4 #include "host-utils.h"
5 #if !defined(CONFIG_USER_ONLY)
10 static uint32_t cortexa15_cp15_c0_c1[8] = {
11 0x00001131, 0x00011011, 0x02010555, 0x00000000,
12 0x10201105, 0x20000000, 0x01240000, 0x02102211
15 static uint32_t cortexa15_cp15_c0_c2[8] = {
16 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
19 static uint32_t cortexa9_cp15_c0_c1[8] =
20 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
22 static uint32_t cortexa9_cp15_c0_c2[8] =
23 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
25 static uint32_t cortexa8_cp15_c0_c1[8] =
26 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
28 static uint32_t cortexa8_cp15_c0_c2[8] =
29 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
31 static uint32_t mpcore_cp15_c0_c1[8] =
32 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
34 static uint32_t mpcore_cp15_c0_c2[8] =
35 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
37 static uint32_t arm1136_cp15_c0_c1[8] =
38 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
40 static uint32_t arm1136_cp15_c0_c2[8] =
41 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
43 static uint32_t arm1176_cp15_c0_c1[8] =
44 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
46 static uint32_t arm1176_cp15_c0_c2[8] =
47 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
49 static uint32_t cpu_arm_find_by_name(const char *name);
51 static inline void set_feature(CPUARMState *env, int feature)
53 env->features |= 1u << feature;
56 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
58 env->cp15.c0_cpuid = id;
60 case ARM_CPUID_ARM926:
61 set_feature(env, ARM_FEATURE_V5);
62 set_feature(env, ARM_FEATURE_VFP);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
64 env->cp15.c0_cachetype = 0x1dd20d2;
65 env->cp15.c1_sys = 0x00090078;
67 case ARM_CPUID_ARM946:
68 set_feature(env, ARM_FEATURE_V5);
69 set_feature(env, ARM_FEATURE_MPU);
70 env->cp15.c0_cachetype = 0x0f004006;
71 env->cp15.c1_sys = 0x00000078;
73 case ARM_CPUID_ARM1026:
74 set_feature(env, ARM_FEATURE_V5);
75 set_feature(env, ARM_FEATURE_VFP);
76 set_feature(env, ARM_FEATURE_AUXCR);
77 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 env->cp15.c1_sys = 0x00090078;
81 case ARM_CPUID_ARM1136:
82 /* This is the 1136 r1, which is a v6K core */
83 set_feature(env, ARM_FEATURE_V6K);
85 case ARM_CPUID_ARM1136_R2:
86 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
87 * older core than plain "arm1136". In particular this does not
88 * have the v6K features.
90 set_feature(env, ARM_FEATURE_V6);
91 set_feature(env, ARM_FEATURE_VFP);
92 /* These ID register values are correct for 1136 but may be wrong
93 * for 1136_r2 (in particular r0p2 does not actually implement most
94 * of the ID registers).
96 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
97 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
98 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
99 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
100 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
101 env->cp15.c0_cachetype = 0x1dd20d2;
102 env->cp15.c1_sys = 0x00050078;
104 case ARM_CPUID_ARM1176:
105 set_feature(env, ARM_FEATURE_V6K);
106 set_feature(env, ARM_FEATURE_VFP);
107 set_feature(env, ARM_FEATURE_VAPA);
108 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
109 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
110 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
111 memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
112 memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
113 env->cp15.c0_cachetype = 0x1dd20d2;
114 env->cp15.c1_sys = 0x00050078;
116 case ARM_CPUID_ARM11MPCORE:
117 set_feature(env, ARM_FEATURE_V6K);
118 set_feature(env, ARM_FEATURE_VFP);
119 set_feature(env, ARM_FEATURE_VAPA);
120 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
121 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
122 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
123 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
124 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
125 env->cp15.c0_cachetype = 0x1dd20d2;
127 case ARM_CPUID_CORTEXA8:
128 set_feature(env, ARM_FEATURE_V7);
129 set_feature(env, ARM_FEATURE_VFP3);
130 set_feature(env, ARM_FEATURE_NEON);
131 set_feature(env, ARM_FEATURE_THUMB2EE);
132 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
133 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
134 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
135 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
136 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
137 env->cp15.c0_cachetype = 0x82048004;
138 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
139 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
140 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
141 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
142 env->cp15.c1_sys = 0x00c50078;
144 case ARM_CPUID_CORTEXA9:
145 set_feature(env, ARM_FEATURE_V7);
146 set_feature(env, ARM_FEATURE_VFP3);
147 set_feature(env, ARM_FEATURE_VFP_FP16);
148 set_feature(env, ARM_FEATURE_NEON);
149 set_feature(env, ARM_FEATURE_THUMB2EE);
150 /* Note that A9 supports the MP extensions even for
151 * A9UP and single-core A9MP (which are both different
152 * and valid configurations; we don't model A9UP).
