2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "hw/sysbus.h"
22 #include "qemu/module.h"
23 #include "qemu/timer.h"
25 #ifdef CADENCE_TTC_ERR_DEBUG
26 #define DB_PRINT(...) do { \
27 fprintf(stderr, ": %s: ", __func__); \
28 fprintf(stderr, ## __VA_ARGS__); \
34 #define COUNTER_INTR_IV 0x00000001
35 #define COUNTER_INTR_M1 0x00000002
36 #define COUNTER_INTR_M2 0x00000004
37 #define COUNTER_INTR_M3 0x00000008
38 #define COUNTER_INTR_OV 0x00000010
39 #define COUNTER_INTR_EV 0x00000020
41 #define COUNTER_CTRL_DIS 0x00000001
42 #define COUNTER_CTRL_INT 0x00000002
43 #define COUNTER_CTRL_DEC 0x00000004
44 #define COUNTER_CTRL_MATCH 0x00000008
45 #define COUNTER_CTRL_RST 0x00000010
47 #define CLOCK_CTRL_PS_EN 0x00000001
48 #define CLOCK_CTRL_PS_V 0x0000001e
57 uint16_t reg_interval;
58 uint16_t reg_match[3];
61 uint32_t reg_event_ctrl;
65 unsigned int cpu_time_valid;
70 #define TYPE_CADENCE_TTC "cadence_ttc"
71 #define CADENCE_TTC(obj) \
72 OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
74 typedef struct CadenceTTCState {
75 SysBusDevice parent_obj;
78 CadenceTimerState timer[3];
81 static void cadence_timer_update(CadenceTimerState *s)
83 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
86 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
90 CadenceTTCState *s = (CadenceTTCState *)opaque;
92 index = (offset >> 2) % 3;
94 return &s->timer[index];
97 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
99 /* timer_steps has max value of 0x100000000. double check it
100 * (or overflow can happen below) */
101 assert(timer_steps <= 1ULL << 32);
103 uint64_t r = timer_steps * 1000000000ULL;
104 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
105 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
109 r /= (uint64_t)s->freq;
113 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
115 uint64_t to_divide = 1000000000ULL;
118 /* for very large intervals (> 8s) do some division first to stop
119 * overflow (costs some prescision) */
120 while (r >= 8ULL << 30 && to_divide > 1) {
125 /* keep early-dividing as needed */
126 while (r >= 8ULL << 30 && to_divide > 1) {
130 r *= (uint64_t)s->freq;
131 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
132 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
139 /* determine if x is in between a and b, exclusive of a, inclusive of b */
141 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
144 return x > a && x <= b;
146 return x < a && x >= b;
149 static void cadence_timer_run(CadenceTimerState *s)
152 int64_t event_interval, next_value;
154 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
156 if (s->reg_count & COUNTER_CTRL_DIS) {
157 s->cpu_time_valid = 0;
161 { /* figure out what's going to happen next (rollover or match) */
162 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
163 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
164 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
165 for (i = 0; i < 3; ++i) {
166 int64_t cand = (uint64_t)s->reg_match[i] << 16;
167 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
172 DB_PRINT("next timer event value: %09llx\n",
173 (unsigned long long)next_value);
175 event_interval = next_value - (int64_t)s->reg_value;
176 event_interval = (event_interval < 0) ? -event_interval : event_interval;
178 timer_mod(s->timer, s->cpu_time +
179 cadence_timer_get_ns(s, event_interval));
182 static void cadence_timer_sync(CadenceTimerState *s)
186 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
187 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
188 uint64_t old_time = s->cpu_time;
190 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
191 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
193 if (!s->cpu_time_valid || old_time == s->cpu_time) {
194 s->cpu_time_valid = 1;
198 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
199 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
201 for (i = 0; i < 3; ++i) {
202 int64_t m = (int64_t)s->reg_match[i] << 16;
206 /* check to see if match event has occurred. check m +/- interval
207 * to account for match events in wrap around cases */
208 if (is_between(m, s->reg_value, x) ||
209 is_between(m + interval, s->reg_value, x) ||
210 is_between(m - interval, s->reg_value, x)) {
211 s->reg_intr |= (2 << i);
214 if ((x < 0) || (x >= interval)) {
215 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
216 COUNTER_INTR_IV : COUNTER_INTR_OV;
221 s->reg_value = (uint32_t)(x % interval);
222 cadence_timer_update(s);
225 static void cadence_timer_tick(void *opaque)
227 CadenceTimerState *s = opaque;
