                               \
153     } while (0)
154
155 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
157     do {                                                                \
158         MemoryRegionSection mrs = section_from_flat_range(fr,           \
159                 address_space_to_flatview(as));                         \
160         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
161     } while(0)
162
163 struct CoalescedMemoryRange {
164     AddrRange addr;
165     QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 };
167
168 struct MemoryRegionIoeventfd {
169     AddrRange addr;
170     bool match_data;
171     uint64_t data;
172     EventNotifier *e;
173 };
174
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
176                                            MemoryRegionIoeventfd *b)
177 {
178     if (int128_lt(a->addr.start, b->addr.start)) {
179         return true;
180     } else if (int128_gt(a->addr.start, b->addr.start)) {
181         return false;
182     } else if (int128_lt(a->addr.size, b->addr.size)) {
183         return true;
184     } else if (int128_gt(a->addr.size, b->addr.size)) {
185         return false;
186     } else if (a->match_data < b->match_data) {
187         return true;
188     } else  if (a->match_data > b->match_data) {
189         return false;
190     } else if (a->match_data) {
191         if (a->data < b->data) {
192             return true;
193         } else if (a->data > b->data) {
194             return false;
195         }
196     }
197     if (a->e < b->e) {
198         return true;
199     } else if (a->e > b->e) {
200         return false;
201     }
202     return false;
203 }
204
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
206                                           MemoryRegionIoeventfd *b)
207 {
208     if (int128_eq(a->addr.start, b->addr.start) &&
209         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
210          (int128_eq(a->addr.size, b->addr.size) &&
211           (a->match_data == b->match_data) &&
212           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
213           (a->e == b->e))))
214         return true;
215
216     return false;
217 }
218
219 /* Range of memory in the global map.  Addresses are absolute. */
220 struct FlatRange {
221     MemoryRegion *mr;
222     hwaddr offset_in_region;
223     AddrRange addr;
224     uint8_t dirty_log_mask;
225     bool romd_mode;
226     bool readonly;
227     bool nonvolatile;
228 };
229
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236     return (MemoryRegionSection) {
237         .mr = fr->mr,
238         .fv = fv,
239         .offset_within_region = fr->offset_in_region,
240         .size = fr->addr.size,
241         .offset_within_address_space = int128_get64(fr->addr.start),
242         .readonly = fr->readonly,
243         .nonvolatile = fr->nonvolatile,
244     };
245 }
246
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
248 {
249     return a->mr == b->mr
250         && addrrange_equal(a->addr, b->addr)
251         && a->offset_in_region == b->offset_in_region
252         && a->romd_mode == b->romd_mode
253         && a->readonly == b->readonly
254         && a->nonvolatile == b->nonvolatile;
255 }
256
257 static FlatView *flatview_new(MemoryRegion *mr_root)
258 {
259     FlatView *view;
260
261     view = g_new0(FlatView, 1);
262     view->ref = 1;
263     view->root = mr_root;
264     memory_region_ref(mr_root);
265     trace_flatview_new(view, mr_root);
266
267     return view;
268 }
269
270 /* Insert a range into a given position.  Caller is responsible for maintaining
271  * sorting order.
272  */
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274 {
275     if (view->nr == view->nr_allocated) {
276         view->nr_allocated = MAX(2 * view->nr, 10);
277         view->ranges = g_realloc(view->ranges,
278                                     view->nr_allocated * sizeof(*view->ranges));
279     }
280     memmove(view->ranges + pos + 1, view->ranges + pos,
281             (view->nr - pos) * sizeof(FlatRange));
282     view->ranges[pos] = *range;
283     memory_region_ref(range->mr);
284     ++view->nr;
285 }
286
287 static void flatview_destroy(FlatView *view)
288 {
289     int i;
290
291     trace_flatview_destroy(view, view->root);
292     if (view->dispatch) {
293         address_space_dispatch_free(view->dispatch);
294     }
295     for (i = 0; i < view->nr; i++) {
296         memory_region_unref(view->ranges[i].mr);
297     }
298     g_free(view->ranges);
299     memory_region_unref(view->root);
300     g_free(view);
301 }
302
303 static bool flatview_ref(FlatView *view)
304 {
305     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
306 }
307
308 void flatview_unref(FlatView *view)
309 {
310     if (qatomic_fetch_dec(&view->ref) == 1) {
311         trace_flatview_destroy_rcu(view, view->root);
312         assert(view->root);
313         call_rcu(view, flatview_destroy, rcu);
314     }
315 }
316
317 static bool can_merge(FlatRange *r1, FlatRange *r2)
318 {
319     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
320         && r1->mr == r2->mr
321         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
322                                 r1->addr.size),
323                      int128_make64(r2->offset_in_region))
324         && r1->dirty_log_mask == r2->dirty_log_mask
325         && r1->romd_mode == r2->romd_mode
326         && r1->readonly == r2->readonly
327         && r1->nonvolatile == r2->nonvolatile;
328 }
329
330 /* Attempt to simplify a view by merging adjacent ranges */
331 static void flatview_simplify(FlatView *view)
332 {
333     unsigned i, j, k;
334
335     i = 0;
336     while (i < view->nr) {
337         j = i + 1;
338         while (j < view->nr
339                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
340             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
341             ++j;
342         }
343         ++i;
344         for (k = i; k < j; k++) {
345             memory_region_unref(view->ranges[k].mr);
346         }
347         memmove(&view->ranges[i], &view->ranges[j],
348                 (view->nr - j) * sizeof(view->ranges[j]));
349         view->nr -= j - i;
350     }
351 }
352
353 static bool memory_region_big_endian(MemoryRegion *mr)
354 {
355 #ifdef TARGET_WORDS_BIGENDIAN
356     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
357 #else
358     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
359 #endif
360 }
361
362 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
363 {
364     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
365         switch (op & MO_SIZE) {
366         case MO_8:
367             break;
368         case MO_16:
369             *data = bswap16(*data);
370             break;
371         case MO_32:
372             *data = bswap32(*data);
373             break;
374         case MO_64:
375             *data = bswap64(*data);
376             break;
377         default:
378             g_assert_not_reached();
379         }
380     }
381 }
382
383 static inline void memory_region_shift_read_access(uint64_t *value,
384                                                    signed shift,
385                                                    uint64_t mask,
386                                                    uint64_t tmp)
387 {
388     if (shift >= 0) {
389         *value |= (tmp & mask) << shift;
390     } else {
391         *value |= (tmp & mask) >> -shift;
392     }
393 }
394
395 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
396                                                         signed shift,
397                                                         uint64_t mask)
398 {
399     uint64_t tmp;
400
401     if (shift >= 0) {
402         tmp = (*value >> shift) & mask;
403     } else {
404         tmp = (*value << -shift) & mask;
405     }
406
407     return tmp;
408 }
409
410 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
411 {
412     MemoryRegion *root;
413     hwaddr abs_addr = offset;
414
415     abs_addr += mr->addr;
416     for (root = mr; root->container; ) {
417         root = root->container;
418         abs_addr += root->addr;
419     }
420
421     return abs_addr;
422 }
423
424 static int get_cpu_index(void)
425 {
426     if (current_cpu) {
427         return current_cpu->cpu_index;
428     }
429     return -1;
430 }
431
432 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
433                                                 hwaddr addr,
434                                                 uint64_t *value,
435                                                 unsigned size,
436                                                 signed shift,
437                                                 uint64_t mask,
438                                                 MemTxAttrs attrs)
439 {
440     uint64_t tmp;
441
442     tmp = mr->ops->read(mr->opaque, addr, size);
443     if (mr->subpage) {
444         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
445     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
446         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
447         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
448     }
449     memory_region_shift_read_access(value, shift, mask, tmp);
450     return MEMTX_OK;
451 }
452
453 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
454                                                           hwaddr addr,
455                                                           uint64_t *value,
456                                                           unsigned size,
457                                                           signed shift,
458                                                           uint64_t mask,
459                                                           MemTxAttrs attrs)
460 {
461     uint64_t tmp = 0;
462     MemTxResult r;
463
464     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
465     if (mr->subpage) {
466         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
467     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
468         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
469         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
470     }
471     memory_region_shift_read_access(value, shift, mask, tmp);
472     return r;
473 }
474
475 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
476                                                 hwaddr addr,
477                                                 uint64_t *value,
478                                                 unsigned size,
479                                                 signed shift,
480                                                 uint64_t mask,
481                                                 MemTxAttrs attrs)
482 {
483     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
484
485     if (mr->subpage) {
486         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
487     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
488         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
489         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
490     }
491     mr->ops->write(mr->opaque, addr, tmp, size);
492     return MEMTX_OK;
493 }
494
495 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
496                                                            hwaddr addr,
497                                                            uint64_t *value,
498                                                            unsigned size,
499                                                            signed shift,
500                                                            uint64_t mask,
501                                                            MemTxAttrs attrs)
502 {
503     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
504
505     if (mr->subpage) {
506         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
507     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
508         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
509         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
510     }
511     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
512 }
513
514 static MemTxResult access_with_adjusted_size(hwaddr addr,
515                                       uint64_t *value,
516                                       unsigned size,
517                                       unsigned access_size_min,
518                                       unsigned access_size_max,
519                                       MemTxResult (*access_fn)
520                                                   (MemoryRegion *mr,
521                                                    hwaddr addr,
522                                                    uint64_t *value,
523                                                    unsigned size,
524                                                    signed shift,
525                                                    uint64_t mask,
526                                                    MemTxAttrs attrs),
527                                       MemoryRegion *mr,
528                                       MemTxAttrs attrs)
529 {
530     uint64_t access_mask;
531     unsigned access_size;
532     unsigned i;
533     MemTxResult r = MEMTX_OK;
534
535     if (!access_size_min) {
536         access_size_min = 1;
537     }
538     if (!access_size_max) {
539         access_size_max = 4;
540     }
541
542     /* FIXME: support unaligned access? */
543     access_size = MAX(MIN(size, access_size_max), access_size_min);
544     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
545     if (memory_region_big_endian(mr)) {
546         for (i = 0; i < size; i += access_size) {
547             r |= access_fn(mr, addr + i, value, access_size,
548                         (size - access_size - i) * 8, access_mask, attrs);
549         }
550     } else {
551         for (i = 0; i < size; i += access_size) {
552             r |= access_fn(mr, addr + i, value, access_size, i * 8,
553                         access_mask, attrs);
554         }
555     }
556     return r;
557 }
558
559 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
560 {
561     AddressSpace *as;
562
563     while (mr->container) {
564         mr = mr->container;
565     }
566     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
567         if (mr == as->root) {
568             return as;
569         }
570     }
571     return NULL;
572 }
573
574 /* Render a memory region into the global view.  Ranges in @view obscure
575  * ranges in @mr.