154 set_feature(env, ARM_FEATURE_V7MP);
155 env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090;
156 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
157 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
158 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
159 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
160 env->cp15.c0_cachetype = 0x80038003;
161 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
162 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
163 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
164 env->cp15.c1_sys = 0x00c50078;
166 case ARM_CPUID_CORTEXA15:
167 set_feature(env, ARM_FEATURE_V7);
168 set_feature(env, ARM_FEATURE_VFP4);
169 set_feature(env, ARM_FEATURE_VFP_FP16);
170 set_feature(env, ARM_FEATURE_NEON);
171 set_feature(env, ARM_FEATURE_THUMB2EE);
172 set_feature(env, ARM_FEATURE_ARM_DIV);
173 set_feature(env, ARM_FEATURE_V7MP);
174 set_feature(env, ARM_FEATURE_GENERIC_TIMER);
175 env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0;
176 env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222;
177 env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111;
178 memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
179 memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
180 env->cp15.c0_cachetype = 0x8444c004;
181 env->cp15.c0_clid = 0x0a200023;
182 env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
183 env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
184 env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
185 env->cp15.c1_sys = 0x00c50078;
187 case ARM_CPUID_CORTEXM3:
188 set_feature(env, ARM_FEATURE_V7);
189 set_feature(env, ARM_FEATURE_M);
191 case ARM_CPUID_ANY: /* For userspace emulation. */
192 set_feature(env, ARM_FEATURE_V7);
193 set_feature(env, ARM_FEATURE_VFP4);
194 set_feature(env, ARM_FEATURE_VFP_FP16);
195 set_feature(env, ARM_FEATURE_NEON);
196 set_feature(env, ARM_FEATURE_THUMB2EE);
197 set_feature(env, ARM_FEATURE_ARM_DIV);
198 set_feature(env, ARM_FEATURE_V7MP);
200 case ARM_CPUID_TI915T:
201 case ARM_CPUID_TI925T:
202 set_feature(env, ARM_FEATURE_V4T);
203 set_feature(env, ARM_FEATURE_OMAPCP);
204 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
205 env->cp15.c0_cachetype = 0x5109149;
206 env->cp15.c1_sys = 0x00000070;
207 env->cp15.c15_i_max = 0x000;
208 env->cp15.c15_i_min = 0xff0;
210 case ARM_CPUID_PXA250:
211 case ARM_CPUID_PXA255:
212 case ARM_CPUID_PXA260:
213 case ARM_CPUID_PXA261:
214 case ARM_CPUID_PXA262:
215 set_feature(env, ARM_FEATURE_V5);
216 set_feature(env, ARM_FEATURE_XSCALE);
217 /* JTAG_ID is ((id << 28) | 0x09265013) */
218 env->cp15.c0_cachetype = 0xd172172;
219 env->cp15.c1_sys = 0x00000078;
221 case ARM_CPUID_PXA270_A0:
222 case ARM_CPUID_PXA270_A1:
223 case ARM_CPUID_PXA270_B0:
224 case ARM_CPUID_PXA270_B1:
225 case ARM_CPUID_PXA270_C0:
226 case ARM_CPUID_PXA270_C5:
227 set_feature(env, ARM_FEATURE_V5);
228 set_feature(env, ARM_FEATURE_XSCALE);
229 /* JTAG_ID is ((id << 28) | 0x09265013) */
230 set_feature(env, ARM_FEATURE_IWMMXT);
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 env->cp15.c0_cachetype = 0xd172172;
233 env->cp15.c1_sys = 0x00000078;
235 case ARM_CPUID_SA1100:
236 case ARM_CPUID_SA1110:
237 set_feature(env, ARM_FEATURE_STRONGARM);
238 env->cp15.c1_sys = 0x00000070;
241 cpu_abort(env, "Bad CPU ID: %x\n", id);
245 /* Some features automatically imply others: */
246 if (arm_feature(env, ARM_FEATURE_V7)) {
247 set_feature(env, ARM_FEATURE_VAPA);
248 set_feature(env, ARM_FEATURE_THUMB2);
249 if (!arm_feature(env, ARM_FEATURE_M)) {
250 set_feature(env, ARM_FEATURE_V6K);
252 set_feature(env, ARM_FEATURE_V6);
255 if (arm_feature(env, ARM_FEATURE_V6K)) {
256 set_feature(env, ARM_FEATURE_V6);
258 if (arm_feature(env, ARM_FEATURE_V6)) {
259 set_feature(env, ARM_FEATURE_V5);
260 if (!arm_feature(env, ARM_FEATURE_M)) {
261 set_feature(env, ARM_FEATURE_AUXCR);
264 if (arm_feature(env, ARM_FEATURE_V5)) {
265 set_feature(env, ARM_FEATURE_V4T);
267 if (arm_feature(env, ARM_FEATURE_M)) {
268 set_feature(env, ARM_FEATURE_THUMB_DIV);
270 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
271 set_feature(env, ARM_FEATURE_THUMB_DIV);
273 if (arm_feature(env, ARM_FEATURE_VFP4)) {
274 set_feature(env, ARM_FEATURE_VFP3);
276 if (arm_feature(env, ARM_FEATURE_VFP3)) {
277 set_feature(env, ARM_FEATURE_VFP);
281 void cpu_state_reset(CPUARMState *env)
286 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
287 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
288 log_cpu_state(env, 0);
291 id = env->cp15.c0_cpuid;
292 tmp = env->cp15.c15_config_base_address;
293 memset(env, 0, offsetof(CPUARMState, breakpoints));
295 cpu_reset_model_id(env, id);
296 env->cp15.c15_config_base_address = tmp;
297 #if defined (CONFIG_USER_ONLY)
298 env->uncached_cpsr = ARM_CPU_MODE_USR;
299 /* For user mode we must enable access to coprocessors */
300 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
301 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
302 env->cp15.c15_cpar = 3;
303 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
304 env->cp15.c15_cpar = 1;
307 /* SVC mode with interrupts disabled. */
308 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
309 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
310 clear at reset. Initial SP and PC are loaded from ROM. */
314 env->uncached_cpsr &= ~CPSR_I;
317 /* We should really use ldl_phys here, in case the guest
318 modified flash and reset itself. However images
319 loaded via -kernel have not been copied yet, so load the
320 values directly from there. */
321 env->regs[13] = ldl_p(rom);
324 env->regs[15] = pc & ~1;
327 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
328 env->cp15.c2_base_mask = 0xffffc000u;
329 /* v7 performance monitor control register: same implementor
330 * field as main ID register, and we implement no event counters.
332 env->cp15.c9_pmcr = (id & 0xff000000);
334 set_flush_to_zero(1, &env->vfp.standard_fp_status);
335 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
336 set_default_nan_mode(1, &env->vfp.standard_fp_status);
337 set_float_detect_tininess(float_tininess_before_rounding,
338 &env->vfp.fp_status);
339 set_float_detect_tininess(float_tininess_before_rounding,
340 &env->vfp.standard_fp_status);
342 /* Reset is a state change for some CPUARMState fields which we
343 * bake assumptions about into translated code, so we need to
349 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
353 /* VFP data registers are always little-endian. */
354 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
356 stfq_le_p(buf, env->vfp.regs[reg]);
359 if (arm_feature(env, ARM_FEATURE_NEON)) {
360 /* Aliases for Q regs. */
363 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
364 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
368 switch (reg - nregs) {
369 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
370 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
371 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
376 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
380 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
382 env->vfp.regs[reg] = ldfq_le_p(buf);
385 if (arm_feature(env, ARM_FEATURE_NEON)) {
388 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
389 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
393 switch (reg - nregs) {
394 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
395 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
396 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
401 CPUARMState *cpu_arm_init(const char *cpu_model)
405 static int inited = 0;
407 id = cpu_arm_find_by_name(cpu_model);
410 env = g_malloc0(sizeof(CPUARMState));
412 if (tcg_enabled() && !inited) {
414 arm_translate_init();
417 env->cpu_model_str = cpu_model;
418 env->cp15.c0_cpuid = id;
419 cpu_state_reset(env);
420 if (arm_feature(env, ARM_FEATURE_NEON)) {
421 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
422 51, "arm-neon.xml", 0);
423 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
424 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
425 35, "arm-vfp3.xml", 0);
426 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
427 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
428 19, "arm-vfp.xml", 0);
439 static const struct arm_cpu_t arm_cpu_names[] = {
440 { ARM_CPUID_ARM926, "arm926"},
441 { ARM_CPUID_ARM946, "arm946"},
442 { ARM_CPUID_ARM1026, "arm1026"},
443 { ARM_CPUID_ARM1136, "arm1136"},
444 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
445 { ARM_CPUID_ARM1176, "arm1176"},
446 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
447 { ARM_CPUID_CORTEXM3, "cortex-m3"},
448 { ARM_CPUID_CORTEXA8, "cortex-a8"},
449 { ARM_CPUID_CORTEXA9, "cortex-a9"},
450 { ARM_CPUID_CORTEXA15, "cortex-a15" },
451 { ARM_CPUID_TI925T, "ti925t" },
452 { ARM_CPUID_PXA250, "pxa250" },
453 { ARM_CPUID_SA1100, "sa1100" },
454 { ARM_CPUID_SA1110, "sa1110" },
455 { ARM_CPUID_PXA255, "pxa255" },
456 { ARM_CPUID_PXA260, "pxa260" },
457 { ARM_CPUID_PXA261, "pxa261" },
458 { ARM_CPUID_PXA262, "pxa262" },
459 { ARM_CPUID_PXA270, "pxa270" },
460 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
461 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
462 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
463 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
464 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
465 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
466 { ARM_CPUID_ANY, "any"},
470 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
474 (*cpu_fprintf)(f, "Available CPUs:\n");
475 for (i = 0; arm_cpu_names[i].name; i++) {
476 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
480 /* return 0 if not found */
481 static uint32_t cpu_arm_find_by_name(const char *name)
487 for (i = 0; arm_cpu_names[i].name; i++) {
488 if (strcmp(name, arm_cpu_names[i].name) == 0) {
489 id = arm_cpu_names[i].id;
496 void cpu_arm_close(CPUARMState *env)
501 static int bad_mode_switch(CPUARMState *env, int mode)
503 /* Return true if it is not valid for us to switch to
504 * this CPU mode (ie all the UNPREDICTABLE cases in
505 * the ARM ARM CPSRWriteByInstr pseudocode).
