2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
31 #ifndef M25P80_ERR_DEBUG
32 #define M25P80_ERR_DEBUG 0
35 #define DB_PRINT_L(level, ...) do { \
36 if (M25P80_ERR_DEBUG > (level)) { \
37 fprintf(stderr, ": %s: ", __func__); \
38 fprintf(stderr, ## __VA_ARGS__); \
42 /* Fields for FlashPartInfo->flags */
44 /* erase capabilities */
47 /* set to allow the page program command to write 0s back to 1. Useful for
48 * modelling EEPROM with SPI flash command set
52 /* 16 MiB max in 3 byte address mode */
53 #define MAX_3BYTES_SIZE 0x1000000
55 typedef struct FlashPartInfo {
56 const char *part_name;
57 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
59 /* extended jedec code */
61 /* there is confusion between manufacturers as to what a sector is. In this
62 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
63 * command (opcode 0xd8).
71 /* adapted from linux */
73 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
74 .part_name = (_part_name),\
76 .ext_jedec = (_ext_jedec),\
77 .sector_size = (_sector_size),\
78 .n_sectors = (_n_sectors),\
82 #define JEDEC_NUMONYX 0x20
83 #define JEDEC_WINBOND 0xEF
84 #define JEDEC_SPANSION 0x01
86 /* Numonyx (Micron) Configuration register macros */
87 #define VCFG_DUMMY 0x1
88 #define VCFG_WRAP_SEQUENTIAL 0x2
89 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
90 #define NVCFG_XIP_MODE_MASK (7 << 9)
91 #define VCFG_XIP_MODE_ENABLED (1 << 3)
92 #define CFG_DUMMY_CLK_LEN 4
93 #define NVCFG_DUMMY_CLK_POS 12
94 #define VCFG_DUMMY_CLK_POS 4
95 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
96 #define EVCFG_VPP_ACCELERATOR (1 << 3)
97 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
98 #define NVCFG_DUAL_IO_MASK (1 << 2)
99 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
100 #define NVCFG_QUAD_IO_MASK (1 << 3)
101 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
102 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
103 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
104 #define CFG_UPPER_128MB_SEG_ENABLED 0x3
106 static const FlashPartInfo known_devices[] = {
107 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
108 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
109 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
111 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
112 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
113 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
115 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
116 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
117 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
118 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
120 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
123 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
124 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
125 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
126 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
127 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
130 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
131 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
133 /* Intel/Numonyx -- xxxs33b */
134 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
135 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
136 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
137 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
140 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
141 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
142 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
143 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
144 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
145 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
146 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
147 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
148 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
149 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
152 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
153 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
154 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
155 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
156 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
157 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
158 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
159 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
161 /* Spansion -- single (large) sector size only, at least
162 * for the chips listed here (without boot sectors).
164 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
165 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
166 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
167 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
168 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
169 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
170 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
171 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
172 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
173 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
174 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
175 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
176 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
177 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
178 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
179 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
180 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
182 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
183 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
184 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
185 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
186 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
187 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
188 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
189 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
190 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
191 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
193 /* ST Microelectronics -- newer production may have feature updates */
194 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
195 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
196 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
197 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
198 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
199 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
200 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
201 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
202 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
203 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
205 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
206 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
207 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
209 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
210 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
211 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
213 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
214 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
215 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
216 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
218 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
219 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
220 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
221 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
222 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
223 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
224 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
225 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
226 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
227 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
228 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
229 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
230 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
231 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
233 /* Numonyx -- n25q128 */
234 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
268 ERASE4_SECTOR = 0xdc,
270 EN_4BYTE_ADDR = 0xB7,
271 EX_4BYTE_ADDR = 0xE9,
273 EXTEND_ADDR_READ = 0xC8,
274 EXTEND_ADDR_WRITE = 0xC5,
293 STATE_COLLECTING_DATA,
297 typedef struct Flash {
310 uint8_t needed_bytes;
311 uint8_t cmd_in_progress;
313 uint32_t nonvolatile_cfg;
314 uint32_t volatile_cfg;
315 uint32_t enh_volatile_cfg;
317 bool four_bytes_address_mode;
323 const FlashPartInfo *pi;
327 typedef struct M25P80Class {
328 SSISlaveClass parent_class;
332 #define TYPE_M25P80 "m25p80-generic"
333 #define M25P80(obj) \
334 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
335 #define M25P80_CLASS(klass) \
336 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
337 #define M25P80_GET_CLASS(obj) \
338 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
340 static void blk_sync_complete(void *opaque, int ret)
342 /* do nothing. Masters do not directly interact with the backing store,
343 * only the working copy so no mutexing required.