576  */
577 static void render_memory_region(FlatView *view,
578                                  MemoryRegion *mr,
579                                  Int128 base,
580                                  AddrRange clip,
581                                  bool readonly,
582                                  bool nonvolatile)
583 {
584     MemoryRegion *subregion;
585     unsigned i;
586     hwaddr offset_in_region;
587     Int128 remain;
588     Int128 now;
589     FlatRange fr;
590     AddrRange tmp;
591
592     if (!mr->enabled) {
593         return;
594     }
595
596     int128_addto(&base, int128_make64(mr->addr));
597     readonly |= mr->readonly;
598     nonvolatile |= mr->nonvolatile;
599
600     tmp = addrrange_make(base, mr->size);
601
602     if (!addrrange_intersects(tmp, clip)) {
603         return;
604     }
605
606     clip = addrrange_intersection(tmp, clip);
607
608     if (mr->alias) {
609         int128_subfrom(&base, int128_make64(mr->alias->addr));
610         int128_subfrom(&base, int128_make64(mr->alias_offset));
611         render_memory_region(view, mr->alias, base, clip,
612                              readonly, nonvolatile);
613         return;
614     }
615
616     /* Render subregions in priority order. */
617     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
618         render_memory_region(view, subregion, base, clip,
619                              readonly, nonvolatile);
620     }
621
622     if (!mr->terminates) {
623         return;
624     }
625
626     offset_in_region = int128_get64(int128_sub(clip.start, base));
627     base = clip.start;
628     remain = clip.size;
629
630     fr.mr = mr;
631     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
632     fr.romd_mode = mr->romd_mode;
633     fr.readonly = readonly;
634     fr.nonvolatile = nonvolatile;
635
636     /* Render the region itself into any gaps left by the current view. */
637     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
638         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
639             continue;
640         }
641         if (int128_lt(base, view->ranges[i].addr.start)) {
642             now = int128_min(remain,
643                              int128_sub(view->ranges[i].addr.start, base));
644             fr.offset_in_region = offset_in_region;
645             fr.addr = addrrange_make(base, now);
646             flatview_insert(view, i, &fr);
647             ++i;
648             int128_addto(&base, now);
649             offset_in_region += int128_get64(now);
650             int128_subfrom(&remain, now);
651         }
652         now = int128_sub(int128_min(int128_add(base, remain),
653                                     addrrange_end(view->ranges[i].addr)),
654                          base);
655         int128_addto(&base, now);
656         offset_in_region += int128_get64(now);
657         int128_subfrom(&remain, now);
658     }
659     if (int128_nz(remain)) {
660         fr.offset_in_region = offset_in_region;
661         fr.addr = addrrange_make(base, remain);
662         flatview_insert(view, i, &fr);
663     }
664 }
665
666 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
667 {
668     FlatRange *fr;
669
670     assert(fv);
671     assert(cb);
672
673     FOR_EACH_FLAT_RANGE(fr, fv) {
674         if (cb(fr->addr.start, fr->addr.size, fr->mr,
675                fr->offset_in_region, opaque)) {
676             break;
677         }
678     }
679 }
680
681 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
682 {
683     while (mr->enabled) {
684         if (mr->alias) {
685             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
686                 /* The alias is included in its entirety.  Use it as
687                  * the "real" root, so that we can share more FlatViews.
688                  */
689                 mr = mr->alias;
690                 continue;
691             }
692         } else if (!mr->terminates) {
693             unsigned int found = 0;
694             MemoryRegion *child, *next = NULL;
695             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
696                 if (child->enabled) {
697                     if (++found > 1) {
698                         next = NULL;
699                         break;
700                     }
701                     if (!child->addr && int128_ge(mr->size, child->size)) {
702                         /* A child is included in its entirety.  If it's the only
703                          * enabled one, use it in the hope of finding an alias down the
704                          * way. This will also let us share FlatViews.
705                          */
706                         next = child;
707                     }
708                 }
709             }
710             if (found == 0) {
711                 return NULL;
712             }
713             if (next) {
714                 mr = next;
715                 continue;
716             }
717         }
718
719         return mr;
720     }
721
722     return NULL;
723 }
724
725 /* Render a memory topology into a list of disjoint absolute ranges. */
726 static FlatView *generate_memory_topology(MemoryRegion *mr)
727 {
728     int i;
729     FlatView *view;
730
731     view = flatview_new(mr);
732
733     if (mr) {
734         render_memory_region(view, mr, int128_zero(),
735                              addrrange_make(int128_zero(), int128_2_64()),
736                              false, false);
737     }
738     flatview_simplify(view);
739
740     view->dispatch = address_space_dispatch_new(view);
741     for (i = 0; i < view->nr; i++) {
742         MemoryRegionSection mrs =
743             section_from_flat_range(&view->ranges[i], view);
744         flatview_add_to_dispatch(view, &mrs);
745     }
746     address_space_dispatch_compact(view->dispatch);
747     g_hash_table_replace(flat_views, mr, view);
748
749     return view;
750 }
751
752 static void address_space_add_del_ioeventfds(AddressSpace *as,
753                                              MemoryRegionIoeventfd *fds_new,
754                                              unsigned fds_new_nb,
755                                              MemoryRegionIoeventfd *fds_old,
756                                              unsigned fds_old_nb)
757 {
758     unsigned iold, inew;
759     MemoryRegionIoeventfd *fd;
760     MemoryRegionSection section;
761
762     /* Generate a symmetric difference of the old and new fd sets, adding
763      * and deleting as necessary.
764      */
765
766     iold = inew = 0;
767     while (iold < fds_old_nb || inew < fds_new_nb) {
768         if (iold < fds_old_nb
769             && (inew == fds_new_nb
770                 || memory_region_ioeventfd_before(&fds_old[iold],
771                                                   &fds_new[inew]))) {
772             fd = &fds_old[iold];
773             section = (MemoryRegionSection) {
774                 .fv = address_space_to_flatview(as),
775                 .offset_within_address_space = int128_get64(fd->addr.start),
776                 .size = fd->addr.size,
777             };
778             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
779                                  fd->match_data, fd->data, fd->e);
780             ++iold;
781         } else if (inew < fds_new_nb
782                    && (iold == fds_old_nb
783                        || memory_region_ioeventfd_before(&fds_new[inew],
784                                                          &fds_old[iold]))) {
785             fd = &fds_new[inew];
786             section = (MemoryRegionSection) {
787                 .fv = address_space_to_flatview(as),
788                 .offset_within_address_space = int128_get64(fd->addr.start),
789                 .size = fd->addr.size,
790             };
791             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
792                                  fd->match_data, fd->data, fd->e);
793             ++inew;
794         } else {
795             ++iold;
796             ++inew;
797         }
798     }
799 }
800
801 FlatView *address_space_get_flatview(AddressSpace *as)
802 {
803     FlatView *view;
804
805     RCU_READ_LOCK_GUARD();
806     do {
807         view = address_space_to_flatview(as);
808         /* If somebody has replaced as->current_map concurrently,
809          * flatview_ref returns false.
810          */
811     } while (!flatview_ref(view));
812     return view;
813 }
814
815 static void address_space_update_ioeventfds(AddressSpace *as)
816 {
817     FlatView *view;
818     FlatRange *fr;
819     unsigned ioeventfd_nb = 0;
820     unsigned ioeventfd_max;
821     MemoryRegionIoeventfd *ioeventfds;
822     AddrRange tmp;
823     unsigned i;
824
825     /*
826      * It is likely that the number of ioeventfds hasn't changed much, so use
827      * the previous size as the starting value, with some headroom to avoid
828      * gratuitous reallocations.
829      */
830     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
831     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
832
833     view = address_space_get_flatview(as);
834     FOR_EACH_FLAT_RANGE(fr, view) {
835         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
836             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
837                                   int128_sub(fr->addr.start,
838                                              int128_make64(fr->offset_in_region)));
839             if (addrrange_intersects(fr->addr, tmp)) {
840                 ++ioeventfd_nb;
841                 if (ioeventfd_nb > ioeventfd_max) {
842                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
843                     ioeventfds = g_realloc(ioeventfds,
844                             ioeventfd_max * sizeof(*ioeventfds));
845                 }
846                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
847                 ioeventfds[ioeventfd_nb-1].addr = tmp;
848             }
849         }
850     }
851
852     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
853                                      as->ioeventfds, as->ioeventfd_nb);
854
855     g_free(as->ioeventfds);
856     as->ioeventfds = ioeventfds;
857     as->ioeventfd_nb = ioeventfd_nb;
858     flatview_unref(view);
859 }
860
861 /*
862  * Notify the memory listeners about the coalesced IO change events of
863  * range `cmr'.  Only the part that has intersection of the specified
864  * FlatRange will be sent.
865  */
866 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
867                                            CoalescedMemoryRange *cmr, bool add)
868 {
869     AddrRange tmp;
870
871     tmp = addrrange_shift(cmr->addr,
872                           int128_sub(fr->addr.start,
873                                      int128_make64(fr->offset_in_region)));
874     if (!addrrange_intersects(tmp, fr->addr)) {
875         return;
876     }
877     tmp = addrrange_intersection(tmp, fr->addr);
878
879     if (add) {
880         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
881                                       int128_get64(tmp.start),
882                                       int128_get64(tmp.size));
883     } else {
884         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
885                                       int128_get64(tmp.start),
886                                       int128_get64(tmp.size));
887     }
888 }
889
890 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
891 {
892     CoalescedMemoryRange *cmr;
893
894     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
895         flat_range_coalesced_io_notify(fr, as, cmr, false);
896     }
897 }
898
899 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
900 {
901     MemoryRegion *mr = fr->mr;
902     CoalescedMemoryRange *cmr;
903
904     if (QTAILQ_EMPTY(&mr->coalesced)) {
905         return;
906     }
907
908     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
909         flat_range_coalesced_io_notify(fr, as, cmr, true);
910     }
911 }
912
913 static void address_space_update_topology_pass(AddressSpace *as,
914                                                const FlatView *old_view,
915                                                const FlatView *new_view,
916                                                bool adding)
917 {
918     unsigned iold, inew;
919     FlatRange *frold, *frnew;
920
921     /* Generate a symmetric difference of the old and new memory maps.
922      * Kill ranges in the old map, and instantiate ranges in the new map.
