2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
25 #define TARGET_LONG_BITS 64
27 #define TARGET_LONG_BITS 32
32 /* at least 4 register variables are defined */
33 register struct CPUX86State *env asm(AREG0);
35 #if TARGET_LONG_BITS > HOST_LONG_BITS
37 /* no registers can be used */
44 /* XXX: use unsigned long instead of target_ulong - better code will
45 be generated for 64 bit CPUs */
46 register target_ulong T0 asm(AREG1);
47 register target_ulong T1 asm(AREG2);
48 register target_ulong T2 asm(AREG3);
50 /* if more registers are available, we define some registers too */
52 register target_ulong EAX asm(AREG4);
57 register target_ulong ESP asm(AREG5);
62 register target_ulong EBP asm(AREG6);
67 register target_ulong ECX asm(AREG7);
72 register target_ulong EDX asm(AREG8);
77 register target_ulong EBX asm(AREG9);
82 register target_ulong ESI asm(AREG10);
87 register target_ulong EDI asm(AREG11);
91 #endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
99 #define EAX (env->regs[R_EAX])
102 #define ECX (env->regs[R_ECX])
105 #define EDX (env->regs[R_EDX])
108 #define EBX (env->regs[R_EBX])
111 #define ESP (env->regs[R_ESP])
114 #define EBP (env->regs[R_EBP])
117 #define ESI (env->regs[R_ESI])
120 #define EDI (env->regs[R_EDI])
122 #define EIP (env->eip)
125 #define CC_SRC (env->cc_src)
126 #define CC_DST (env->cc_dst)
127 #define CC_OP (env->cc_op)
130 #define FT0 (env->ft0)
131 #define ST0 (env->fpregs[env->fpstt].d)
132 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
135 #ifdef USE_FP_CONVERT
136 #define FP_CONVERT (env->fp_convert)
140 #include "exec-all.h"
142 typedef struct CCTable {
143 int (*compute_all)(void); /* return all the flags */
144 int (*compute_c)(void); /* return the C flag */
147 extern CCTable cc_table[];
149 void load_seg(int seg_reg, int selector);
150 void helper_ljmp_protected_T0_T1(int next_eip);
151 void helper_lcall_real_T0_T1(int shift, int next_eip);
152 void helper_lcall_protected_T0_T1(int shift, int next_eip);
153 void helper_iret_real(int shift);
154 void helper_iret_protected(int shift, int next_eip);
155 void helper_lret_protected(int shift, int addend);
156 void helper_lldt_T0(void);
157 void helper_ltr_T0(void);
158 void helper_movl_crN_T0(int reg);
159 void helper_movl_drN_T0(int reg);
160 void helper_invlpg(target_ulong addr);
161 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
162 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
163 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
164 void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
165 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
166 int is_write, int is_user, int is_softmmu);
167 void tlb_fill(target_ulong addr, int is_write, int is_user,
169 void __hidden cpu_lock(void);
170 void __hidden cpu_unlock(void);
171 void do_interrupt(int intno, int is_int, int error_code,
172 target_ulong next_eip, int is_hw);
173 void do_interrupt_user(int intno, int is_int, int error_code,
174 target_ulong next_eip);
175 void raise_interrupt(int intno, int is_int, int error_code,
176 int next_eip_addend);
177 void raise_exception_err(int exception_index, int error_code);
178 void raise_exception(int exception_index);
179 void __hidden cpu_loop_exit(void);
181 void OPPROTO op_movl_eflags_T0(void);
182 void OPPROTO op_movl_T0_eflags(void);
183 void helper_divl_EAX_T0(void);
184 void helper_idivl_EAX_T0(void);
185 void helper_mulq_EAX_T0(void);
186 void helper_imulq_EAX_T0(void);
187 void helper_imulq_T0_T1(void);
188 void helper_divq_EAX_T0(void);
189 void helper_idivq_EAX_T0(void);
190 void helper_cmpxchg8b(void);
191 void helper_cpuid(void);
192 void helper_enter_level(int level, int data32);