508 case ARM_CPU_MODE_USR:
509 case ARM_CPU_MODE_SYS:
510 case ARM_CPU_MODE_SVC:
511 case ARM_CPU_MODE_ABT:
512 case ARM_CPU_MODE_UND:
513 case ARM_CPU_MODE_IRQ:
514 case ARM_CPU_MODE_FIQ:
521 uint32_t cpsr_read(CPUARMState *env)
525 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
526 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
527 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
528 | ((env->condexec_bits & 0xfc) << 8)
532 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
534 if (mask & CPSR_NZCV) {
535 env->ZF = (~val) & CPSR_Z;
537 env->CF = (val >> 29) & 1;
538 env->VF = (val << 3) & 0x80000000;
541 env->QF = ((val & CPSR_Q) != 0);
543 env->thumb = ((val & CPSR_T) != 0);
544 if (mask & CPSR_IT_0_1) {
545 env->condexec_bits &= ~3;
546 env->condexec_bits |= (val >> 25) & 3;
548 if (mask & CPSR_IT_2_7) {
549 env->condexec_bits &= 3;
550 env->condexec_bits |= (val >> 8) & 0xfc;
552 if (mask & CPSR_GE) {
553 env->GE = (val >> 16) & 0xf;
556 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
557 if (bad_mode_switch(env, val & CPSR_M)) {
558 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
559 * We choose to ignore the attempt and leave the CPSR M field
564 switch_mode(env, val & CPSR_M);
567 mask &= ~CACHED_CPSR_BITS;
568 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
571 /* Sign/zero extend */
572 uint32_t HELPER(sxtb16)(uint32_t x)
575 res = (uint16_t)(int8_t)x;
576 res |= (uint32_t)(int8_t)(x >> 16) << 16;
580 uint32_t HELPER(uxtb16)(uint32_t x)
583 res = (uint16_t)(uint8_t)x;
584 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
588 uint32_t HELPER(clz)(uint32_t x)
593 int32_t HELPER(sdiv)(int32_t num, int32_t den)
597 if (num == INT_MIN && den == -1)
602 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
609 uint32_t HELPER(rbit)(uint32_t x)
611 x = ((x & 0xff000000) >> 24)
612 | ((x & 0x00ff0000) >> 8)
613 | ((x & 0x0000ff00) << 8)
614 | ((x & 0x000000ff) << 24);
615 x = ((x & 0xf0f0f0f0) >> 4)
616 | ((x & 0x0f0f0f0f) << 4);
617 x = ((x & 0x88888888) >> 3)
618 | ((x & 0x44444444) >> 1)
619 | ((x & 0x22222222) << 1)
620 | ((x & 0x11111111) << 3);
624 uint32_t HELPER(abs)(uint32_t x)
626 return ((int32_t)x < 0) ? -x : x;
629 #if defined(CONFIG_USER_ONLY)
631 void do_interrupt (CPUARMState *env)
633 env->exception_index = -1;
636 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
640 env->exception_index = EXCP_PREFETCH_ABORT;
641 env->cp15.c6_insn = address;
643 env->exception_index = EXCP_DATA_ABORT;
644 env->cp15.c6_data = address;
649 /* These should probably raise undefined insn exceptions. */
650 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
652 int op1 = (insn >> 8) & 0xf;
653 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
657 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
659 int op1 = (insn >> 8) & 0xf;
660 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
664 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
666 cpu_abort(env, "cp15 insn %08x\n", insn);
669 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
671 cpu_abort(env, "cp15 insn %08x\n", insn);
674 /* These should probably raise undefined insn exceptions. */
675 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
677 cpu_abort(env, "v7m_mrs %d\n", reg);
680 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
682 cpu_abort(env, "v7m_mrs %d\n", reg);
686 void switch_mode(CPUARMState *env, int mode)
688 if (mode != ARM_CPU_MODE_USR)
689 cpu_abort(env, "Tried to switch out of user mode\n");
692 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
694 cpu_abort(env, "banked r13 write\n");
697 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
699 cpu_abort(env, "banked r13 read\n");
705 /* Map CPU modes onto saved register banks. */
706 static inline int bank_number(CPUARMState *env, int mode)
709 case ARM_CPU_MODE_USR:
710 case ARM_CPU_MODE_SYS:
712 case ARM_CPU_MODE_SVC:
714 case ARM_CPU_MODE_ABT:
716 case ARM_CPU_MODE_UND:
718 case ARM_CPU_MODE_IRQ:
720 case ARM_CPU_MODE_FIQ:
723 cpu_abort(env, "Bad mode %x\n", mode);
727 void switch_mode(CPUARMState *env, int mode)
732 old_mode = env->uncached_cpsr & CPSR_M;
733 if (mode == old_mode)
736 if (old_mode == ARM_CPU_MODE_FIQ) {
737 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
738 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
739 } else if (mode == ARM_CPU_MODE_FIQ) {
740 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
741 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
744 i = bank_number(env, old_mode);
745 env->banked_r13[i] = env->regs[13];
746 env->banked_r14[i] = env->regs[14];
747 env->banked_spsr[i] = env->spsr;
749 i = bank_number(env, mode);
750 env->regs[13] = env->banked_r13[i];
751 env->regs[14] = env->banked_r14[i];
752 env->spsr = env->banked_spsr[i];
755 static void v7m_push(CPUARMState *env, uint32_t val)
758 stl_phys(env->regs[13], val);
761 static uint32_t v7m_pop(CPUARMState *env)
764 val = ldl_phys(env->regs[13]);