923      */
924     iold = inew = 0;
925     while (iold < old_view->nr || inew < new_view->nr) {
926         if (iold < old_view->nr) {
927             frold = &old_view->ranges[iold];
928         } else {
929             frold = NULL;
930         }
931         if (inew < new_view->nr) {
932             frnew = &new_view->ranges[inew];
933         } else {
934             frnew = NULL;
935         }
936
937         if (frold
938             && (!frnew
939                 || int128_lt(frold->addr.start, frnew->addr.start)
940                 || (int128_eq(frold->addr.start, frnew->addr.start)
941                     && !flatrange_equal(frold, frnew)))) {
942             /* In old but not in new, or in both but attributes changed. */
943
944             if (!adding) {
945                 flat_range_coalesced_io_del(frold, as);
946                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
947             }
948
949             ++iold;
950         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
951             /* In both and unchanged (except logging may have changed) */
952
953             if (adding) {
954                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
955                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
956                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
957                                                   frold->dirty_log_mask,
958                                                   frnew->dirty_log_mask);
959                 }
960                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
961                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
962                                                   frold->dirty_log_mask,
963                                                   frnew->dirty_log_mask);
964                 }
965             }
966
967             ++iold;
968             ++inew;
969         } else {
970             /* In new */
971
972             if (adding) {
973                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
974                 flat_range_coalesced_io_add(frnew, as);
975             }
976
977             ++inew;
978         }
979     }
980 }
981
982 static void flatviews_init(void)
983 {
984     static FlatView *empty_view;
985
986     if (flat_views) {
987         return;
988     }
989
990     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
991                                        (GDestroyNotify) flatview_unref);
992     if (!empty_view) {
993         empty_view = generate_memory_topology(NULL);
994         /* We keep it alive forever in the global variable.  */
995         flatview_ref(empty_view);
996     } else {
997         g_hash_table_replace(flat_views, NULL, empty_view);
998         flatview_ref(empty_view);
999     }
1000 }
1001
1002 static void flatviews_reset(void)
1003 {
1004     AddressSpace *as;
1005
1006     if (flat_views) {
1007         g_hash_table_unref(flat_views);
1008         flat_views = NULL;
1009     }
1010     flatviews_init();
1011
1012     /* Render unique FVs */
1013     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1014         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1015
1016         if (g_hash_table_lookup(flat_views, physmr)) {
1017             continue;
1018         }
1019
1020         generate_memory_topology(physmr);
1021     }
1022 }
1023
1024 static void address_space_set_flatview(AddressSpace *as)
1025 {
1026     FlatView *old_view = address_space_to_flatview(as);
1027     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1028     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1029
1030     assert(new_view);
1031
1032     if (old_view == new_view) {
1033         return;
1034     }
1035
1036     if (old_view) {
1037         flatview_ref(old_view);
1038     }
1039
1040     flatview_ref(new_view);
1041
1042     if (!QTAILQ_EMPTY(&as->listeners)) {
1043         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1044
1045         if (!old_view2) {
1046             old_view2 = &tmpview;
1047         }
1048         address_space_update_topology_pass(as, old_view2, new_view, false);
1049         address_space_update_topology_pass(as, old_view2, new_view, true);
1050     }
1051
1052     /* Writes are protected by the BQL.  */
1053     qatomic_rcu_set(&as->current_map, new_view);
1054     if (old_view) {
1055         flatview_unref(old_view);
1056     }
1057
1058     /* Note that all the old MemoryRegions are still alive up to this
1059      * point.  This relieves most MemoryListeners from the need to
1060      * ref/unref the MemoryRegions they get---unless they use them
1061      * outside the iothread mutex, in which case precise reference
1062      * counting is necessary.
1063      */
1064     if (old_view) {
1065         flatview_unref(old_view);
1066     }
1067 }
1068
1069 static void address_space_update_topology(AddressSpace *as)
1070 {
1071     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1072
1073     flatviews_init();
1074     if (!g_hash_table_lookup(flat_views, physmr)) {
1075         generate_memory_topology(physmr);
1076     }
1077     address_space_set_flatview(as);
1078 }
1079
1080 void memory_region_transaction_begin(void)
1081 {
1082     qemu_flush_coalesced_mmio_buffer();
1083     ++memory_region_transaction_depth;
1084 }
1085
1086 void memory_region_transaction_commit(void)
1087 {
1088     AddressSpace *as;
1089
1090     assert(memory_region_transaction_depth);
1091     assert(qemu_mutex_iothread_locked());
1092
1093     --memory_region_transaction_depth;
1094     if (!memory_region_transaction_depth) {
1095         if (memory_region_update_pending) {
1096             flatviews_reset();
1097
1098             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1099
1100             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1101                 address_space_set_flatview(as);
1102                 address_space_update_ioeventfds(as);
1103             }
1104             memory_region_update_pending = false;
1105             ioeventfd_update_pending = false;
1106             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1107         } else if (ioeventfd_update_pending) {
1108             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1109                 address_space_update_ioeventfds(as);
1110             }
1111             ioeventfd_update_pending = false;
1112         }
1113    }
1114 }
1115
1116 static void memory_region_destructor_none(MemoryRegion *mr)
1117 {
1118 }
1119
1120 static void memory_region_destructor_ram(MemoryRegion *mr)
1121 {
1122     qemu_ram_free(mr->ram_block);
1123 }
1124
1125 static bool memory_region_need_escape(char c)
1126 {
1127     return c == '/' || c == '[' || c == '\\' || c == ']';
1128 }
1129
1130 static char *memory_region_escape_name(const char *name)
1131 {
1132     const char *p;
1133     char *escaped, *q;
1134     uint8_t c;
1135     size_t bytes = 0;
1136
1137     for (p = name; *p; p++) {
1138         bytes += memory_region_need_escape(*p) ? 4 : 1;
1139     }
1140     if (bytes == p - name) {
1141        return g_memdup(name, bytes + 1);
1142     }
1143
1144     escaped = g_malloc(bytes + 1);
1145     for (p = name, q = escaped; *p; p++) {
1146         c = *p;
1147         if (unlikely(memory_region_need_escape(c))) {
1148             *q++ = '\\';
1149             *q++ = 'x';
1150             *q++ = "0123456789abcdef"[c >> 4];
1151             c = "0123456789abcdef"[c & 15];
1152         }
1153         *q++ = c;
1154     }
1155     *q = 0;
1156     return escaped;
1157 }
1158
1159 static void memory_region_do_init(MemoryRegion *mr,
1160                                   Object *owner,
1161                                   const char *name,
1162                                   uint64_t size)
1163 {
1164     mr->size = int128_make64(size);
1165     if (size == UINT64_MAX) {
1166         mr->size = int128_2_64();
1167     }
1168     mr->name = g_strdup(name);
1169     mr->owner = owner;
1170     mr->ram_block = NULL;
1171
1172     if (name) {
1173         char *escaped_name = memory_region_escape_name(name);
1174         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1175
1176         if (!owner) {
1177             owner = container_get(qdev_get_machine(), "/unattached");
1178         }
1179
1180         object_property_add_child(owner, name_array, OBJECT(mr));
1181         object_unref(OBJECT(mr));
1182         g_free(name_array);
1183         g_free(escaped_name);
1184     }
1185 }
1186
1187 void memory_region_init(MemoryRegion *mr,
1188                         Object *owner,
1189                         const char *name,
1190                         uint64_t size)
1191 {
1192     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1193     memory_region_do_init(mr, owner, name, size);
1194 }
1195
1196 static void memory_region_get_container(Object *obj, Visitor *v,
1197                                         const char *name, void *opaque,
1198                                         Error **errp)
1199 {
1200     MemoryRegion *mr = MEMORY_REGION(obj);
1201     char *path = (char *)"";
1202
1203     if (mr->container) {
1204         path = object_get_canonical_path(OBJECT(mr->container));
1205     }
1206     visit_type_str(v, name, &path, errp);
1207     if (mr->container) {
1208         g_free(path);
1209     }
1210 }
1211
1212 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1213                                                const char *part)
1214 {
1215     MemoryRegion *mr = MEMORY_REGION(obj);
1216
1217     return OBJECT(mr->container);
1218 }
1219
1220 static void memory_region_get_priority(Object *obj, Visitor *v,
1221                                        const char *name, void *opaque,
1222                                        Error **errp)
1223 {
1224     MemoryRegion *mr = MEMORY_REGION(obj);
1225     int32_t value = mr->priority;
1226
1227     visit_type_int32(v, name, &value, errp);
1228 }
1229
1230 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1231                                    void *opaque, Error **errp)
1232 {
1233     MemoryRegion *mr = MEMORY_REGION(obj);
1234     uint64_t value = memory_region_size(mr);
1235
1236     visit_type_uint64(v, name, &value, errp);
1237 }
1238
1239 static void memory_region_initfn(Object *obj)
1240 {
1241     MemoryRegion *mr = MEMORY_REGION(obj);
1242     ObjectProperty *op;
1243
1244     mr->ops = &unassigned_mem_ops;
1245     mr->enabled = true;
1246     mr->romd_mode = true;
1247     mr->destructor = memory_region_destructor_none;
1248     QTAILQ_INIT(&mr->subregions);
1249     QTAILQ_INIT(&mr->coalesced);
1250
1251     op = object_property_add(OBJECT(mr), "container",
1252                              "link<" TYPE_MEMORY_REGION ">",
1253                              memory_region_get_container,
1254                              NULL, /* memory_region_set_container */
1255                              NULL, NULL);
1256     op->resolve = memory_region_resolve_container;
1257
1258     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1259                                    &mr->addr, OBJ_PROP_FLAG_READ);
1260     object_property_add(OBJECT(mr), "priority", "uint32",
1261                         memory_region_get_priority,
1262                         NULL, /* memory_region_set_priority */
1263                         NULL, NULL);
1264     object_property_add(OBJECT(mr), "size", "uint64",
1265                         memory_region_get_size,
1266                         NULL, /* memory_region_set_size, */
1267                         NULL, NULL);
1268 }
1269
1270 static void iommu_memory_region_initfn(Object *obj)
1271 {
1272     MemoryRegion *mr = MEMORY_REGION(obj);
1273
1274     mr->is_iommu = true;
1275 }
1276
1277 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1278                                     unsigned size)
1279 {
1280 #ifdef DEBUG_UNASSIGNED
1281     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1282 #endif
1283     return 0;
1284 }
1285
1286 static void unassigned_mem_write(void *opaque, hwaddr addr,
1287                                  uint64_t val, unsigned size)
1288 {
1289 #ifdef DEBUG_UNASSIGNED
1290     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1291 #endif
1292 }
1293
1294 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1295                                    unsigned size, bool is_write,
1296                                    MemTxAttrs attrs)
1297 {
1298     return false;
1299 }
1300
1301 const MemoryRegionOps unassigned_mem_ops = {
1302     .valid.accepts = unassigned_mem_accepts,
1303     .endianness = DEVICE_NATIVE_ENDIAN,
1304 };
1305
1306 static uint64_t memory_region_ram_device_read(void *opaque,
1307                                               hwaddr addr, unsigned size)
1308 {
1309     MemoryRegion *mr = opaque;
1310     uint64_t data = (uint64_t)~0;
1311
1312     switch (size) {
1313     case 1:
1314         data = *(uint8_t *)(mr->ram_block->host + addr);
1315         break;
1316     case 2:
1317         data = *(uint16_t *)(mr->ram_block->host + addr);
1318         break;
1319     case 4:
1320         data = *(uint32_t *)(mr->ram_block->host + addr);
1321         break;
1322     case 8:
1323         data = *(uint64_t *)(mr->ram_block->host + addr);
1324         break;
1325     }
1326
1327     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1328
1329     return data;
1330 }
1331
1332 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1333                                            uint64_t data, unsigned size)
1334 {
1335     MemoryRegion *mr = opaque;
1336
1337     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1338
1339     switch (size) {
1340     case 1:
1341         *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1342         break;
1343     case 2:
1344         *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1345         break;
1346     case 4:
1347         *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1348         break;
1349     case 8:
1350         *(uint64_t *)(mr->ram_block->host + addr) = data;
1351         break;
1352     }
1353 }
1354
1355 static const MemoryRegionOps ram_device_mem_ops = {
1356     .read = memory_region_ram_device_read,
1357     .write = memory_region_ram_device_write,
1358     .endianness = DEVICE_HOST_ENDIAN,
1359     .valid = {
1360         .min_access_size = 1,
1361         .max_access_size = 8,
1362         .unaligned = true,
1363     },
1364     .impl = {
1365         .min_access_size = 1,
1366         .max_access_size = 8,
1367         .unaligned = true,
1368     },
1369 };
1370
1371 bool memory_region_access_valid(MemoryRegion *mr,
1372                                 hwaddr addr,
1373                                 unsigned size,
1374                                 bool is_write,
1375                                 MemTxAttrs attrs)
1376 {
1377     if (mr->ops->valid.accepts
