2 * Emulation of Allwinner EMAC Fast Ethernet controller and
3 * Realtek RTL8201CP PHY
7 * This model is based on reverse-engineering of Linux kernel driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 #include "qemu/osdep.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
24 #include "qemu/fifo8.h"
26 #include "hw/net/allwinner_emac.h"
27 #include "hw/qdev-properties.h"
29 #include "qemu/module.h"
32 static uint8_t padding[60];
34 static void mii_set_link(RTL8201CPState *mii, bool link_ok)
37 mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP;
38 mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 |
41 mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
42 mii->anlpar = MII_ANAR_TX;
46 static void mii_reset(RTL8201CPState *mii, bool link_ok)
48 mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED;
49 mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
50 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG;
51 mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
53 mii->anlpar = MII_ANAR_TX;
55 mii_set_link(mii, link_ok);
58 static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg)
60 RTL8201CPState *mii = &s->mii;
61 uint16_t ret = 0xffff;
63 if (addr == s->phy_addr) {
70 return RTL8201CP_PHYID1;
72 return RTL8201CP_PHYID2;
83 qemu_log_mask(LOG_UNIMP,
84 "allwinner_emac: read from unimpl. mii reg 0x%x\n",
88 qemu_log_mask(LOG_GUEST_ERROR,
89 "allwinner_emac: read from invalid mii reg 0x%x\n",
97 static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg,
100 RTL8201CPState *mii = &s->mii;
103 if (addr == s->phy_addr) {
106 if (value & MII_BMCR_RESET) {
107 nc = qemu_get_queue(s->nic);
108 mii_reset(mii, !nc->link_down);
121 qemu_log_mask(LOG_GUEST_ERROR,
122 "allwinner_emac: write to read-only mii reg 0x%x\n",
130 qemu_log_mask(LOG_UNIMP,
131 "allwinner_emac: write to unimpl. mii reg 0x%x\n",
135 qemu_log_mask(LOG_GUEST_ERROR,
136 "allwinner_emac: write to invalid mii reg 0x%x\n",
142 static void aw_emac_update_irq(AwEmacState *s)
144 qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0);
147 static void aw_emac_tx_reset(AwEmacState *s, int chan)
149 fifo8_reset(&s->tx_fifo[chan]);
150 s->tx_length[chan] = 0;
153 static void aw_emac_rx_reset(AwEmacState *s)
155 fifo8_reset(&s->rx_fifo);
156 s->rx_num_packets = 0;
157 s->rx_packet_size = 0;
158 s->rx_packet_pos = 0;
161 static void fifo8_push_word(Fifo8 *fifo, uint32_t val)
163 fifo8_push(fifo, val);
164 fifo8_push(fifo, val >> 8);
165 fifo8_push(fifo, val >> 16);
166 fifo8_push(fifo, val >> 24);
169 static uint32_t fifo8_pop_word(Fifo8 *fifo)
173 ret = fifo8_pop(fifo);
174 ret |= fifo8_pop(fifo) << 8;
175 ret |= fifo8_pop(fifo) << 16;
176 ret |= fifo8_pop(fifo) << 24;
181 static bool aw_emac_can_receive(NetClientState *nc)
183 AwEmacState *s = qemu_get_nic_opaque(nc);
186 * To avoid packet drops, allow reception only when there is space
187 * for a full frame: 1522 + 8 (rx headers) + 2 (padding).