769 /* Switch to V7M main or process stack pointer. */
770 static void switch_v7m_sp(CPUARMState *env, int process)
773 if (env->v7m.current_sp != process) {
774 tmp = env->v7m.other_sp;
775 env->v7m.other_sp = env->regs[13];
777 env->v7m.current_sp = process;
781 static void do_v7m_exception_exit(CPUARMState *env)
786 type = env->regs[15];
787 if (env->v7m.exception != 0)
788 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
790 /* Switch to the target stack. */
791 switch_v7m_sp(env, (type & 4) != 0);
793 env->regs[0] = v7m_pop(env);
794 env->regs[1] = v7m_pop(env);
795 env->regs[2] = v7m_pop(env);
796 env->regs[3] = v7m_pop(env);
797 env->regs[12] = v7m_pop(env);
798 env->regs[14] = v7m_pop(env);
799 env->regs[15] = v7m_pop(env);
801 xpsr_write(env, xpsr, 0xfffffdff);
802 /* Undo stack alignment. */
805 /* ??? The exception return type specifies Thread/Handler mode. However
806 this is also implied by the xPSR value. Not sure what to do
807 if there is a mismatch. */
808 /* ??? Likewise for mismatches between the CONTROL register and the stack
812 static void do_interrupt_v7m(CPUARMState *env)
814 uint32_t xpsr = xpsr_read(env);
819 if (env->v7m.current_sp)
821 if (env->v7m.exception == 0)
824 /* For exceptions we just mark as pending on the NVIC, and let that
826 /* TODO: Need to escalate if the current priority is higher than the
827 one we're raising. */
828 switch (env->exception_index) {
830 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
834 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
836 case EXCP_PREFETCH_ABORT:
837 case EXCP_DATA_ABORT:
838 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
841 if (semihosting_enabled) {
843 nr = lduw_code(env->regs[15]) & 0xff;
846 env->regs[0] = do_arm_semihosting(env);
850 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
853 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
855 case EXCP_EXCEPTION_EXIT:
856 do_v7m_exception_exit(env);
859 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
860 return; /* Never happens. Keep compiler happy. */
863 /* Align stack pointer. */
864 /* ??? Should only do this if Configuration Control Register
865 STACKALIGN bit is set. */
866 if (env->regs[13] & 4) {
870 /* Switch to the handler mode. */
872 v7m_push(env, env->regs[15]);
873 v7m_push(env, env->regs[14]);
874 v7m_push(env, env->regs[12]);
875 v7m_push(env, env->regs[3]);
876 v7m_push(env, env->regs[2]);
877 v7m_push(env, env->regs[1]);
878 v7m_push(env, env->regs[0]);
879 switch_v7m_sp(env, 0);
881 env->condexec_bits = 0;
883 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
884 env->regs[15] = addr & 0xfffffffe;
885 env->thumb = addr & 1;
888 /* Handle a CPU exception. */
889 void do_interrupt(CPUARMState *env)
897 do_interrupt_v7m(env);
900 /* TODO: Vectored interrupt controller. */
901 switch (env->exception_index) {
903 new_mode = ARM_CPU_MODE_UND;
912 if (semihosting_enabled) {
913 /* Check for semihosting interrupt. */
915 mask = lduw_code(env->regs[15] - 2) & 0xff;
917 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
919 /* Only intercept calls from privileged modes, to provide some
920 semblance of security. */
921 if (((mask == 0x123456 && !env->thumb)
922 || (mask == 0xab && env->thumb))
923 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
924 env->regs[0] = do_arm_semihosting(env);
928 new_mode = ARM_CPU_MODE_SVC;
931 /* The PC already points to the next instruction. */
935 /* See if this is a semihosting syscall. */
936 if (env->thumb && semihosting_enabled) {
937 mask = lduw_code(env->regs[15]) & 0xff;
939 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
941 env->regs[0] = do_arm_semihosting(env);
945 env->cp15.c5_insn = 2;
946 /* Fall through to prefetch abort. */
947 case EXCP_PREFETCH_ABORT:
948 new_mode = ARM_CPU_MODE_ABT;
950 mask = CPSR_A | CPSR_I;
953 case EXCP_DATA_ABORT:
954 new_mode = ARM_CPU_MODE_ABT;
956 mask = CPSR_A | CPSR_I;
960 new_mode = ARM_CPU_MODE_IRQ;
962 /* Disable IRQ and imprecise data aborts. */
963 mask = CPSR_A | CPSR_I;
967 new_mode = ARM_CPU_MODE_FIQ;
969 /* Disable FIQ, IRQ and imprecise data aborts. */
970 mask = CPSR_A | CPSR_I | CPSR_F;
974 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
975 return; /* Never happens. Keep compiler happy. */
978 if (env->cp15.c1_sys & (1 << 13)) {
981 switch_mode (env, new_mode);
982 env->spsr = cpsr_read(env);
984 env->condexec_bits = 0;
985 /* Switch to the new mode, and to the correct instruction set. */
986 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
987 env->uncached_cpsr |= mask;
988 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
989 * and we should just guard the thumb mode on V4 */
990 if (arm_feature(env, ARM_FEATURE_V4T)) {
991 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
993 env->regs[14] = env->regs[15] + offset;
994 env->regs[15] = addr;
995 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
998 /* Check section/page access permissions.