347 static void flash_sync_page(Flash *s, int page)
349 int blk_sector, nb_sectors;
352 if (!s->blk || blk_is_read_only(s->blk)) {
356 blk_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
357 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
358 qemu_iovec_init(&iov, 1);
359 qemu_iovec_add(&iov, s->storage + blk_sector * BDRV_SECTOR_SIZE,
360 nb_sectors * BDRV_SECTOR_SIZE);
361 blk_aio_writev(s->blk, blk_sector, &iov, nb_sectors, blk_sync_complete,
365 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
367 int64_t start, end, nb_sectors;
370 if (!s->blk || blk_is_read_only(s->blk)) {
374 assert(!(len % BDRV_SECTOR_SIZE));
375 start = off / BDRV_SECTOR_SIZE;
376 end = (off + len) / BDRV_SECTOR_SIZE;
377 nb_sectors = end - start;
378 qemu_iovec_init(&iov, 1);
379 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
380 nb_sectors * BDRV_SECTOR_SIZE);
381 blk_aio_writev(s->blk, start, &iov, nb_sectors, blk_sync_complete, NULL);
384 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
387 uint8_t capa_to_assert = 0;
393 capa_to_assert = ER_4K;
397 capa_to_assert = ER_32K;
401 len = s->pi->sector_size;
410 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
411 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
412 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
416 if (!s->write_enable) {
417 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
420 memset(s->storage + offset, 0xff, len);
421 flash_sync_area(s, offset, len);
424 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
426 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
427 flash_sync_page(s, s->dirty_page);
428 s->dirty_page = newpage;
433 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
435 int64_t page = addr / s->pi->page_size;
436 uint8_t prev = s->storage[s->cur_addr];
438 if (!s->write_enable) {
439 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
442 if ((prev ^ data) & data) {
443 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
444 " -> %" PRIx8 "\n", addr, prev, data);
447 if (s->pi->flags & WR_1) {
448 s->storage[s->cur_addr] = data;
450 s->storage[s->cur_addr] &= data;
453 flash_sync_dirty(s, page);
454 s->dirty_page = page;
457 static inline int get_addr_length(Flash *s)
459 switch (s->cmd_in_progress) {
471 return s->four_bytes_address_mode ? 4 : 3;
475 static void complete_collecting_data(Flash *s)
481 for (i = 0; i < get_addr_length(s); ++i) {
483 s->cur_addr |= s->data[i];
486 if (get_addr_length(s) == 3) {
487 s->cur_addr += (s->ear & 0x3) * MAX_3BYTES_SIZE;
490 s->state = STATE_IDLE;
492 switch (s->cmd_in_progress) {
497 s->state = STATE_PAGE_PROGRAM;
511 s->state = STATE_READ;
518 flash_erase(s, s->cur_addr, s->cmd_in_progress);
521 if (s->write_enable) {
522 s->write_enable = false;
525 case EXTEND_ADDR_WRITE:
529 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
532 s->volatile_cfg = s->data[0];
535 s->enh_volatile_cfg = s->data[0];
542 static void reset_memory(Flash *s)
544 s->cmd_in_progress = NOP;
547 s->four_bytes_address_mode = false;
551 s->state = STATE_IDLE;
552 s->write_enable = false;
553 s->reset_enable = false;
555 if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
557 s->volatile_cfg |= VCFG_DUMMY;
558 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
559 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
560 != NVCFG_XIP_MODE_DISABLED) {
561 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
563 s->volatile_cfg |= deposit32(s->volatile_cfg,