1378         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1379         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1380                                        "0x%" HWADDR_PRIX ", size %u, "
1381                                        "region '%s', reason: rejected\n",
1382                       addr, size, memory_region_name(mr));
1383         return false;
1384     }
1385
1386     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1387         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1388                                        "0x%" HWADDR_PRIX ", size %u, "
1389                                        "region '%s', reason: unaligned\n",
1390                       addr, size, memory_region_name(mr));
1391         return false;
1392     }
1393
1394     /* Treat zero as compatibility all valid */
1395     if (!mr->ops->valid.max_access_size) {
1396         return true;
1397     }
1398
1399     if (size > mr->ops->valid.max_access_size
1400         || size < mr->ops->valid.min_access_size) {
1401         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1402                                        "0x%" HWADDR_PRIX ", size %u, "
1403                                        "region '%s', reason: invalid size "
1404                                        "(min:%u max:%u)\n",
1405                       addr, size, memory_region_name(mr),
1406                       mr->ops->valid.min_access_size,
1407                       mr->ops->valid.max_access_size);
1408         return false;
1409     }
1410     return true;
1411 }
1412
1413 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1414                                                 hwaddr addr,
1415                                                 uint64_t *pval,
1416                                                 unsigned size,
1417                                                 MemTxAttrs attrs)
1418 {
1419     *pval = 0;
1420
1421     if (mr->ops->read) {
1422         return access_with_adjusted_size(addr, pval, size,
1423                                          mr->ops->impl.min_access_size,
1424                                          mr->ops->impl.max_access_size,
1425                                          memory_region_read_accessor,
1426                                          mr, attrs);
1427     } else {
1428         return access_with_adjusted_size(addr, pval, size,
1429                                          mr->ops->impl.min_access_size,
1430                                          mr->ops->impl.max_access_size,
1431                                          memory_region_read_with_attrs_accessor,
1432                                          mr, attrs);
1433     }
1434 }
1435
1436 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1437                                         hwaddr addr,
1438                                         uint64_t *pval,
1439                                         MemOp op,
1440                                         MemTxAttrs attrs)
1441 {
1442     unsigned size = memop_size(op);
1443     MemTxResult r;
1444
1445     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1446         *pval = unassigned_mem_read(mr, addr, size);
1447         return MEMTX_DECODE_ERROR;
1448     }
1449
1450     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1451     adjust_endianness(mr, pval, op);
1452     return r;
1453 }
1454
1455 /* Return true if an eventfd was signalled */
1456 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1457                                                     hwaddr addr,
1458                                                     uint64_t data,
1459                                                     unsigned size,
1460                                                     MemTxAttrs attrs)
1461 {
1462     MemoryRegionIoeventfd ioeventfd = {
1463         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1464         .data = data,
1465     };
1466     unsigned i;
1467
1468     for (i = 0; i < mr->ioeventfd_nb; i++) {
1469         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1470         ioeventfd.e = mr->ioeventfds[i].e;
1471
1472         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1473             event_notifier_set(ioeventfd.e);
1474             return true;
1475         }
1476     }
1477
1478     return false;
1479 }
1480
1481 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1482                                          hwaddr addr,
1483                                          uint64_t data,
1484                                          MemOp op,
1485                                          MemTxAttrs attrs)
1486 {
1487     unsigned size = memop_size(op);
1488
1489     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1490         unassigned_mem_write(mr, addr, data, size);
1491         return MEMTX_DECODE_ERROR;
1492     }
1493
1494     adjust_endianness(mr, &data, op);
1495
1496     if ((!kvm_eventfds_enabled()) &&
1497         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1498         return MEMTX_OK;
1499     }
1500
1501     if (mr->ops->write) {
1502         return access_with_adjusted_size(addr, &data, size,
1503                                          mr->ops->impl.min_access_size,
1504                                          mr->ops->impl.max_access_size,
1505                                          memory_region_write_accessor, mr,
1506                                          attrs);
1507     } else {
1508         return
1509             access_with_adjusted_size(addr, &data, size,
1510                                       mr->ops->impl.min_access_size,
1511                                       mr->ops->impl.max_access_size,
1512                                       memory_region_write_with_attrs_accessor,
1513                                       mr, attrs);
1514     }
1515 }
1516
1517 void memory_region_init_io(MemoryRegion *mr,
1518                            Object *owner,
1519                            const MemoryRegionOps *ops,
1520                            void *opaque,
1521                            const char *name,
1522                            uint64_t size)
1523 {
1524     memory_region_init(mr, owner, name, size);
1525     mr->ops = ops ? ops : &unassigned_mem_ops;
1526     mr->opaque = opaque;
1527     mr->terminates = true;
1528 }
1529
1530 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1531                                       Object *owner,
1532                                       const char *name,
1533                                       uint64_t size,
1534                                       Error **errp)
1535 {
1536     memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1537 }
1538
1539 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1540                                              Object *owner,
1541                                              const char *name,
1542                                              uint64_t size,
1543                                              bool share,
1544                                              Error **errp)
1545 {
1546     Error *err = NULL;
1547     memory_region_init(mr, owner, name, size);
1548     mr->ram = true;
1549     mr->terminates = true;
1550     mr->destructor = memory_region_destructor_ram;
1551     mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1552     if (err) {
1553         mr->size = int128_zero();
1554         object_unparent(OBJECT(mr));
1555         error_propagate(errp, err);
1556     }
1557 }
1558
1559 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1560                                        Object *owner,
1561                                        const char *name,
1562                                        uint64_t size,
1563                                        uint64_t max_size,
1564                                        void (*resized)(const char*,
1565                                                        uint64_t length,
1566                                                        void *host),
1567                                        Error **errp)
1568 {
1569     Error *err = NULL;
1570     memory_region_init(mr, owner, name, size);
1571     mr->ram = true;
1572     mr->terminates = true;
1573     mr->destructor = memory_region_destructor_ram;
1574     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1575                                               mr, &err);
1576     if (err) {
1577         mr->size = int128_zero();
1578         object_unparent(OBJECT(mr));
1579         error_propagate(errp, err);
1580     }
1581 }
1582
1583 #ifdef CONFIG_POSIX
1584 void memory_region_init_ram_from_file(MemoryRegion *mr,
1585                                       Object *owner,
1586                                       const char *name,
1587                                       uint64_t size,
1588                                       uint64_t align,
1589                                       uint32_t ram_flags,
1590                                       const char *path,
1591                                       bool readonly,
1592                                       Error **errp)
1593 {
1594     Error *err = NULL;
1595     memory_region_init(mr, owner, name, size);
1596     mr->ram = true;
1597     mr->readonly = readonly;
1598     mr->terminates = true;
1599     mr->destructor = memory_region_destructor_ram;
1600     mr->align = align;
1601     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1602                                              readonly, &err);
1603     if (err) {
1604         mr->size = int128_zero();
1605         object_unparent(OBJECT(mr));
1606         error_propagate(errp, err);
1607     }
1608 }
1609
1610 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1611                                     Object *owner,
1612                                     const char *name,
1613                                     uint64_t size,
1614                                     bool share,
1615                                     int fd,
1616                                     ram_addr_t offset,
1617                                     Error **errp)
1618 {
1619     Error *err = NULL;
1620     memory_region_init(mr, owner, name, size);
1621     mr->ram = true;
1622     mr->terminates = true;
1623     mr->destructor = memory_region_destructor_ram;
1624     mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1625                                            share ? RAM_SHARED : 0,
1626                                            fd, offset, false, &err);
1627     if (err) {
1628         mr->size = int128_zero();
1629         object_unparent(OBJECT(mr));
1630         error_propagate(errp, err);
1631     }
1632 }
1633 #endif
1634
1635 void memory_region_init_ram_ptr(MemoryRegion *mr,
1636                                 Object *owner,
1637                                 const char *name,
1638                                 uint64_t size,
1639                                 void *ptr)
1640 {
1641     memory_region_init(mr, owner, name, size);
1642     mr->ram = true;
1643     mr->terminates = true;
1644     mr->destructor = memory_region_destructor_ram;
1645
1646     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1647     assert(ptr != NULL);
1648     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1649 }
1650
1651 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1652                                        Object *owner,
1653                                        const char *name,
1654                                        uint64_t size,
1655                                        void *ptr)
1656 {
1657     memory_region_init(mr, owner, name, size);
1658     mr->ram = true;
1659     mr->terminates = true;
1660     mr->ram_device = true;
1661     mr->ops = &ram_device_mem_ops;
1662     mr->opaque = mr;
1663     mr->destructor = memory_region_destructor_ram;
1664
1665     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1666     assert(ptr != NULL);
1667     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1668 }
1669
1670 void memory_region_init_alias(MemoryRegion *mr,
1671                               Object *owner,
1672                               const char *name,
1673                               MemoryRegion *orig,
1674                               hwaddr offset,
1675                               uint64_t size)
1676 {
1677     memory_region_init(mr, owner, name, size);
1678     mr->alias = orig;
1679     mr->alias_offset = offset;
1680 }
1681
1682 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1683                                       Object *owner,
1684                                       const char *name,
1685                                       uint64_t size,
1686                                       Error **errp)
1687 {
1688     memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1689     mr->readonly = true;
1690 }
1691
1692 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1693                                              Object *owner,
1694                                              const MemoryRegionOps *ops,
1695                                              void *opaque,
1696                                              const char *name,
1697                                              uint64_t size,
1698                                              Error **errp)
1699 {
1700     Error *err = NULL;
1701     assert(ops);
1702     memory_region_init(mr, owner, name, size);
1703     mr->ops = ops;
1704     mr->opaque = opaque;
1705     mr->terminates = true;
1706     mr->rom_device = true;
1707     mr->destructor = memory_region_destructor_ram;
1708     mr->ram_block = qemu_ram_alloc(size, false,  mr, &err);
1709     if (err) {
1710         mr->size = int128_zero();
1711         object_unparent(OBJECT(mr));
1712         error_propagate(errp, err);
1713     }
1714 }
1715
1716 void memory_region_init_iommu(void *_iommu_mr,
1717                               size_t instance_size,
1718                               const char *mrtypename,
1719                               Object *owner,
1720                               const char *name,
1721                               uint64_t size)
1722 {
1723     struct IOMMUMemoryRegion *iommu_mr;
1724     struct MemoryRegion *mr;
1725
1726     object_initialize(_iommu_mr, instance_size, mrtypename);
1727     mr = MEMORY_REGION(_iommu_mr);
1728     memory_region_do_init(mr, owner, name, size);
1729     iommu_mr = IOMMU_MEMORY_REGION(mr);
1730     mr->terminates = true;  /* then re-forwards */
1731     QLIST_INIT(&iommu_mr->iommu_notify);
1732     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1733 }
1734
1735 static void memory_region_finalize(Object *obj)
1736 {
1737     MemoryRegion *mr = MEMORY_REGION(obj);
1738
1739     assert(!mr->container);
1740
1741     /* We know the region is not visible in any address space (it
1742      * does not have a container and cannot be a root either because
1743      * it has no references, so we can blindly clear mr->enabled.