999 Returns the page protection flags, or zero if the access is not
1001 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1002 int access_type, int is_user)
1006 if (domain_prot == 3) {
1007 return PAGE_READ | PAGE_WRITE;
1010 if (access_type == 1)
1013 prot_ro = PAGE_READ;
1017 if (access_type == 1)
1019 switch ((env->cp15.c1_sys >> 8) & 3) {
1021 return is_user ? 0 : PAGE_READ;
1028 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1033 return PAGE_READ | PAGE_WRITE;
1035 return PAGE_READ | PAGE_WRITE;
1036 case 4: /* Reserved. */
1039 return is_user ? 0 : prot_ro;
1043 if (!arm_feature (env, ARM_FEATURE_V6K))
1051 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1055 if (address & env->cp15.c2_mask)
1056 table = env->cp15.c2_base1 & 0xffffc000;
1058 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1060 table |= (address >> 18) & 0x3ffc;
1064 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1065 int is_user, uint32_t *phys_ptr, int *prot,
1066 target_ulong *page_size)
1077 /* Pagetable walk. */
1078 /* Lookup l1 descriptor. */
1079 table = get_level1_table_address(env, address);
1080 desc = ldl_phys(table);
1082 domain = (desc >> 5) & 0x0f;
1083 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1085 /* Section translation fault. */
1089 if (domain_prot == 0 || domain_prot == 2) {
1091 code = 9; /* Section domain fault. */
1093 code = 11; /* Page domain fault. */
1098 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1099 ap = (desc >> 10) & 3;
1101 *page_size = 1024 * 1024;
1103 /* Lookup l2 entry. */
1105 /* Coarse pagetable. */
1106 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1108 /* Fine pagetable. */
1109 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1111 desc = ldl_phys(table);
1113 case 0: /* Page translation fault. */
1116 case 1: /* 64k page. */
1117 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1118 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1119 *page_size = 0x10000;
1121 case 2: /* 4k page. */
1122 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1123 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1124 *page_size = 0x1000;
1126 case 3: /* 1k page. */
1128 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1129 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1131 /* Page translation fault. */
1136 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1138 ap = (desc >> 4) & 3;
1142 /* Never happens, but compiler isn't smart enough to tell. */
1147 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1149 /* Access permission fault. */
1153 *phys_ptr = phys_addr;
1156 return code | (domain << 4);
1159 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1160 int is_user, uint32_t *phys_ptr, int *prot,
1161 target_ulong *page_size)
1173 /* Pagetable walk. */
1174 /* Lookup l1 descriptor. */
1175 table = get_level1_table_address(env, address);
1176 desc = ldl_phys(table);
1179 /* Section translation fault. */
1183 } else if (type == 2 && (desc & (1 << 18))) {
1187 /* Section or page. */
1188 domain = (desc >> 5) & 0x0f;
1190 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1191 if (domain_prot == 0 || domain_prot == 2) {
1193 code = 9; /* Section domain fault. */
1195 code = 11; /* Page domain fault. */
1199 if (desc & (1 << 18)) {
1201 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1202 *page_size = 0x1000000;
1205 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1206 *page_size = 0x100000;
1208 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1209 xn = desc & (1 << 4);
1212 /* Lookup l2 entry. */
1213 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1214 desc = ldl_phys(table);
1215 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1217 case 0: /* Page translation fault. */
1220 case 1: /* 64k page. */
1221 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1222 xn = desc & (1 << 15);
1223 *page_size = 0x10000;
1225 case 2: case 3: /* 4k page. */
1226 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1228 *page_size = 0x1000;
1231 /* Never happens, but compiler isn't smart enough to tell. */
1236 if (domain_prot == 3) {
1237 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1239 if (xn && access_type == 2)
1242 /* The simplified model uses AP[0] as an access control bit. */
1243 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1244 /* Access flag fault. */
1245 code = (code == 15) ? 6 : 3;
1248 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1250 /* Access permission fault. */
1257 *phys_ptr = phys_addr;
1260 return code | (domain << 4);
1263 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1264 int is_user, uint32_t *phys_ptr, int *prot)
1270 *phys_ptr = address;
1271 for (n = 7; n >= 0; n--) {
1272 base = env->cp15.c6_region[n];
1273 if ((base & 1) == 0)
1275 mask = 1 << ((base >> 1) & 0x1f);
1276 /* Keep this shift separate from the above to avoid an
1277 (undefined) << 32. */
1278 mask = (mask << 1) - 1;
1279 if (((base ^ address) & ~mask) == 0)
1285 if (access_type == 2) {
1286 mask = env->cp15.c5_insn;
1288 mask = env->cp15.c5_data;
1290 mask = (mask >> (n * 4)) & 0xf;
1297 *prot = PAGE_READ | PAGE_WRITE;
1302 *prot |= PAGE_WRITE;
1305 *prot = PAGE_READ | PAGE_WRITE;
1316 /* Bad permission. */
1323 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
1324 int access_type, int is_user,
1325 uint32_t *phys_ptr, int *prot,
1326 target_ulong *page_size)
1328 /* Fast Context Switch Extension. */
1329 if (address < 0x02000000)
1330 address += env->cp15.c13_fcse;
1332 if ((env->cp15.c1_sys & 1) == 0) {
1333 /* MMU/MPU disabled. */
1334 *phys_ptr = address;
1335 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1336 *page_size = TARGET_PAGE_SIZE;
1338 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1339 *page_size = TARGET_PAGE_SIZE;
1340 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1342 } else if (env->cp15.c1_sys & (1 << 23)) {
1343 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1346 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1351 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1352 int access_type, int mmu_idx)
1355 target_ulong page_size;
1359 is_user = mmu_idx == MMU_USER_IDX;
1360 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1363 /* Map a single [sub]page. */
1364 phys_addr &= ~(uint32_t)0x3ff;
1365 address &= ~(uint32_t)0x3ff;
1366 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1370 if (access_type == 2) {
1371 env->cp15.c5_insn = ret;
1372 env->cp15.c6_insn = address;
1373 env->exception_index = EXCP_PREFETCH_ABORT;
1375 env->cp15.c5_data = ret;
1376 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1377 env->cp15.c5_data |= (1 << 11);
1378 env->cp15.c6_data = address;
1379 env->exception_index = EXCP_DATA_ABORT;
1384 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1387 target_ulong page_size;
1391 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1399 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
1401 int cp_num = (insn >> 8) & 0xf;
1402 int cp_info = (insn >> 5) & 7;
1403 int src = (insn >> 16) & 0xf;
1404 int operand = insn & 0xf;