566 extract32(s->nonvolatile_cfg,
571 s->enh_volatile_cfg = 0;
572 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
573 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
574 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
575 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
576 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
578 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
579 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
581 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
582 s->four_bytes_address_mode = true;
584 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
585 s->ear = CFG_UPPER_128MB_SEG_ENABLED;
589 DB_PRINT_L(0, "Reset done.\n");
592 static void decode_new_cmd(Flash *s, uint32_t value)
594 s->cmd_in_progress = value;
595 DB_PRINT_L(0, "decoded new command:%x\n", value);
597 if (value != RESET_MEMORY) {
598 s->reset_enable = false;
614 s->needed_bytes = get_addr_length(s);
617 s->state = STATE_COLLECTING_DATA;
626 s->needed_bytes = get_addr_length(s);
627 if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
628 /* Dummy cycles modeled with bytes writes instead of bits */
629 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
633 s->state = STATE_COLLECTING_DATA;
638 switch ((s->pi->jedec >> 16) & 0xFF) {
644 s->needed_bytes = get_addr_length(s);
645 /* Dummy cycles modeled with bytes writes instead of bits */
646 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
650 s->state = STATE_COLLECTING_DATA;
655 switch ((s->pi->jedec >> 16) & 0xFF) {
661 s->needed_bytes = get_addr_length(s);
662 /* Dummy cycles modeled with bytes writes instead of bits */
663 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
667 s->state = STATE_COLLECTING_DATA;
671 if (s->write_enable) {
675 s->state = STATE_COLLECTING_DATA;
680 s->write_enable = false;
683 s->write_enable = true;
687 s->data[0] = (!!s->write_enable) << 1;
690 s->state = STATE_READING_DATA;
694 DB_PRINT_L(0, "populated jedec code\n");
695 s->data[0] = (s->pi->jedec >> 16) & 0xff;
696 s->data[1] = (s->pi->jedec >> 8) & 0xff;
697 s->data[2] = s->pi->jedec & 0xff;
698 if (s->pi->ext_jedec) {
699 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
700 s->data[4] = s->pi->ext_jedec & 0xff;
706 s->state = STATE_READING_DATA;
710 if (s->write_enable) {
711 DB_PRINT_L(0, "chip erase\n");
712 flash_erase(s, 0, BULK_ERASE);
714 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
721 s->four_bytes_address_mode = true;
724 s->four_bytes_address_mode = false;
726 case EXTEND_ADDR_READ:
730 s->state = STATE_READING_DATA;
732 case EXTEND_ADDR_WRITE:
733 if (s->write_enable) {
737 s->state = STATE_COLLECTING_DATA;
741 s->data[0] = s->nonvolatile_cfg & 0xFF;
742 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
745 s->state = STATE_READING_DATA;
748 if (s->write_enable) {
752 s->state = STATE_COLLECTING_DATA;
756 s->data[0] = s->volatile_cfg & 0xFF;
759 s->state = STATE_READING_DATA;
762 if (s->write_enable) {
766 s->state = STATE_COLLECTING_DATA;
770 s->data[0] = s->enh_volatile_cfg & 0xFF;
773 s->state = STATE_READING_DATA;
776 if (s->write_enable) {
780 s->state = STATE_COLLECTING_DATA;
784 s->reset_enable = true;
787 if (s->reset_enable) {
792 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
797 static int m25p80_cs(SSISlave *ss, bool select)
799 Flash *s = M25P80(ss);
804 s->state = STATE_IDLE;
805 flash_sync_dirty(s, -1);
808 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