1744      * memory_region_set_enabled instead could trigger a transaction
1745      * and cause an infinite loop.
1746      */
1747     mr->enabled = false;
1748     memory_region_transaction_begin();
1749     while (!QTAILQ_EMPTY(&mr->subregions)) {
1750         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1751         memory_region_del_subregion(mr, subregion);
1752     }
1753     memory_region_transaction_commit();
1754
1755     mr->destructor(mr);
1756     memory_region_clear_coalescing(mr);
1757     g_free((char *)mr->name);
1758     g_free(mr->ioeventfds);
1759 }
1760
1761 Object *memory_region_owner(MemoryRegion *mr)
1762 {
1763     Object *obj = OBJECT(mr);
1764     return obj->parent;
1765 }
1766
1767 void memory_region_ref(MemoryRegion *mr)
1768 {
1769     /* MMIO callbacks most likely will access data that belongs
1770      * to the owner, hence the need to ref/unref the owner whenever
1771      * the memory region is in use.
1772      *
1773      * The memory region is a child of its owner.  As long as the
1774      * owner doesn't call unparent itself on the memory region,
1775      * ref-ing the owner will also keep the memory region alive.
1776      * Memory regions without an owner are supposed to never go away;
1777      * we do not ref/unref them because it slows down DMA sensibly.
1778      */
1779     if (mr && mr->owner) {
1780         object_ref(mr->owner);
1781     }
1782 }
1783
1784 void memory_region_unref(MemoryRegion *mr)
1785 {
1786     if (mr && mr->owner) {
1787         object_unref(mr->owner);
1788     }
1789 }
1790
1791 uint64_t memory_region_size(MemoryRegion *mr)
1792 {
1793     if (int128_eq(mr->size, int128_2_64())) {
1794         return UINT64_MAX;
1795     }
1796     return int128_get64(mr->size);
1797 }
1798
1799 const char *memory_region_name(const MemoryRegion *mr)
1800 {
1801     if (!mr->name) {
1802         ((MemoryRegion *)mr)->name =
1803             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1804     }
1805     return mr->name;
1806 }
1807
1808 bool memory_region_is_ram_device(MemoryRegion *mr)
1809 {
1810     return mr->ram_device;
1811 }
1812
1813 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1814 {
1815     uint8_t mask = mr->dirty_log_mask;
1816     RAMBlock *rb = mr->ram_block;
1817
1818     if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1819                              memory_region_is_iommu(mr))) {
1820         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1821     }
1822
1823     if (tcg_enabled() && rb) {
1824         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1825         mask |= (1 << DIRTY_MEMORY_CODE);
1826     }
1827     return mask;
1828 }
1829
1830 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1831 {
1832     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1833 }
1834
1835 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1836                                                    Error **errp)
1837 {
1838     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1839     IOMMUNotifier *iommu_notifier;
1840     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1841     int ret = 0;
1842
1843     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1844         flags |= iommu_notifier->notifier_flags;
1845     }
1846
1847     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1848         ret = imrc->notify_flag_changed(iommu_mr,
1849                                         iommu_mr->iommu_notify_flags,
1850                                         flags, errp);
1851     }
1852
1853     if (!ret) {
1854         iommu_mr->iommu_notify_flags = flags;
1855     }
1856     return ret;
1857 }
1858
1859 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1860                                            uint64_t page_size_mask,
1861                                            Error **errp)
1862 {
1863     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1864     int ret = 0;
1865
1866     if (imrc->iommu_set_page_size_mask) {
1867         ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1868     }
1869     return ret;
1870 }
1871
1872 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1873                                           IOMMUNotifier *n, Error **errp)
1874 {
1875     IOMMUMemoryRegion *iommu_mr;
1876     int ret;
1877
1878     if (mr->alias) {
1879         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1880     }
1881
1882     /* We need to register for at least one bitfield */
1883     iommu_mr = IOMMU_MEMORY_REGION(mr);
1884     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1885     assert(n->start <= n->end);
1886     assert(n->iommu_idx >= 0 &&
1887            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1888
1889     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1890     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1891     if (ret) {
1892         QLIST_REMOVE(n, node);
1893     }
1894     return ret;
1895 }
1896
1897 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1898 {
1899     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1900
1901     if (imrc->get_min_page_size) {
1902         return imrc->get_min_page_size(iommu_mr);
1903     }
1904     return TARGET_PAGE_SIZE;
1905 }
1906
1907 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1908 {
1909     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1910     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1911     hwaddr addr, granularity;
1912     IOMMUTLBEntry iotlb;
1913
1914     /* If the IOMMU has its own replay callback, override */
1915     if (imrc->replay) {
1916         imrc->replay(iommu_mr, n);
1917         return;
1918     }
1919
1920     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1921
1922     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1923         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1924         if (iotlb.perm != IOMMU_NONE) {
1925             n->notify(n, &iotlb);
1926         }
1927
1928         /* if (2^64 - MR size) < granularity, it's possible to get an
1929          * infinite loop here.  This should catch such a wraparound */
1930         if ((addr + granularity) < addr) {
1931             break;
1932         }
1933     }
1934 }
1935
1936 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1937                                              IOMMUNotifier *n)
1938 {
1939     IOMMUMemoryRegion *iommu_mr;
1940
1941     if (mr->alias) {
1942         memory_region_unregister_iommu_notifier(mr->alias, n);
1943         return;
1944     }
1945     QLIST_REMOVE(n, node);
1946     iommu_mr = IOMMU_MEMORY_REGION(mr);
1947     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1948 }
1949
1950 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1951                                     IOMMUTLBEvent *event)
1952 {
1953     IOMMUTLBEntry *entry = &event->entry;
1954     hwaddr entry_end = entry->iova + entry->addr_mask;
1955     IOMMUTLBEntry tmp = *entry;
1956
1957     if (event->type == IOMMU_NOTIFIER_UNMAP) {
1958         assert(entry->perm == IOMMU_NONE);
1959     }
1960
1961     /*
1962      * Skip the notification if the notification does not overlap
1963      * with registered range.
1964      */
1965     if (notifier->start > entry_end || notifier->end < entry->iova) {
1966         return;
1967     }
1968
1969     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1970         /* Crop (iova, addr_mask) to range */
1971         tmp.iova = MAX(tmp.iova, notifier->start);
1972         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1973     } else {
1974         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1975     }
1976
1977     if (event->type & notifier->notifier_flags) {
1978         notifier->notify(notifier, &tmp);
1979     }
1980 }
1981
1982 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1983                                 int iommu_idx,
1984                                 IOMMUTLBEvent event)
1985 {
1986     IOMMUNotifier *iommu_notifier;
1987
1988     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1989
1990     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1991         if (iommu_notifier->iommu_idx == iommu_idx) {
1992             memory_region_notify_iommu_one(iommu_notifier, &event);
1993         }
1994     }
1995 }
1996
1997 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1998                                  enum IOMMUMemoryRegionAttr attr,
1999                                  void *data)
2000 {
2001     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2002
2003     if (!imrc->get_attr) {
2004         return -EINVAL;
2005     }
2006
2007     return imrc->get_attr(iommu_mr, attr, data);
2008 }
2009
2010 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2011                                        MemTxAttrs attrs)
2012 {
2013     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2014
2015     if (!imrc->attrs_to_index) {
2016         return 0;
2017     }
2018
2019     return imrc->attrs_to_index(iommu_mr, attrs);
2020 }
2021
2022 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2023 {
2024     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2025
2026     if (!imrc->num_indexes) {
2027         return 1;
2028     }
2029
2030     return imrc->num_indexes(iommu_mr);
2031 }
2032
2033 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2034 {
2035     uint8_t mask = 1 << client;
2036     uint8_t old_logging;
2037
2038     assert(client == DIRTY_MEMORY_VGA);
2039     old_logging = mr->vga_logging_count;
2040     mr->vga_logging_count += log ? 1 : -1;
2041     if (!!old_logging == !!mr->vga_logging_count) {
2042         return;
2043     }
2044
2045     memory_region_transaction_begin();
2046     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2047     memory_region_update_pending |= mr->enabled;
2048     memory_region_transaction_commit();
2049 }
2050
2051 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2052                              hwaddr size)
2053 {
2054     assert(mr->ram_block);
2055     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2056                                         size,
2057                                         memory_region_get_dirty_log_mask(mr));
2058 }
2059
2060 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2061 {
2062     MemoryListener *listener;
2063     AddressSpace *as;
2064     FlatView *view;
2065     FlatRange *fr;
2066
2067     /* If the same address space has multiple log_sync listeners, we
2068      * visit that address space's FlatView multiple times.  But because
2069      * log_sync listeners are rare, it's still cheaper than walking each
2070      * address space once.
2071      */
2072     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2073         if (!listener->log_sync) {
2074             continue;
2075         }
2076         as = listener->address_space;
2077         view = address_space_get_flatview(as);
2078         FOR_EACH_FLAT_RANGE(fr, view) {
2079             if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2080                 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2081                 listener->log_sync(listener, &mrs);
2082             }
2083         }
2084         flatview_unref(view);
2085     }
2086 }
2087
2088 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2089                                       hwaddr len)
2090 {
2091     MemoryRegionSection mrs;
2092     MemoryListener *listener;
2093     AddressSpace *as;
2094     FlatView *view;
2095     FlatRange *fr;
2096     hwaddr sec_start, sec_end, sec_size;
2097
2098     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2099         if (!listener->log_clear) {
2100             continue;
2101         }
2102         as = listener->address_space;
2103         view = address_space_get_flatview(as);
2104         FOR_EACH_FLAT_RANGE(fr, view) {
2105             if (!fr->dirty_log_mask || fr->mr != mr) {
2106                 /*
2107                  * Clear dirty bitmap operation only applies to those
2108                  * regions whose dirty logging is at least enabled
2109                  */
2110                 continue;
2111             }
2112
2113             mrs = section_from_flat_range(fr, view);
2114
2115             sec_start = MAX(mrs.offset_within_region, start);
2116             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2117             sec_end = MIN(sec_end, start + len);
2118
2119             if (sec_start >= sec_end) {
2120                 /*
2121                  * If this memory region section has no intersection
2122                  * with the requested range, skip.