1406 if (env->cp[cp_num].cp_write)
1407 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1408 cp_info, src, operand, val);
1411 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
1413 int cp_num = (insn >> 8) & 0xf;
1414 int cp_info = (insn >> 5) & 7;
1415 int dest = (insn >> 16) & 0xf;
1416 int operand = insn & 0xf;
1418 if (env->cp[cp_num].cp_read)
1419 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1420 cp_info, dest, operand);
1424 /* Return basic MPU access permission bits. */
1425 static uint32_t simple_mpu_ap_bits(uint32_t val)
1432 for (i = 0; i < 16; i += 2) {
1433 ret |= (val >> i) & mask;
1439 /* Pad basic MPU access permission bits to extended format. */
1440 static uint32_t extended_mpu_ap_bits(uint32_t val)
1447 for (i = 0; i < 16; i += 2) {
1448 ret |= (val & mask) << i;
1454 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1460 op1 = (insn >> 21) & 7;
1461 op2 = (insn >> 5) & 7;
1463 switch ((insn >> 16) & 0xf) {
1466 if (arm_feature(env, ARM_FEATURE_XSCALE))
1468 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1470 if (arm_feature(env, ARM_FEATURE_V7)
1471 && op1 == 2 && crm == 0 && op2 == 0) {
1472 env->cp15.c0_cssel = val & 0xf;
1476 case 1: /* System configuration. */
1477 if (arm_feature(env, ARM_FEATURE_V7)
1478 && op1 == 0 && crm == 1 && op2 == 0) {
1479 env->cp15.c1_scr = val;
1482 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1486 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1487 env->cp15.c1_sys = val;
1488 /* ??? Lots of these bits are not implemented. */
1489 /* This may enable/disable the MMU, so do a TLB flush. */
1492 case 1: /* Auxiliary control register. */
1493 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1494 env->cp15.c1_xscaleauxcr = val;
1497 /* Not implemented. */
1500 if (arm_feature(env, ARM_FEATURE_XSCALE))
1502 if (env->cp15.c1_coproc != val) {
1503 env->cp15.c1_coproc = val;
1504 /* ??? Is this safe when called from within a TB? */
1512 case 2: /* MMU Page table control / MPU cache control. */
1513 if (arm_feature(env, ARM_FEATURE_MPU)) {
1516 env->cp15.c2_data = val;
1519 env->cp15.c2_insn = val;
1527 env->cp15.c2_base0 = val;
1530 env->cp15.c2_base1 = val;
1534 env->cp15.c2_control = val;
1535 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1536 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1543 case 3: /* MMU Domain access control / MPU write buffer control. */
1545 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1547 case 4: /* Reserved. */
1549 case 5: /* MMU Fault status / MPU access permission. */
1550 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1554 if (arm_feature(env, ARM_FEATURE_MPU))
1555 val = extended_mpu_ap_bits(val);
1556 env->cp15.c5_data = val;
1559 if (arm_feature(env, ARM_FEATURE_MPU))
1560 val = extended_mpu_ap_bits(val);
1561 env->cp15.c5_insn = val;
1564 if (!arm_feature(env, ARM_FEATURE_MPU))
1566 env->cp15.c5_data = val;
1569 if (!arm_feature(env, ARM_FEATURE_MPU))
1571 env->cp15.c5_insn = val;
1577 case 6: /* MMU Fault address / MPU base/size. */
1578 if (arm_feature(env, ARM_FEATURE_MPU)) {
1581 env->cp15.c6_region[crm] = val;
1583 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1587 env->cp15.c6_data = val;
1589 case 1: /* ??? This is WFAR on armv6 */
1591 env->cp15.c6_insn = val;
1598 case 7: /* Cache control. */
1599 env->cp15.c15_i_max = 0x000;
1600 env->cp15.c15_i_min = 0xff0;
1604 /* No cache, so nothing to do except VA->PA translations. */
1605 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1608 if (arm_feature(env, ARM_FEATURE_V7)) {
1609 env->cp15.c7_par = val & 0xfffff6ff;
1611 env->cp15.c7_par = val & 0xfffff1ff;
1616 target_ulong page_size;
1618 int ret, is_user = op2 & 2;
1619 int access_type = op2 & 1;
1622 /* Other states are only available with TrustZone */
1625 ret = get_phys_addr(env, val, access_type, is_user,
1626 &phys_addr, &prot, &page_size);
1628 /* We do not set any attribute bits in the PAR */
1629 if (page_size == (1 << 24)
1630 && arm_feature(env, ARM_FEATURE_V7)) {
1631 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1633 env->cp15.c7_par = phys_addr & 0xfffff000;
1636 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1637 ((ret & (12 << 1)) >> 6) |
1638 ((ret & 0xf) << 1) | 1;
1645 case 8: /* MMU TLB control. */
1647 case 0: /* Invalidate all (TLBIALL) */
1650 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1651 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1653 case 2: /* Invalidate by ASID (TLBIASID) */
1654 tlb_flush(env, val == 0);
1656 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1657 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1664 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1666 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1667 break; /* Ignore ReadBuffer access */
1669 case 0: /* Cache lockdown. */
1671 case 0: /* L1 cache. */
1674 env->cp15.c9_data = val;
1677 env->cp15.c9_insn = val;
1683 case 1: /* L2 cache. */
1684 /* Ignore writes to L2 lockdown/auxiliary registers. */
1690 case 1: /* TCM memory region registers. */
1691 /* Not implemented. */
1693 case 12: /* Performance monitor control */
1694 /* Performance monitors are implementation defined in v7,
1695 * but with an ARM recommended set of registers, which we
1696 * follow (although we don't actually implement any counters)
1698 if (!arm_feature(env, ARM_FEATURE_V7)) {
1702 case 0: /* performance monitor control register */
1703 /* only the DP, X, D and E bits are writable */
1704 env->cp15.c9_pmcr &= ~0x39;
1705 env->cp15.c9_pmcr |= (val & 0x39);
1707 case 1: /* Count enable set register */
1709 env->cp15.c9_pmcnten |= val;
1711 case 2: /* Count enable clear */
1713 env->cp15.c9_pmcnten &= ~val;
1715 case 3: /* Overflow flag status */
1716 env->cp15.c9_pmovsr &= ~val;
1718 case 4: /* Software increment */
1719 /* RAZ/WI since we don't implement the software-count event */
1721 case 5: /* Event counter selection register */
1722 /* Since we don't implement any events, writing to this register
1723 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1730 case 13: /* Performance counters */
1731 if (!arm_feature(env, ARM_FEATURE_V7)) {
1735 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1737 case 1: /* Event type select */
1738 env->cp15.c9_pmxevtyper = val & 0xff;
1740 case 2: /* Event count register */
1741 /* Unimplemented (we have no events), RAZ/WI */
1747 case 14: /* Performance monitor control */
1748 if (!arm_feature(env, ARM_FEATURE_V7)) {
1752 case 0: /* user enable */
1753 env->cp15.c9_pmuserenr = val & 1;
1754 /* changes access rights for cp registers, so flush tbs */
1757 case 1: /* interrupt enable set */
1758 /* We have no event counters so only the C bit can be changed */
1760 env->cp15.c9_pminten |= val;
1762 case 2: /* interrupt enable clear */
1764 env->cp15.c9_pminten &= ~val;
1772 case 10: /* MMU TLB lockdown. */
1773 /* ??? TLB lockdown not implemented. */
1775 case 12: /* Reserved. */
1777 case 13: /* Process ID. */
1780 /* Unlike real hardware the qemu TLB uses virtual addresses,
1781 not modified virtual addresses, so this causes a TLB flush.