189 return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532);
192 static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf,
195 AwEmacState *s = qemu_get_nic_opaque(nc);
196 Fifo8 *fifo = &s->rx_fifo;
197 size_t padded_size, total_size;
200 padded_size = size > 60 ? size : 60;
201 total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4);
203 if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) {
207 fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC);
208 fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE,
209 EMAC_RX_IO_DATA_STATUS_OK));
210 fifo8_push_all(fifo, buf, size);
211 crc = crc32(~0, buf, size);
213 if (padded_size != size) {
214 fifo8_push_all(fifo, padding, padded_size - size);
215 crc = crc32(crc, padding, padded_size - size);
218 fifo8_push_word(fifo, crc);
219 fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size);
222 s->int_sta |= EMAC_INT_RX;
223 aw_emac_update_irq(s);
228 static void aw_emac_reset(DeviceState *dev)
230 AwEmacState *s = AW_EMAC(dev);
231 NetClientState *nc = qemu_get_queue(s->nic);
240 aw_emac_tx_reset(s, 0);
241 aw_emac_tx_reset(s, 1);
244 mii_reset(&s->mii, !nc->link_down);
247 static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size)
249 AwEmacState *s = opaque;
250 Fifo8 *fifo = &s->rx_fifo;
257 case EMAC_TX_MODE_REG:
259 case EMAC_TX_INS_REG:
260 return s->tx_channel;
261 case EMAC_RX_CTL_REG:
263 case EMAC_RX_IO_DATA_REG:
264 if (!s->rx_num_packets) {
265 qemu_log_mask(LOG_GUEST_ERROR,
266 "Read IO data register when no packet available");
270 ret = fifo8_pop_word(fifo);
272 switch (s->rx_packet_pos) {
273 case 0: /* Word is magic header */
274 s->rx_packet_pos += 4;
276 case 4: /* Word is rx info header */
277 s->rx_packet_pos += 4;
278 s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4);
280 default: /* Word is packet data */
281 s->rx_packet_pos += 4;
282 s->rx_packet_size -= 4;
284 if (!s->rx_packet_size) {
285 s->rx_packet_pos = 0;
287 nc = qemu_get_queue(s->nic);
288 if (aw_emac_can_receive(nc)) {
289 qemu_flush_queued_packets(nc);
294 case EMAC_RX_FBC_REG:
295 return s->rx_num_packets;
296 case EMAC_INT_CTL_REG:
298 case EMAC_INT_STA_REG:
300 case EMAC_MAC_MRDD_REG:
301 return RTL8201CP_mdio_read(s,
302 extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
303 extract32(s->phy_target, PHY_REG_SHIFT, 8));
305 qemu_log_mask(LOG_UNIMP,
306 "allwinner_emac: read access to unknown register 0x"
307 TARGET_FMT_plx "\n", offset);
314 static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value,
317 AwEmacState *s = opaque;
319 NetClientState *nc = qemu_get_queue(s->nic);
324 if (value & EMAC_CTL_RESET) {
325 aw_emac_reset(DEVICE(s));
326 value &= ~EMAC_CTL_RESET;
329 if (aw_emac_can_receive(nc)) {
330 qemu_flush_queued_packets(nc);
333 case EMAC_TX_MODE_REG:
336 case EMAC_TX_CTL0_REG:
337 case EMAC_TX_CTL1_REG:
338 chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1);
339 if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) {
343 fifo = &s->tx_fifo[chan];
344 len = s->tx_length[chan];
346 if (len > fifo8_num_used(fifo)) {
347 len = fifo8_num_used(fifo);
348 qemu_log_mask(LOG_GUEST_ERROR,
349 "allwinner_emac: TX length > fifo data length\n");
352 data = fifo8_pop_buf(fifo, len, &ret);
353 qemu_send_packet(nc, data, ret);
354 aw_emac_tx_reset(s, chan);
355 /* Raise TX interrupt */
356 s->int_sta |= EMAC_INT_TX_CHAN(chan);
357 aw_emac_update_irq(s);
361 case EMAC_TX_INS_REG:
362 s->tx_channel = value < NUM_TX_FIFOS ? value : 0;
364 case EMAC_TX_PL0_REG:
365 case EMAC_TX_PL1_REG:
366 chan = (offset == EMAC_TX_PL0_REG ? 0 : 1);
367 if (value > TX_FIFO_SIZE) {
368 qemu_log_mask(LOG_GUEST_ERROR,
369 "allwinner_emac: invalid TX frame length %d\n",
371 value = TX_FIFO_SIZE;
373 s->tx_length[chan] = value;
375 case EMAC_TX_IO_DATA_REG:
376 fifo = &s->tx_fifo[s->tx_channel];
377 if (fifo8_num_free(fifo) < 4) {
378 qemu_log_mask(LOG_GUEST_ERROR,
379 "allwinner_emac: TX data overruns fifo\n");
382 fifo8_push_word(fifo, value);