2123                  */
2124                 continue;
2125             }
2126
2127             /* Valid case; shrink the section if needed */
2128             mrs.offset_within_address_space +=
2129                 sec_start - mrs.offset_within_region;
2130             mrs.offset_within_region = sec_start;
2131             sec_size = sec_end - sec_start;
2132             mrs.size = int128_make64(sec_size);
2133             listener->log_clear(listener, &mrs);
2134         }
2135         flatview_unref(view);
2136     }
2137 }
2138
2139 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2140                                                             hwaddr addr,
2141                                                             hwaddr size,
2142                                                             unsigned client)
2143 {
2144     DirtyBitmapSnapshot *snapshot;
2145     assert(mr->ram_block);
2146     memory_region_sync_dirty_bitmap(mr);
2147     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2148     memory_global_after_dirty_log_sync();
2149     return snapshot;
2150 }
2151
2152 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2153                                       hwaddr addr, hwaddr size)
2154 {
2155     assert(mr->ram_block);
2156     return cpu_physical_memory_snapshot_get_dirty(snap,
2157                 memory_region_get_ram_addr(mr) + addr, size);
2158 }
2159
2160 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2161 {
2162     if (mr->readonly != readonly) {
2163         memory_region_transaction_begin();
2164         mr->readonly = readonly;
2165         memory_region_update_pending |= mr->enabled;
2166         memory_region_transaction_commit();
2167     }
2168 }
2169
2170 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2171 {
2172     if (mr->nonvolatile != nonvolatile) {
2173         memory_region_transaction_begin();
2174         mr->nonvolatile = nonvolatile;
2175         memory_region_update_pending |= mr->enabled;
2176         memory_region_transaction_commit();
2177     }
2178 }
2179
2180 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2181 {
2182     if (mr->romd_mode != romd_mode) {
2183         memory_region_transaction_begin();
2184         mr->romd_mode = romd_mode;
2185         memory_region_update_pending |= mr->enabled;
2186         memory_region_transaction_commit();
2187     }
2188 }
2189
2190 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2191                                hwaddr size, unsigned client)
2192 {
2193     assert(mr->ram_block);
2194     cpu_physical_memory_test_and_clear_dirty(
2195         memory_region_get_ram_addr(mr) + addr, size, client);
2196 }
2197
2198 int memory_region_get_fd(MemoryRegion *mr)
2199 {
2200     int fd;
2201
2202     RCU_READ_LOCK_GUARD();
2203     while (mr->alias) {
2204         mr = mr->alias;
2205     }
2206     fd = mr->ram_block->fd;
2207
2208     return fd;
2209 }
2210
2211 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2212 {
2213     void *ptr;
2214     uint64_t offset = 0;
2215
2216     RCU_READ_LOCK_GUARD();
2217     while (mr->alias) {
2218         offset += mr->alias_offset;
2219         mr = mr->alias;
2220     }
2221     assert(mr->ram_block);
2222     ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2223
2224     return ptr;
2225 }
2226
2227 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2228 {
2229     RAMBlock *block;
2230
2231     block = qemu_ram_block_from_host(ptr, false, offset);
2232     if (!block) {
2233         return NULL;
2234     }
2235
2236     return block->mr;
2237 }
2238
2239 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2240 {
2241     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2242 }
2243
2244 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2245 {
2246     assert(mr->ram_block);
2247
2248     qemu_ram_resize(mr->ram_block, newsize, errp);
2249 }
2250
2251 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2252 {
2253     if (mr->ram_block) {
2254         qemu_ram_msync(mr->ram_block, addr, size);
2255     }
2256 }
2257
2258 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2259 {
2260     /*
2261      * Might be extended case needed to cover
2262      * different types of memory regions
2263      */
2264     if (mr->dirty_log_mask) {
2265         memory_region_msync(mr, addr, size);
2266     }
2267 }
2268
2269 /*
2270  * Call proper memory listeners about the change on the newly
2271  * added/removed CoalescedMemoryRange.
2272  */
2273 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2274                                                  CoalescedMemoryRange *cmr,
2275                                                  bool add)
2276 {
2277     AddressSpace *as;
2278     FlatView *view;
2279     FlatRange *fr;
2280
2281     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2282         view = address_space_get_flatview(as);
2283         FOR_EACH_FLAT_RANGE(fr, view) {
2284             if (fr->mr == mr) {
2285                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2286             }
2287         }
2288         flatview_unref(view);
2289     }
2290 }
2291
2292 void memory_region_set_coalescing(MemoryRegion *mr)
2293 {
2294     memory_region_clear_coalescing(mr);
2295     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2296 }
2297
2298 void memory_region_add_coalescing(MemoryRegion *mr,
2299                                   hwaddr offset,
2300                                   uint64_t size)
2301 {
2302     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2303
2304     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2305     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2306     memory_region_update_coalesced_range(mr, cmr, true);
2307     memory_region_set_flush_coalesced(mr);
2308 }
2309
2310 void memory_region_clear_coalescing(MemoryRegion *mr)
2311 {
2312     CoalescedMemoryRange *cmr;
2313
2314     if (QTAILQ_EMPTY(&mr->coalesced)) {
2315         return;
2316     }
2317
2318     qemu_flush_coalesced_mmio_buffer();
2319     mr->flush_coalesced_mmio = false;
2320
2321     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2322         cmr = QTAILQ_FIRST(&mr->coalesced);
2323         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2324         memory_region_update_coalesced_range(mr, cmr, false);
2325         g_free(cmr);
2326     }
2327 }
2328
2329 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2330 {
2331     mr->flush_coalesced_mmio = true;
2332 }
2333
2334 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2335 {
2336     qemu_flush_coalesced_mmio_buffer();
2337     if (QTAILQ_EMPTY(&mr->coalesced)) {
2338         mr->flush_coalesced_mmio = false;
2339     }
2340 }
2341
2342 static bool userspace_eventfd_warning;
2343
2344 void memory_region_add_eventfd(MemoryRegion *mr,
2345                                hwaddr addr,
2346                                unsigned size,
2347                                bool match_data,
2348                                uint64_t data,
2349                                EventNotifier *e)
2350 {
2351     MemoryRegionIoeventfd mrfd = {
2352         .addr.start = int128_make64(addr),
2353         .addr.size = int128_make64(size),
2354         .match_data = match_data,
2355         .data = data,
2356         .e = e,
2357     };
2358     unsigned i;
2359
2360     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2361                             userspace_eventfd_warning))) {
2362         userspace_eventfd_warning = true;
2363         error_report("Using eventfd without MMIO binding in KVM. "
2364                      "Suboptimal performance expected");
2365     }
2366
2367     if (size) {
2368         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2369     }
2370     memory_region_transaction_begin();
2371     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2372         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2373             break;
2374         }
2375     }
2376     ++mr->ioeventfd_nb;
2377     mr->ioeventfds = g_realloc(mr->ioeventfds,
2378                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2379     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2380             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2381     mr->ioeventfds[i] = mrfd;
2382     ioeventfd_update_pending |= mr->enabled;
2383     memory_region_transaction_commit();
2384 }
2385
2386 void memory_region_del_eventfd(MemoryRegion *mr,
2387                                hwaddr addr,
2388                                unsigned size,
2389                                bool match_data,
2390                                uint64_t data,
2391                                EventNotifier *e)
2392 {
2393     MemoryRegionIoeventfd mrfd = {
2394         .addr.start = int128_make64(addr),
2395         .addr.size = int128_make64(size),
2396         .match_data = match_data,
2397         .data = data,
2398         .e = e,
2399     };
2400     unsigned i;
2401
2402     if (size) {
2403         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2404     }
2405     memory_region_transaction_begin();
2406     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2407         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2408             break;
2409         }
2410     }
2411     assert(i != mr->ioeventfd_nb);
2412     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2413             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2414     --mr->ioeventfd_nb;
2415     mr->ioeventfds = g_realloc(mr->ioeventfds,
2416                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2417     ioeventfd_update_pending |= mr->enabled;
2418     memory_region_transaction_commit();
2419 }
2420
2421 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2422 {
2423     MemoryRegion *mr = subregion->container;
2424     MemoryRegion *other;
2425
2426     memory_region_transaction_begin();
2427
2428     memory_region_ref(subregion);
2429     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2430         if (subregion->priority >= other->priority) {
2431             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2432             goto done;
2433         }
2434     }
2435     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2436 done:
2437     memory_region_update_pending |= mr->enabled && subregion->enabled;
2438     memory_region_transaction_commit();
2439 }
2440
2441 static void memory_region_add_subregion_common(MemoryRegion *mr,
2442                                                hwaddr offset,
2443                                                MemoryRegion *subregion)
2444 {
2445     assert(!subregion->container);
2446     subregion->container = mr;
2447     subregion->addr = offset;
2448     memory_region_update_container_subregions(subregion);
2449 }
2450
2451 void memory_region_add_subregion(MemoryRegion *mr,
2452                                  hwaddr offset,
2453                                  MemoryRegion *subregion)
2454 {
2455     subregion->priority = 0;
2456     memory_region_add_subregion_common(mr, offset, subregion);
2457 }
2458
2459 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2460                                          hwaddr offset,
2461                                          MemoryRegion *subregion,
2462                                          int priority)
2463 {
2464     subregion->priority = priority;
2465     memory_region_add_subregion_common(mr, offset, subregion);
2466 }
2467
2468 void memory_region_del_subregion(MemoryRegion *mr,
2469                                  MemoryRegion *subregion)
2470 {
2471     memory_region_transaction_begin();
2472     assert(subregion->container == mr);
2473     subregion->container = NULL;
2474     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2475     memory_region_unref(subregion);
2476     memory_region_update_pending |= mr->enabled && subregion->enabled;
2477     memory_region_transaction_commit();
2478 }
2479
2480 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2481 {
2482     if (enabled == mr->enabled) {
2483         return;
2484     }
2485     memory_region_transaction_begin();
2486     mr->enabled = enabled;
2487     memory_region_update_pending = true;
2488     memory_region_transaction_commit();
2489 }
2490
2491 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2492 {
2493     Int128 s = int128_make64(size);
2494
2495     if (size == UINT64_MAX) {
2496         s = int128_2_64();
2497     }
2498     if (int128_eq(s, mr->size)) {
2499         return;
2500     }
2501     memory_region_transaction_begin();
2502     mr->size = s;
2503     memory_region_update_pending = true;
2504     memory_region_transaction_commit();
2505 }
2506
2507 static void memory_region_readd_subregion(MemoryRegion *mr)
2508 {
2509     MemoryRegion *container = mr->container;
2510
2511     if (container) {
2512         memory_region_transaction_begin();
2513         memory_region_ref(mr);
2514         memory_region_del_subregion(container, mr);
2515         mr->container = container;
2516         memory_region_update_container_subregions(mr);
2517         memory_region_unref(mr);
2518         memory_region_transaction_commit();
2519     }
2520 }
2521
2522 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2523 {
2524     if (addr != mr->addr) {
2525         mr->addr = addr;
2526         memory_region_readd_subregion(mr);
2527     }
2528 }
2529
2530 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2531 {
2532     assert(mr->alias);
2533
2534     if (offset == mr->alias_offset) {
2535         return;
2536     }
2537
2538     memory_region_transaction_begin();
2539     mr->alias_offset = offset;
2540     memory_region_update_pending |= mr->enabled;
2541     memory_region_transaction_commit();
2542 }
2543
2544 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2545 {
2546     return mr->align;
2547 }
2548
2549 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2550 {
2551     const AddrRange *addr = addr_;
2552     const FlatRange *fr = fr_;
2553
2554     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2555         return -1;
2556     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2557         return 1;
2558     }
2559     return 0;
2560 }
2561
2562 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2563 {
2564     return bsearch(&addr, view->ranges, view->nr,
2565                    sizeof(FlatRange), cmp_flatrange_addr);
2566 }
2567
2568 bool memory_region_is_mapped(MemoryRegion *mr)
2569 {
2570     return mr->container ? true : false;
2571 }
2572
2573 /* Same as memory_region_find, but it does not add a reference to the
2574  * returned region.  It must be called from an RCU critical section.