193 void helper_enter64_level(int level, int data64);
194 void helper_sysenter(void);
195 void helper_sysexit(void);
196 void helper_syscall(int next_eip_addend);
197 void helper_sysret(int dflag);
198 void helper_rdtsc(void);
199 void helper_rdmsr(void);
200 void helper_wrmsr(void);
201 void helper_lsl(void);
202 void helper_lar(void);
203 void helper_verr(void);
204 void helper_verw(void);
206 void check_iob_T0(void);
207 void check_iow_T0(void);
208 void check_iol_T0(void);
209 void check_iob_DX(void);
210 void check_iow_DX(void);
211 void check_iol_DX(void);
213 #if !defined(CONFIG_USER_ONLY)
215 #include "softmmu_exec.h"
217 static inline double ldfq(target_ulong ptr)
227 static inline void stfq(target_ulong ptr, double v)
237 static inline float ldfl(target_ulong ptr)
247 static inline void stfl(target_ulong ptr, float v)
257 #endif /* !defined(CONFIG_USER_ONLY) */
259 #ifdef USE_X86LDOUBLE
260 /* use long double functions */
261 #define floatx_to_int32 floatx80_to_int32
262 #define floatx_to_int64 floatx80_to_int64
263 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
264 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
265 #define floatx_abs floatx80_abs
266 #define floatx_chs floatx80_chs
267 #define floatx_round_to_int floatx80_round_to_int
268 #define floatx_compare floatx80_compare
269 #define floatx_compare_quiet floatx80_compare_quiet
281 #define floatx_to_int32 float64_to_int32
282 #define floatx_to_int64 float64_to_int64
283 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
284 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
285 #define floatx_abs float64_abs
286 #define floatx_chs float64_chs
287 #define floatx_round_to_int float64_round_to_int
288 #define floatx_compare float64_compare
289 #define floatx_compare_quiet float64_compare_quiet
292 extern CPU86_LDouble sin(CPU86_LDouble x);
293 extern CPU86_LDouble cos(CPU86_LDouble x);
294 extern CPU86_LDouble sqrt(CPU86_LDouble x);
295 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
296 extern CPU86_LDouble log(CPU86_LDouble x);
297 extern CPU86_LDouble tan(CPU86_LDouble x);
298 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
299 extern CPU86_LDouble floor(CPU86_LDouble x);
300 extern CPU86_LDouble ceil(CPU86_LDouble x);
302 #define RC_MASK 0xc00
303 #define RC_NEAR 0x000
304 #define RC_DOWN 0x400
306 #define RC_CHOP 0xc00
308 #define MAXTAN 9223372036854775808.0
310 #ifdef USE_X86LDOUBLE
316 unsigned long long lower;
317 unsigned short upper;
321 /* the following deal with x86 long double-precision numbers */
322 #define MAXEXPD 0x7fff
323 #define EXPBIAS 16383
324 #define EXPD(fp) (fp.l.upper & 0x7fff)
325 #define SIGND(fp) ((fp.l.upper) & 0x8000)
326 #define MANTD(fp) (fp.l.lower)
327 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
331 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
334 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
350 /* the following deal with IEEE double-precision numbers */
351 #define MAXEXPD 0x7ff
353 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
354 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
356 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
358 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
360 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
363 static inline void fpush(void)
365 env->fpstt = (env->fpstt - 1) & 7;
366 env->fptags[env->fpstt] = 0; /* validate stack entry */
369 static inline void fpop(void)
371 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
372 env->fpstt = (env->fpstt + 1) & 7;
375 #ifndef USE_X86LDOUBLE
376 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