813 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
815 Flash *s = M25P80(ss);
820 case STATE_PAGE_PROGRAM:
821 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
822 s->cur_addr, (uint8_t)tx);
823 flash_write8(s, s->cur_addr, (uint8_t)tx);
828 r = s->storage[s->cur_addr];
829 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
831 s->cur_addr = (s->cur_addr + 1) % s->size;
834 case STATE_COLLECTING_DATA:
835 s->data[s->len] = (uint8_t)tx;
838 if (s->len == s->needed_bytes) {
839 complete_collecting_data(s);
843 case STATE_READING_DATA:
846 if (s->pos == s->len) {
848 s->state = STATE_IDLE;
854 decode_new_cmd(s, (uint8_t)tx);
861 static int m25p80_init(SSISlave *ss)
864 Flash *s = M25P80(ss);
865 M25P80Class *mc = M25P80_GET_CLASS(s);
869 s->size = s->pi->sector_size * s->pi->n_sectors;
872 /* FIXME use a qdev drive property instead of drive_get_next() */
873 dinfo = drive_get_next(IF_MTD);
876 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
877 s->blk = blk_by_legacy_dinfo(dinfo);
878 blk_attach_dev_nofail(s->blk, s);
880 s->storage = blk_blockalign(s->blk, s->size);
882 /* FIXME: Move to late init */
883 if (blk_read(s->blk, 0, s->storage,
884 DIV_ROUND_UP(s->size, BDRV_SECTOR_SIZE))) {
885 fprintf(stderr, "Failed to initialize SPI flash!\n");
889 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
890 s->storage = blk_blockalign(NULL, s->size);
891 memset(s->storage, 0xFF, s->size);
897 static void m25p80_reset(DeviceState *d)
899 Flash *s = M25P80(d);
904 static void m25p80_pre_save(void *opaque)
906 flash_sync_dirty((Flash *)opaque, -1);
909 static Property m25p80_properties[] = {
910 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
911 DEFINE_PROP_END_OF_LIST(),
914 static const VMStateDescription vmstate_m25p80 = {
915 .name = "xilinx_spi",
917 .minimum_version_id = 1,
918 .pre_save = m25p80_pre_save,
919 .fields = (VMStateField[]) {
920 VMSTATE_UINT8(state, Flash),
921 VMSTATE_UINT8_ARRAY(data, Flash, 16),
922 VMSTATE_UINT32(len, Flash),
923 VMSTATE_UINT32(pos, Flash),
924 VMSTATE_UINT8(needed_bytes, Flash),
925 VMSTATE_UINT8(cmd_in_progress, Flash),
926 VMSTATE_UINT64(cur_addr, Flash),
927 VMSTATE_BOOL(write_enable, Flash),
928 VMSTATE_BOOL_V(reset_enable, Flash, 2),
929 VMSTATE_UINT8_V(ear, Flash, 2),
930 VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
931 VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
932 VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
933 VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
934 VMSTATE_END_OF_LIST()
938 static void m25p80_class_init(ObjectClass *klass, void *data)
940 DeviceClass *dc = DEVICE_CLASS(klass);
941 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
942 M25P80Class *mc = M25P80_CLASS(klass);
944 k->init = m25p80_init;
945 k->transfer = m25p80_transfer8;
946 k->set_cs = m25p80_cs;
947 k->cs_polarity = SSI_CS_LOW;
948 dc->vmsd = &vmstate_m25p80;
949 dc->props = m25p80_properties;
950 dc->reset = m25p80_reset;
954 static const TypeInfo m25p80_info = {
956 .parent = TYPE_SSI_SLAVE,
957 .instance_size = sizeof(Flash),
958 .class_size = sizeof(M25P80Class),
962 static void m25p80_register_types(void)
966 type_register_static(&m25p80_info);
967 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
969 .name = known_devices[i].part_name,
970 .parent = TYPE_M25P80,
971 .class_init = m25p80_class_init,
972 .class_data = (void *)&known_devices[i],
978 type_init(m25p80_register_types)