230 cadence_timer_sync(s);
231 cadence_timer_run(s);
234 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
236 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
239 cadence_timer_sync(s);
240 cadence_timer_run(s);
243 case 0x00: /* clock control */
248 case 0x0c: /* counter control */
253 case 0x18: /* counter value */
256 return (uint16_t)(s->reg_value >> 16);
258 case 0x24: /* reg_interval counter */
261 return s->reg_interval;
263 case 0x30: /* match 1 counter */
266 return s->reg_match[0];
268 case 0x3c: /* match 2 counter */
271 return s->reg_match[1];
273 case 0x48: /* match 3 counter */
276 return s->reg_match[2];
278 case 0x54: /* interrupt register */
281 /* cleared after read */
284 cadence_timer_update(s);
287 case 0x60: /* interrupt enable */
290 return s->reg_intr_en;
295 return s->reg_event_ctrl;
307 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
310 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
312 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
316 static void cadence_ttc_write(void *opaque, hwaddr offset,
317 uint64_t value, unsigned size)
319 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
321 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
323 cadence_timer_sync(s);
326 case 0x00: /* clock control */
329 s->reg_clock = value & 0x3F;
332 case 0x0c: /* counter control */
335 if (value & COUNTER_CTRL_RST) {
338 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
341 case 0x24: /* interval register */
344 s->reg_interval = value & 0xffff;
347 case 0x30: /* match register */
350 s->reg_match[0] = value & 0xffff;
353 case 0x3c: /* match register */
356 s->reg_match[1] = value & 0xffff;
359 case 0x48: /* match register */
362 s->reg_match[2] = value & 0xffff;
365 case 0x54: /* interrupt register */
370 case 0x60: /* interrupt enable */
373 s->reg_intr_en = value & 0x3f;
376 case 0x6c: /* event control */
379 s->reg_event_ctrl = value & 0x07;
386 cadence_timer_run(s);
387 cadence_timer_update(s);
390 static const MemoryRegionOps cadence_ttc_ops = {
391 .read = cadence_ttc_read,
392 .write = cadence_ttc_write,
393 .endianness = DEVICE_NATIVE_ENDIAN,
396 static void cadence_timer_reset(CadenceTimerState *s)
401 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
403 memset(s, 0, sizeof(CadenceTimerState));
406 cadence_timer_reset(s);
408 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
411 static void cadence_ttc_init(Object *obj)
413 CadenceTTCState *s = CADENCE_TTC(obj);
416 for (i = 0; i < 3; ++i) {
417 cadence_timer_init(133000000, &s->timer[i]);
418 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq);
421 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
423 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
426 static int cadence_timer_pre_save(void *opaque)
428 cadence_timer_sync((CadenceTimerState *)opaque);
433 static int cadence_timer_post_load(void *opaque, int version_id)
435 CadenceTimerState *s = opaque;
437 s->cpu_time_valid = 0;
438 cadence_timer_sync(s);
439 cadence_timer_run(s);
440 cadence_timer_update(s);
444 static const VMStateDescription vmstate_cadence_timer = {
445 .name = "cadence_timer",
447 .minimum_version_id = 1,
448 .pre_save = cadence_timer_pre_save,
449 .post_load = cadence_timer_post_load,
450 .fields = (VMStateField[]) {
451 VMSTATE_UINT32(reg_clock, CadenceTimerState),
452 VMSTATE_UINT32(reg_count, CadenceTimerState),
453 VMSTATE_UINT32(reg_value, CadenceTimerState),
454 VMSTATE_UINT16(reg_interval, CadenceTimerState),
455 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
456 VMSTATE_UINT32(reg_intr, CadenceTimerState),
457 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
458 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
459 VMSTATE_UINT32(reg_event, CadenceTimerState),
460 VMSTATE_END_OF_LIST()
464 static const VMStateDescription vmstate_cadence_ttc = {
465 .name = "cadence_TTC",
467 .minimum_version_id = 1,
468 .fields = (VMStateField[]) {
469 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
470 vmstate_cadence_timer,
472 VMSTATE_END_OF_LIST()
476 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
478 DeviceClass *dc = DEVICE_CLASS(klass);
480 dc->vmsd = &vmstate_cadence_ttc;
483 static const TypeInfo cadence_ttc_info = {
484 .name = TYPE_CADENCE_TTC,
485 .parent = TYPE_SYS_BUS_DEVICE,
486 .instance_size = sizeof(CadenceTTCState),
487 .instance_init = cadence_ttc_init,
488 .class_init = cadence_ttc_class_init,
491 static void cadence_ttc_register_types(void)
493 type_register_static(&cadence_ttc_info);
496 type_init(cadence_ttc_register_types)