2575  */
2576 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2577                                                   hwaddr addr, uint64_t size)
2578 {
2579     MemoryRegionSection ret = { .mr = NULL };
2580     MemoryRegion *root;
2581     AddressSpace *as;
2582     AddrRange range;
2583     FlatView *view;
2584     FlatRange *fr;
2585
2586     addr += mr->addr;
2587     for (root = mr; root->container; ) {
2588         root = root->container;
2589         addr += root->addr;
2590     }
2591
2592     as = memory_region_to_address_space(root);
2593     if (!as) {
2594         return ret;
2595     }
2596     range = addrrange_make(int128_make64(addr), int128_make64(size));
2597
2598     view = address_space_to_flatview(as);
2599     fr = flatview_lookup(view, range);
2600     if (!fr) {
2601         return ret;
2602     }
2603
2604     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2605         --fr;
2606     }
2607
2608     ret.mr = fr->mr;
2609     ret.fv = view;
2610     range = addrrange_intersection(range, fr->addr);
2611     ret.offset_within_region = fr->offset_in_region;
2612     ret.offset_within_region += int128_get64(int128_sub(range.start,
2613                                                         fr->addr.start));
2614     ret.size = range.size;
2615     ret.offset_within_address_space = int128_get64(range.start);
2616     ret.readonly = fr->readonly;
2617     ret.nonvolatile = fr->nonvolatile;
2618     return ret;
2619 }
2620
2621 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2622                                        hwaddr addr, uint64_t size)
2623 {
2624     MemoryRegionSection ret;
2625     RCU_READ_LOCK_GUARD();
2626     ret = memory_region_find_rcu(mr, addr, size);
2627     if (ret.mr) {
2628         memory_region_ref(ret.mr);
2629     }
2630     return ret;
2631 }
2632
2633 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2634 {
2635     MemoryRegion *mr;
2636
2637     RCU_READ_LOCK_GUARD();
2638     mr = memory_region_find_rcu(container, addr, 1).mr;
2639     return mr && mr != container;
2640 }
2641
2642 void memory_global_dirty_log_sync(void)
2643 {
2644     memory_region_sync_dirty_bitmap(NULL);
2645 }
2646
2647 void memory_global_after_dirty_log_sync(void)
2648 {
2649     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2650 }
2651
2652 static VMChangeStateEntry *vmstate_change;
2653
2654 void memory_global_dirty_log_start(void)
2655 {
2656     if (vmstate_change) {
2657         qemu_del_vm_change_state_handler(vmstate_change);
2658         vmstate_change = NULL;
2659     }
2660
2661     global_dirty_log = true;
2662
2663     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2664
2665     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2666     memory_region_transaction_begin();
2667     memory_region_update_pending = true;
2668     memory_region_transaction_commit();
2669 }
2670
2671 static void memory_global_dirty_log_do_stop(void)
2672 {
2673     global_dirty_log = false;
2674
2675     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2676     memory_region_transaction_begin();
2677     memory_region_update_pending = true;
2678     memory_region_transaction_commit();
2679
2680     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2681 }
2682
2683 static void memory_vm_change_state_handler(void *opaque, bool running,
2684                                            RunState state)
2685 {
2686     if (running) {
2687         memory_global_dirty_log_do_stop();
2688
2689         if (vmstate_change) {
2690             qemu_del_vm_change_state_handler(vmstate_change);
2691             vmstate_change = NULL;
2692         }
2693     }
2694 }
2695
2696 void memory_global_dirty_log_stop(void)
2697 {
2698     if (!runstate_is_running()) {
2699         if (vmstate_change) {
2700             return;
2701         }
2702         vmstate_change = qemu_add_vm_change_state_handler(
2703                                 memory_vm_change_state_handler, NULL);
2704         return;
2705     }
2706
2707     memory_global_dirty_log_do_stop();
2708 }
2709
2710 static void listener_add_address_space(MemoryListener *listener,
2711                                        AddressSpace *as)
2712 {
2713     FlatView *view;
2714     FlatRange *fr;
2715
2716     if (listener->begin) {
2717         listener->begin(listener);
2718     }
2719     if (global_dirty_log) {
2720         if (listener->log_global_start) {
2721             listener->log_global_start(listener);
2722         }
2723     }
2724
2725     view = address_space_get_flatview(as);
2726     FOR_EACH_FLAT_RANGE(fr, view) {
2727         MemoryRegionSection section = section_from_flat_range(fr, view);
2728
2729         if (listener->region_add) {
2730             listener->region_add(listener, &section);
2731         }
2732         if (fr->dirty_log_mask && listener->log_start) {
2733             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2734         }
2735     }
2736     if (listener->commit) {
2737         listener->commit(listener);
2738     }
2739     flatview_unref(view);
2740 }
2741
2742 static void listener_del_address_space(MemoryListener *listener,
2743                                        AddressSpace *as)
2744 {
2745     FlatView *view;
2746     FlatRange *fr;
2747
2748     if (listener->begin) {
2749         listener->begin(listener);
2750     }
2751     view = address_space_get_flatview(as);
2752     FOR_EACH_FLAT_RANGE(fr, view) {
2753         MemoryRegionSection section = section_from_flat_range(fr, view);
2754
2755         if (fr->dirty_log_mask && listener->log_stop) {
2756             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2757         }
2758         if (listener->region_del) {
2759             listener->region_del(listener, &section);
2760         }
2761     }
2762     if (listener->commit) {
2763         listener->commit(listener);
2764     }
2765     flatview_unref(view);
2766 }
2767
2768 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2769 {
2770     MemoryListener *other = NULL;
2771
2772     listener->address_space = as;
2773     if (QTAILQ_EMPTY(&memory_listeners)
2774         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2775         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2776     } else {
2777         QTAILQ_FOREACH(other, &memory_listeners, link) {
2778             if (listener->priority < other->priority) {
2779                 break;
2780             }
2781         }
2782         QTAILQ_INSERT_BEFORE(other, listener, link);
2783     }
2784
2785     if (QTAILQ_EMPTY(&as->listeners)
2786         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2787         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2788     } else {
2789         QTAILQ_FOREACH(other, &as->listeners, link_as) {
2790             if (listener->priority < other->priority) {
2791                 break;
2792             }
2793         }
2794         QTAILQ_INSERT_BEFORE(other, listener, link_as);
2795     }
2796
2797     listener_add_address_space(listener, as);
2798 }
2799
2800 void memory_listener_unregister(MemoryListener *listener)
2801 {
2802     if (!listener->address_space) {
2803         return;
2804     }
2805
2806     listener_del_address_space(listener, listener->address_space);
2807     QTAILQ_REMOVE(&memory_listeners, listener, link);
2808     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2809     listener->address_space = NULL;
2810 }
2811
2812 void address_space_remove_listeners(AddressSpace *as)
2813 {
2814     while (!QTAILQ_EMPTY(&as->listeners)) {
2815         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2816     }
2817 }
2818
2819 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2820 {
2821     memory_region_ref(root);
2822     as->root = root;
2823     as->current_map = NULL;
2824     as->ioeventfd_nb = 0;
2825     as->ioeventfds = NULL;
2826     QTAILQ_INIT(&as->listeners);
2827     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2828     as->name = g_strdup(name ? name : "anonymous");
2829     address_space_update_topology(as);
2830     address_space_update_ioeventfds(as);
2831 }
2832
2833 static void do_address_space_destroy(AddressSpace *as)
2834 {
2835     assert(QTAILQ_EMPTY(&as->listeners));
2836
2837     flatview_unref(as->current_map);
2838     g_free(as->name);
2839     g_free(as->ioeventfds);
2840     memory_region_unref(as->root);
2841 }
2842
2843 void address_space_destroy(AddressSpace *as)
2844 {
2845     MemoryRegion *root = as->root;
2846
2847     /* Flush out anything from MemoryListeners listening in on this */
2848     memory_region_transaction_begin();
2849     as->root = NULL;
2850     memory_region_transaction_commit();
2851     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2852
2853     /* At this point, as->dispatch and as->current_map are dummy
2854      * entries that the guest should never use.  Wait for the old
2855      * values to expire before freeing the data.
2856      */
2857     as->root = root;
2858     call_rcu(as, do_address_space_destroy, rcu);
2859 }
2860
2861 static const char *memory_region_type(MemoryRegion *mr)
2862 {
2863     if (mr->alias) {
2864         return memory_region_type(mr->alias);
2865     }
2866     if (memory_region_is_ram_device(mr)) {
2867         return "ramd";
2868     } else if (memory_region_is_romd(mr)) {
2869         return "romd";
2870     } else if (memory_region_is_rom(mr)) {
2871         return "rom";
2872     } else if (memory_region_is_ram(mr)) {
2873         return "ram";
2874     } else {
2875         return "i/o";
2876     }
2877 }
2878
2879 typedef struct MemoryRegionList MemoryRegionList;
2880
2881 struct MemoryRegionList {
2882     const MemoryRegion *mr;
2883     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2884 };
2885
2886 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2887
2888 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2889                            int128_sub((size), int128_one())) : 0)
2890 #define MTREE_INDENT "  "
2891
2892 static void mtree_expand_owner(const char *label, Object *obj)
2893 {
2894     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2895
2896     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2897     if (dev && dev->id) {
2898         qemu_printf(" id=%s", dev->id);
2899     } else {
2900         char *canonical_path = object_get_canonical_path(obj);
2901         if (canonical_path) {
2902             qemu_printf(" path=%s", canonical_path);
2903             g_free(canonical_path);
2904         } else {
2905             qemu_printf(" type=%s", object_get_typename(obj));
2906         }
2907     }
2908     qemu_printf("}");
2909 }
2910
2911 static void mtree_print_mr_owner(const MemoryRegion *mr)
2912 {
2913     Object *owner = mr->owner;
2914     Object *parent = memory_region_owner((MemoryRegion *)mr);
2915
2916     if (!owner && !parent) {
2917         qemu_printf(" orphan");
2918         return;
2919     }
2920     if (owner) {
2921         mtree_expand_owner("owner", owner);
2922     }
2923     if (parent && parent != owner) {
2924         mtree_expand_owner("parent", parent);
2925     }
2926 }
2927
2928 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2929                            hwaddr base,
2930                            MemoryRegionListHead *alias_print_queue,
2931                            bool owner, bool display_disabled)
2932 {
2933     MemoryRegionList *new_ml, *ml, *next_ml;
2934     MemoryRegionListHead submr_print_queue;
2935     const MemoryRegion *submr;
2936     unsigned int i;
2937     hwaddr cur_start, cur_end;
2938
2939     if (!mr) {
2940         return;
2941     }
2942
2943     cur_start = base + mr->addr;
2944     cur_end = cur_start + MR_SIZE(mr->size);
2945
2946     /*
2947      * Try to detect overflow of memory region. This should never
2948      * happen normally. When it happens, we dump something to warn the
2949      * user who is observing this.