1783 if (env->cp15.c13_fcse != val)
1785 env->cp15.c13_fcse = val;
1788 /* This changes the ASID, so do a TLB flush. */
1789 if (env->cp15.c13_context != val
1790 && !arm_feature(env, ARM_FEATURE_MPU))
1792 env->cp15.c13_context = val;
1798 case 14: /* Generic timer */
1799 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1800 /* Dummy implementation: RAZ/WI for all */
1804 case 15: /* Implementation specific. */
1805 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1806 if (op2 == 0 && crm == 1) {
1807 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1808 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1810 env->cp15.c15_cpar = val & 0x3fff;
1816 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1820 case 1: /* Set TI925T configuration. */
1821 env->cp15.c15_ticonfig = val & 0xe7;
1822 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1823 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1825 case 2: /* Set I_max. */
1826 env->cp15.c15_i_max = val;
1828 case 3: /* Set I_min. */
1829 env->cp15.c15_i_min = val;
1831 case 4: /* Set thread-ID. */
1832 env->cp15.c15_threadid = val & 0xffff;
1834 case 8: /* Wait-for-interrupt (deprecated). */
1835 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1841 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1844 if ((op1 == 0) && (op2 == 0)) {
1845 env->cp15.c15_power_control = val;
1846 } else if ((op1 == 0) && (op2 == 1)) {
1847 env->cp15.c15_diagnostic = val;
1848 } else if ((op1 == 0) && (op2 == 2)) {
1849 env->cp15.c15_power_diagnostic = val;
1859 /* ??? For debugging only. Should raise illegal instruction exception. */
1860 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1861 (insn >> 16) & 0xf, crm, op1, op2);
1864 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1870 op1 = (insn >> 21) & 7;
1871 op2 = (insn >> 5) & 7;
1873 switch ((insn >> 16) & 0xf) {
1874 case 0: /* ID codes. */
1880 case 0: /* Device ID. */
1881 return env->cp15.c0_cpuid;
1882 case 1: /* Cache Type. */
1883 return env->cp15.c0_cachetype;
1884 case 2: /* TCM status. */
1886 case 3: /* TLB type register. */
1887 return 0; /* No lockable TLB entries. */
1889 /* The MPIDR was standardised in v7; prior to
1890 * this it was implemented only in the 11MPCore.
1891 * For all other pre-v7 cores it does not exist.
1893 if (arm_feature(env, ARM_FEATURE_V7) ||
1894 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1895 int mpidr = env->cpu_index;
1896 /* We don't support setting cluster ID ([8..11])
1897 * so these bits always RAZ.
1899 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1901 /* Cores which are uniprocessor (non-coherent)
1902 * but still implement the MP extensions set
1903 * bit 30. (For instance, A9UP.) However we do
1904 * not currently model any of those cores.
1909 /* otherwise fall through to the unimplemented-reg case */
1914 if (!arm_feature(env, ARM_FEATURE_V6))
1916 return env->cp15.c0_c1[op2];
1918 if (!arm_feature(env, ARM_FEATURE_V6))
1920 return env->cp15.c0_c2[op2];
1921 case 3: case 4: case 5: case 6: case 7:
1927 /* These registers aren't documented on arm11 cores. However
1928 Linux looks at them anyway. */
1929 if (!arm_feature(env, ARM_FEATURE_V6))
1933 if (!arm_feature(env, ARM_FEATURE_V7))
1938 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1940 return env->cp15.c0_clid;
1946 if (op2 != 0 || crm != 0)
1948 return env->cp15.c0_cssel;
1952 case 1: /* System configuration. */
1953 if (arm_feature(env, ARM_FEATURE_V7)
1954 && op1 == 0 && crm == 1 && op2 == 0) {
1955 return env->cp15.c1_scr;
1957 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1960 case 0: /* Control register. */
1961 return env->cp15.c1_sys;
1962 case 1: /* Auxiliary control register. */
1963 if (arm_feature(env, ARM_FEATURE_XSCALE))
1964 return env->cp15.c1_xscaleauxcr;
1965 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1967 switch (ARM_CPUID(env)) {
1968 case ARM_CPUID_ARM1026:
1970 case ARM_CPUID_ARM1136:
1971 case ARM_CPUID_ARM1136_R2:
1972 case ARM_CPUID_ARM1176:
1974 case ARM_CPUID_ARM11MPCORE:
1976 case ARM_CPUID_CORTEXA8:
1978 case ARM_CPUID_CORTEXA9:
1979 case ARM_CPUID_CORTEXA15:
1984 case 2: /* Coprocessor access register. */
1985 if (arm_feature(env, ARM_FEATURE_XSCALE))
1987 return env->cp15.c1_coproc;
1991 case 2: /* MMU Page table control / MPU cache control. */
1992 if (arm_feature(env, ARM_FEATURE_MPU)) {
1995 return env->cp15.c2_data;
1998 return env->cp15.c2_insn;
2006 return env->cp15.c2_base0;
2008 return env->cp15.c2_base1;
2010 return env->cp15.c2_control;
2015 case 3: /* MMU Domain access control / MPU write buffer control. */
2016 return env->cp15.c3;
2017 case 4: /* Reserved. */
2019 case 5: /* MMU Fault status / MPU access permission. */
2020 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2024 if (arm_feature(env, ARM_FEATURE_MPU))
2025 return simple_mpu_ap_bits(env->cp15.c5_data);
2026 return env->cp15.c5_data;
2028 if (arm_feature(env, ARM_FEATURE_MPU))
2029 return simple_mpu_ap_bits(env->cp15.c5_insn);
2030 return env->cp15.c5_insn;
2032 if (!arm_feature(env, ARM_FEATURE_MPU))
2034 return env->cp15.c5_data;
2036 if (!arm_feature(env, ARM_FEATURE_MPU))
2038 return env->cp15.c5_insn;
2042 case 6: /* MMU Fault address. */
2043 if (arm_feature(env, ARM_FEATURE_MPU)) {
2046 return env->cp15.c6_region[crm];
2048 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2052 return env->cp15.c6_data;
2054 if (arm_feature(env, ARM_FEATURE_V6)) {
2055 /* Watchpoint Fault Adrress. */
2056 return 0; /* Not implemented. */
2058 /* Instruction Fault Adrress. */
2059 /* Arm9 doesn't have an IFAR, but implementing it anyway
2060 shouldn't do any harm. */
2061 return env->cp15.c6_insn;
2064 if (arm_feature(env, ARM_FEATURE_V6)) {
2065 /* Instruction Fault Adrress. */
2066 return env->cp15.c6_insn;
2074 case 7: /* Cache control. */
2075 if (crm == 4 && op1 == 0 && op2 == 0) {
2076 return env->cp15.c7_par;
2078 /* FIXME: Should only clear Z flag if destination is r15. */
2081 case 8: /* MMU TLB control. */
2085 case 0: /* Cache lockdown */
2087 case 0: /* L1 cache. */
2088 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2093 return env->cp15.c9_data;
2095 return env->cp15.c9_insn;
2099 case 1: /* L2 cache */
2100 /* L2 Lockdown and Auxiliary control. */
2103 /* L2 cache lockdown (A8 only) */
2106 /* L2 cache auxiliary control (A8) or control (A15) */
2107 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
2108 /* Linux wants the number of processors from here.
2109 * Might as well set the interrupt-controller bit too.