384 case EMAC_RX_CTL_REG:
387 case EMAC_RX_FBC_REG:
392 case EMAC_INT_CTL_REG:
394 aw_emac_update_irq(s);
396 case EMAC_INT_STA_REG:
397 s->int_sta &= ~value;
398 aw_emac_update_irq(s);
400 case EMAC_MAC_MADR_REG:
401 s->phy_target = value;
403 case EMAC_MAC_MWTD_REG:
404 RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
405 extract32(s->phy_target, PHY_REG_SHIFT, 8), value);
408 qemu_log_mask(LOG_UNIMP,
409 "allwinner_emac: write access to unknown register 0x"
410 TARGET_FMT_plx "\n", offset);
414 static void aw_emac_set_link(NetClientState *nc)
416 AwEmacState *s = qemu_get_nic_opaque(nc);
418 mii_set_link(&s->mii, !nc->link_down);
421 static const MemoryRegionOps aw_emac_mem_ops = {
422 .read = aw_emac_read,
423 .write = aw_emac_write,
424 .endianness = DEVICE_NATIVE_ENDIAN,
426 .min_access_size = 4,
427 .max_access_size = 4,
431 static NetClientInfo net_aw_emac_info = {
432 .type = NET_CLIENT_DRIVER_NIC,
433 .size = sizeof(NICState),
434 .can_receive = aw_emac_can_receive,
435 .receive = aw_emac_receive,
436 .link_status_changed = aw_emac_set_link,
439 static void aw_emac_init(Object *obj)
441 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
442 AwEmacState *s = AW_EMAC(obj);
444 memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s,
446 sysbus_init_mmio(sbd, &s->iomem);
447 sysbus_init_irq(sbd, &s->irq);
450 static void aw_emac_realize(DeviceState *dev, Error **errp)
452 AwEmacState *s = AW_EMAC(dev);
454 qemu_macaddr_default_if_unset(&s->conf.macaddr);
455 s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf,
456 object_get_typename(OBJECT(dev)), dev->id, s);
457 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
459 fifo8_create(&s->rx_fifo, RX_FIFO_SIZE);
460 fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE);
461 fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE);
464 static Property aw_emac_properties[] = {
465 DEFINE_NIC_PROPERTIES(AwEmacState, conf),
466 DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0),
467 DEFINE_PROP_END_OF_LIST(),
470 static const VMStateDescription vmstate_mii = {
473 .minimum_version_id = 1,
474 .fields = (VMStateField[]) {
475 VMSTATE_UINT16(bmcr, RTL8201CPState),
476 VMSTATE_UINT16(bmsr, RTL8201CPState),
477 VMSTATE_UINT16(anar, RTL8201CPState),
478 VMSTATE_UINT16(anlpar, RTL8201CPState),
479 VMSTATE_END_OF_LIST()
483 static int aw_emac_post_load(void *opaque, int version_id)
485 AwEmacState *s = opaque;
487 aw_emac_set_link(qemu_get_queue(s->nic));
492 static const VMStateDescription vmstate_aw_emac = {
493 .name = "allwinner_emac",
495 .minimum_version_id = 1,
496 .post_load = aw_emac_post_load,
497 .fields = (VMStateField[]) {
498 VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState),
499 VMSTATE_UINT32(ctl, AwEmacState),
500 VMSTATE_UINT32(tx_mode, AwEmacState),
501 VMSTATE_UINT32(rx_ctl, AwEmacState),
502 VMSTATE_UINT32(int_ctl, AwEmacState),
503 VMSTATE_UINT32(int_sta, AwEmacState),
504 VMSTATE_UINT32(phy_target, AwEmacState),
505 VMSTATE_FIFO8(rx_fifo, AwEmacState),
506 VMSTATE_UINT32(rx_num_packets, AwEmacState),
507 VMSTATE_UINT32(rx_packet_size, AwEmacState),
508 VMSTATE_UINT32(rx_packet_pos, AwEmacState),
509 VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1,
510 vmstate_fifo8, Fifo8),
511 VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS),
512 VMSTATE_UINT32(tx_channel, AwEmacState),
513 VMSTATE_END_OF_LIST()
517 static void aw_emac_class_init(ObjectClass *klass, void *data)
519 DeviceClass *dc = DEVICE_CLASS(klass);
521 dc->realize = aw_emac_realize;
522 device_class_set_props(dc, aw_emac_properties);
523 dc->reset = aw_emac_reset;
524 dc->vmsd = &vmstate_aw_emac;
527 static const TypeInfo aw_emac_info = {
528 .name = TYPE_AW_EMAC,
529 .parent = TYPE_SYS_BUS_DEVICE,
530 .instance_size = sizeof(AwEmacState),
531 .instance_init = aw_emac_init,
532 .class_init = aw_emac_class_init,
535 static void aw_emac_register_types(void)
537 type_register_static(&aw_emac_info);
540 type_init(aw_emac_register_types)