2950      */
2951     if (cur_start < base || cur_end < cur_start) {
2952         qemu_printf("[DETECTED OVERFLOW!] ");
2953     }
2954
2955     if (mr->alias) {
2956         MemoryRegionList *ml;
2957         bool found = false;
2958
2959         /* check if the alias is already in the queue */
2960         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2961             if (ml->mr == mr->alias) {
2962                 found = true;
2963             }
2964         }
2965
2966         if (!found) {
2967             ml = g_new(MemoryRegionList, 1);
2968             ml->mr = mr->alias;
2969             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2970         }
2971         if (mr->enabled || display_disabled) {
2972             for (i = 0; i < level; i++) {
2973                 qemu_printf(MTREE_INDENT);
2974             }
2975             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2976                         " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2977                         "-" TARGET_FMT_plx "%s",
2978                         cur_start, cur_end,
2979                         mr->priority,
2980                         mr->nonvolatile ? "nv-" : "",
2981                         memory_region_type((MemoryRegion *)mr),
2982                         memory_region_name(mr),
2983                         memory_region_name(mr->alias),
2984                         mr->alias_offset,
2985                         mr->alias_offset + MR_SIZE(mr->size),
2986                         mr->enabled ? "" : " [disabled]");
2987             if (owner) {
2988                 mtree_print_mr_owner(mr);
2989             }
2990             qemu_printf("\n");
2991         }
2992     } else {
2993         if (mr->enabled || display_disabled) {
2994             for (i = 0; i < level; i++) {
2995                 qemu_printf(MTREE_INDENT);
2996             }
2997             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2998                         " (prio %d, %s%s): %s%s",
2999                         cur_start, cur_end,
3000                         mr->priority,
3001                         mr->nonvolatile ? "nv-" : "",
3002                         memory_region_type((MemoryRegion *)mr),
3003                         memory_region_name(mr),
3004                         mr->enabled ? "" : " [disabled]");
3005             if (owner) {
3006                 mtree_print_mr_owner(mr);
3007             }
3008             qemu_printf("\n");
3009         }
3010     }
3011
3012     QTAILQ_INIT(&submr_print_queue);
3013
3014     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3015         new_ml = g_new(MemoryRegionList, 1);
3016         new_ml->mr = submr;
3017         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3018             if (new_ml->mr->addr < ml->mr->addr ||
3019                 (new_ml->mr->addr == ml->mr->addr &&
3020                  new_ml->mr->priority > ml->mr->priority)) {
3021                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3022                 new_ml = NULL;
3023                 break;
3024             }
3025         }
3026         if (new_ml) {
3027             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3028         }
3029     }
3030
3031     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3032         mtree_print_mr(ml->mr, level + 1, cur_start,
3033                        alias_print_queue, owner, display_disabled);
3034     }
3035
3036     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3037         g_free(ml);
3038     }
3039 }
3040
3041 struct FlatViewInfo {
3042     int counter;
3043     bool dispatch_tree;
3044     bool owner;
3045     AccelClass *ac;
3046 };
3047
3048 static void mtree_print_flatview(gpointer key, gpointer value,
3049                                  gpointer user_data)
3050 {
3051     FlatView *view = key;
3052     GArray *fv_address_spaces = value;
3053     struct FlatViewInfo *fvi = user_data;
3054     FlatRange *range = &view->ranges[0];
3055     MemoryRegion *mr;
3056     int n = view->nr;
3057     int i;
3058     AddressSpace *as;
3059
3060     qemu_printf("FlatView #%d\n", fvi->counter);
3061     ++fvi->counter;
3062
3063     for (i = 0; i < fv_address_spaces->len; ++i) {
3064         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3065         qemu_printf(" AS \"%s\", root: %s",
3066                     as->name, memory_region_name(as->root));
3067         if (as->root->alias) {
3068             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3069         }
3070         qemu_printf("\n");
3071     }
3072
3073     qemu_printf(" Root memory region: %s\n",
3074       view->root ? memory_region_name(view->root) : "(none)");
3075
3076     if (n <= 0) {
3077         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3078         return;
3079     }
3080
3081     while (n--) {
3082         mr = range->mr;
3083         if (range->offset_in_region) {
3084             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3085                         " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3086                         int128_get64(range->addr.start),
3087                         int128_get64(range->addr.start)
3088                         + MR_SIZE(range->addr.size),
3089                         mr->priority,
3090                         range->nonvolatile ? "nv-" : "",
3091                         range->readonly ? "rom" : memory_region_type(mr),
3092                         memory_region_name(mr),
3093                         range->offset_in_region);
3094         } else {
3095             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3096                         " (prio %d, %s%s): %s",
3097                         int128_get64(range->addr.start),
3098                         int128_get64(range->addr.start)
3099                         + MR_SIZE(range->addr.size),
3100                         mr->priority,
3101                         range->nonvolatile ? "nv-" : "",
3102                         range->readonly ? "rom" : memory_region_type(mr),
3103                         memory_region_name(mr));
3104         }
3105         if (fvi->owner) {
3106             mtree_print_mr_owner(mr);
3107         }
3108
3109         if (fvi->ac) {
3110             for (i = 0; i < fv_address_spaces->len; ++i) {
3111                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3112                 if (fvi->ac->has_memory(current_machine, as,
3113                                         int128_get64(range->addr.start),
3114                                         MR_SIZE(range->addr.size) + 1)) {
3115                     qemu_printf(" %s", fvi->ac->name);
3116                 }
3117             }
3118         }
3119         qemu_printf("\n");
3120         range++;
3121     }
3122
3123 #if !defined(CONFIG_USER_ONLY)
3124     if (fvi->dispatch_tree && view->root) {
3125         mtree_print_dispatch(view->dispatch, view->root);
3126     }
3127 #endif
3128
3129     qemu_printf("\n");
3130 }
3131
3132 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3133                                       gpointer user_data)
3134 {
3135     FlatView *view = key;
3136     GArray *fv_address_spaces = value;
3137
3138     g_array_unref(fv_address_spaces);
3139     flatview_unref(view);
3140
3141     return true;
3142 }
3143
3144 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3145 {
3146     MemoryRegionListHead ml_head;
3147     MemoryRegionList *ml, *ml2;
3148     AddressSpace *as;
3149
3150     if (flatview) {
3151         FlatView *view;
3152         struct FlatViewInfo fvi = {
3153             .counter = 0,
3154             .dispatch_tree = dispatch_tree,
3155             .owner = owner,
3156         };
3157         GArray *fv_address_spaces;
3158         GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3159         AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3160
3161         if (ac->has_memory) {
3162             fvi.ac = ac;
3163         }
3164
3165         /* Gather all FVs in one table */
3166         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3167             view = address_space_get_flatview(as);
3168
3169             fv_address_spaces = g_hash_table_lookup(views, view);
3170             if (!fv_address_spaces) {
3171                 fv_address_spaces = g_array_new(false, false, sizeof(as));
3172                 g_hash_table_insert(views, view, fv_address_spaces);
3173             }
3174
3175             g_array_append_val(fv_address_spaces, as);
3176         }
3177
3178         /* Print */
3179         g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3180
3181         /* Free */
3182         g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3183         g_hash_table_unref(views);
3184
3185         return;
3186     }
3187
3188     QTAILQ_INIT(&ml_head);
3189
3190     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3191         qemu_printf("address-space: %s\n", as->name);
3192         mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3193         qemu_printf("\n");
3194     }
3195
3196     /* print aliased regions */
3197     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3198         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3199         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3200         qemu_printf("\n");
3201     }
3202
3203     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3204         g_free(ml);
3205     }
3206 }
3207
3208 void memory_region_init_ram(MemoryRegion *mr,
3209                             Object *owner,
3210                             const char *name,
3211                             uint64_t size,
3212                             Error **errp)
3213 {
3214     DeviceState *owner_dev;
3215     Error *err = NULL;
3216
3217     memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3218     if (err) {
3219         error_propagate(errp, err);
3220         return;
3221     }
3222     /* This will assert if owner is neither NULL nor a DeviceState.
3223      * We only want the owner here for the purposes of defining a
3224      * unique name for migration. TODO: Ideally we should implement
3225      * a naming scheme for Objects which are not DeviceStates, in
3226      * which case we can relax this restriction.
3227      */
3228     owner_dev = DEVICE(owner);
3229     vmstate_register_ram(mr, owner_dev);
3230 }
3231
3232 void memory_region_init_rom(MemoryRegion *mr,
3233                             Object *owner,
3234                             const char *name,
3235                             uint64_t size,
3236                             Error **errp)
3237 {
3238     DeviceState *owner_dev;
3239     Error *err = NULL;
3240
3241     memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3242     if (err) {
3243         error_propagate(errp, err);
3244         return;
3245     }
3246     /* This will assert if owner is neither NULL nor a DeviceState.
3247      * We only want the owner here for the purposes of defining a
3248      * unique name for migration. TODO: Ideally we should implement
3249      * a naming scheme for Objects which are not DeviceStates, in
3250      * which case we can relax this restriction.
3251      */
3252     owner_dev = DEVICE(owner);
3253     vmstate_register_ram(mr, owner_dev);
3254 }
3255
3256 void memory_region_init_rom_device(MemoryRegion *mr,
3257                                    Object *owner,
3258                                    const MemoryRegionOps *ops,
3259                                    void *opaque,
3260                                    const char *name,
3261                                    uint64_t size,
3262                                    Error **errp)
3263 {
3264     DeviceState *owner_dev;
3265     Error *err = NULL;
3266
3267     memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3268                                             name, size, &err);
3269     if (err) {
3270         error_propagate(errp, err);
3271         return;
3272     }
3273     /* This will assert if owner is neither NULL nor a DeviceState.
3274      * We only want the owner here for the purposes of defining a
3275      * unique name for migration. TODO: Ideally we should implement
3276      * a naming scheme for Objects which are not DeviceStates, in
3277      * which case we can relax this restriction.
3278      */
3279     owner_dev = DEVICE(owner);
3280     vmstate_register_ram(mr, owner_dev);
3281 }
3282
3283 /*
3284  * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3285  * the fuzz_dma_read_cb callback
3286  */
3287 #ifdef CONFIG_FUZZ
3288 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3289                       size_t len,
3290                       MemoryRegion *mr)
3291 {
3292 }
3293 #endif
3294
3295 static const TypeInfo memory_region_info = {
3296     .parent             = TYPE_OBJECT,
3297     .name               = TYPE_MEMORY_REGION,
3298     .class_size         = sizeof(MemoryRegionClass),
3299     .instance_size      = sizeof(MemoryRegion),
3300     .instance_init      = memory_region_initfn,
3301     .instance_finalize  = memory_region_finalize,
3302 };
3303
3304 static const TypeInfo iommu_memory_region_info = {
3305     .parent             = TYPE_MEMORY_REGION,
3306     .name               = TYPE_IOMMU_MEMORY_REGION,
3307     .class_size         = sizeof(IOMMUMemoryRegionClass),
3308     .instance_size      = sizeof(IOMMUMemoryRegion),
3309     .instance_init      = iommu_memory_region_initfn,
3310     .abstract           = true,
3311 };
3312
3313 static void memory_register_types(void)
3314 {
3315     type_register_static(&memory_region_info);
3316     type_register_static(&iommu_memory_region_info);
3317 }
3318
3319 type_init(memory_register_types)
This page took 0.208227 seconds and 4 git commands to generate.