383 upper = lduw(ptr + 8);
384 /* XXX: handle overflow ? */
385 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
386 e |= (upper >> 4) & 0x800; /* sign */
387 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
389 temp.l.upper = (e << 20) | (ll >> 32);
392 temp.ll = ll | ((uint64_t)e << 52);
397 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
404 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
405 /* exponent + sign */
406 e = EXPD(temp) - EXPBIAS + 16383;
407 e |= SIGND(temp) >> 16;
412 /* XXX: same endianness assumed */
414 #ifdef CONFIG_USER_ONLY
416 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
418 return *(CPU86_LDouble *)ptr;
421 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
423 *(CPU86_LDouble *)ptr = f;
428 /* we use memory access macros */
430 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
434 temp.l.lower = ldq(ptr);
435 temp.l.upper = lduw(ptr + 8);
439 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
444 stq(ptr, temp.l.lower);
445 stw(ptr + 8, temp.l.upper);
448 #endif /* !CONFIG_USER_ONLY */
450 #endif /* USE_X86LDOUBLE */
452 #define FPUS_IE (1 << 0)
453 #define FPUS_DE (1 << 1)
454 #define FPUS_ZE (1 << 2)
455 #define FPUS_OE (1 << 3)
456 #define FPUS_UE (1 << 4)
457 #define FPUS_PE (1 << 5)
458 #define FPUS_SF (1 << 6)
459 #define FPUS_SE (1 << 7)
460 #define FPUS_B (1 << 15)
464 extern const CPU86_LDouble f15rk[7];
466 void helper_fldt_ST0_A0(void);
467 void helper_fstt_ST0_A0(void);
468 void fpu_raise_exception(void);
469 CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b);
470 void helper_fbld_ST0_A0(void);
471 void helper_fbst_ST0_A0(void);
472 void helper_f2xm1(void);
473 void helper_fyl2x(void);
474 void helper_fptan(void);
475 void helper_fpatan(void);
476 void helper_fxtract(void);
477 void helper_fprem1(void);
478 void helper_fprem(void);
479 void helper_fyl2xp1(void);
480 void helper_fsqrt(void);
481 void helper_fsincos(void);
482 void helper_frndint(void);
483 void helper_fscale(void);
484 void helper_fsin(void);
485 void helper_fcos(void);
486 void helper_fxam_ST0(void);
487 void helper_fstenv(target_ulong ptr, int data32);
488 void helper_fldenv(target_ulong ptr, int data32);
489 void helper_fsave(target_ulong ptr, int data32);
490 void helper_frstor(target_ulong ptr, int data32);
491 void helper_fxsave(target_ulong ptr, int data64);
492 void helper_fxrstor(target_ulong ptr, int data64);
493 void restore_native_fp_state(CPUState *env);
494 void save_native_fp_state(CPUState *env);
495 float approx_rsqrt(float a);
496 float approx_rcp(float a);
497 void update_fp_status(void);
499 extern const uint8_t parity_table[256];
500 extern const uint8_t rclw_table[32];
501 extern const uint8_t rclb_table[32];
503 static inline uint32_t compute_eflags(void)
505 return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
508 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
509 static inline void load_eflags(int eflags, int update_mask)
511 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
512 DF = 1 - (2 * ((eflags >> 10) & 1));
513 env->eflags = (env->eflags & ~update_mask) |
514 (eflags & update_mask);
517 static inline void env_to_regs(void)
520 EAX = env->regs[R_EAX];
523 ECX = env->regs[R_ECX];
526 EDX = env->regs[R_EDX];
529 EBX = env->regs[R_EBX];
532 ESP = env->regs[R_ESP];
535 EBP = env->regs[R_EBP];
538 ESI = env->regs[R_ESI];
541 EDI = env->regs[R_EDI];
545 static inline void regs_to_env(void)
548 env->regs[R_EAX] = EAX;
551 env->regs[R_ECX] = ECX;
554 env->regs[R_EDX] = EDX;
557 env->regs[R_EBX] = EBX;
560 env->regs[R_ESP] = ESP;
563 env->regs[R_EBP] = EBP;
566 env->regs[R_ESI] = ESI;
569 env->regs[R_EDI] = EDI;