2111 return ((smp_cpus - 1) << 24) | (1 << 23);
2115 /* L2 cache extended control (A15) */
2124 case 12: /* Performance monitor control */
2125 if (!arm_feature(env, ARM_FEATURE_V7)) {
2129 case 0: /* performance monitor control register */
2130 return env->cp15.c9_pmcr;
2131 case 1: /* count enable set */
2132 case 2: /* count enable clear */
2133 return env->cp15.c9_pmcnten;
2134 case 3: /* overflow flag status */
2135 return env->cp15.c9_pmovsr;
2136 case 4: /* software increment */
2137 case 5: /* event counter selection register */
2138 return 0; /* Unimplemented, RAZ/WI */
2142 case 13: /* Performance counters */
2143 if (!arm_feature(env, ARM_FEATURE_V7)) {
2147 case 1: /* Event type select */
2148 return env->cp15.c9_pmxevtyper;
2149 case 0: /* Cycle count register */
2150 case 2: /* Event count register */
2151 /* Unimplemented, so RAZ/WI */
2156 case 14: /* Performance monitor control */
2157 if (!arm_feature(env, ARM_FEATURE_V7)) {
2161 case 0: /* user enable */
2162 return env->cp15.c9_pmuserenr;
2163 case 1: /* interrupt enable set */
2164 case 2: /* interrupt enable clear */
2165 return env->cp15.c9_pminten;
2173 case 10: /* MMU TLB lockdown. */
2174 /* ??? TLB lockdown not implemented. */
2176 case 11: /* TCM DMA control. */
2177 case 12: /* Reserved. */
2179 case 13: /* Process ID. */
2182 return env->cp15.c13_fcse;
2184 return env->cp15.c13_context;
2188 case 14: /* Generic timer */
2189 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2190 /* Dummy implementation: RAZ/WI for all */
2194 case 15: /* Implementation specific. */
2195 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2196 if (op2 == 0 && crm == 1)
2197 return env->cp15.c15_cpar;
2201 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2205 case 1: /* Read TI925T configuration. */
2206 return env->cp15.c15_ticonfig;
2207 case 2: /* Read I_max. */
2208 return env->cp15.c15_i_max;
2209 case 3: /* Read I_min. */
2210 return env->cp15.c15_i_min;
2211 case 4: /* Read thread-ID. */
2212 return env->cp15.c15_threadid;
2213 case 8: /* TI925T_status */
2216 /* TODO: Peripheral port remap register:
2217 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2218 * controller base address at $rn & ~0xfff and map size of
2219 * 0x200 << ($rn & 0xfff), when MMU is off. */
2222 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2225 if ((op1 == 4) && (op2 == 0)) {
2226 /* The config_base_address should hold the value of
2227 * the peripheral base. ARM should get this from a CPU
2228 * object property, but that support isn't available in
2229 * December 2011. Default to 0 for now and board models
2230 * that care can set it by a private hook */
2231 return env->cp15.c15_config_base_address;
2232 } else if ((op1 == 0) && (op2 == 0)) {
2233 /* power_control should be set to maximum latency. Again,
2234 default to 0 and set by private hook */
2235 return env->cp15.c15_power_control;
2236 } else if ((op1 == 0) && (op2 == 1)) {
2237 return env->cp15.c15_diagnostic;
2238 } else if ((op1 == 0) && (op2 == 2)) {
2239 return env->cp15.c15_power_diagnostic;
2242 case 1: /* NEON Busy */
2244 case 5: /* tlb lockdown */
2247 if ((op1 == 5) && (op2 == 2)) {
2259 /* ??? For debugging only. Should raise illegal instruction exception. */
2260 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2261 (insn >> 16) & 0xf, crm, op1, op2);
2265 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2267 if ((env->uncached_cpsr & CPSR_M) == mode) {
2268 env->regs[13] = val;
2270 env->banked_r13[bank_number(env, mode)] = val;
2274 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2276 if ((env->uncached_cpsr & CPSR_M) == mode) {
2277 return env->regs[13];
2279 return env->banked_r13[bank_number(env, mode)];
2283 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2287 return xpsr_read(env) & 0xf8000000;
2289 return xpsr_read(env) & 0xf80001ff;
2291 return xpsr_read(env) & 0xff00fc00;
2293 return xpsr_read(env) & 0xff00fdff;
2295 return xpsr_read(env) & 0x000001ff;
2297 return xpsr_read(env) & 0x0700fc00;
2299 return xpsr_read(env) & 0x0700edff;
2301 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2303 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2304 case 16: /* PRIMASK */
2305 return (env->uncached_cpsr & CPSR_I) != 0;
2306 case 17: /* BASEPRI */
2307 case 18: /* BASEPRI_MAX */
2308 return env->v7m.basepri;
2309 case 19: /* FAULTMASK */
2310 return (env->uncached_cpsr & CPSR_F) != 0;
2311 case 20: /* CONTROL */
2312 return env->v7m.control;
2314 /* ??? For debugging only. */
2315 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2320 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2324 xpsr_write(env, val, 0xf8000000);
2327 xpsr_write(env, val, 0xf8000000);
2330 xpsr_write(env, val, 0xfe00fc00);
2333 xpsr_write(env, val, 0xfe00fc00);
2336 /* IPSR bits are readonly. */
2339 xpsr_write(env, val, 0x0600fc00);
2342 xpsr_write(env, val, 0x0600fc00);
2345 if (env->v7m.current_sp)
2346 env->v7m.other_sp = val;
2348 env->regs[13] = val;
2351 if (env->v7m.current_sp)
2352 env->regs[13] = val;
2354 env->v7m.other_sp = val;
2356 case 16: /* PRIMASK */
2358 env->uncached_cpsr |= CPSR_I;
2360 env->uncached_cpsr &= ~CPSR_I;
2362 case 17: /* BASEPRI */
2363 env->v7m.basepri = val & 0xff;
2365 case 18: /* BASEPRI_MAX */
2367 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2368 env->v7m.basepri = val;
2370 case 19: /* FAULTMASK */
2372 env->uncached_cpsr |= CPSR_F;
2374 env->uncached_cpsr &= ~CPSR_F;
2376 case 20: /* CONTROL */
2377 env->v7m.control = val & 3;
2378 switch_v7m_sp(env, (val & 2) != 0);
2381 /* ??? For debugging only. */
2382 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2387 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2388 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2391 if (cpnum < 0 || cpnum > 14) {
2392 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2396 env->cp[cpnum].cp_read = cp_read;
2397 env->cp[cpnum].cp_write = cp_write;
2398 env->cp[cpnum].opaque = opaque;
2403 /* Note that signed overflow is undefined in C. The following routines are
2404 careful to use unsigned types where modulo arithmetic is required.
2405 Failure to do so _will_ break on newer gcc. */
2407 /* Signed saturating arithmetic. */
2409 /* Perform 16-bit signed saturating addition. */
2410 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2415 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2424 /* Perform 8-bit signed saturating addition. */
2425 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2430 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2439 /* Perform 16-bit signed saturating subtraction. */
2440 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2445 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2454 /* Perform 8-bit signed saturating subtraction. */
2455 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2460 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2469 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2470 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2471 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2472 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2475 #include "op_addsub.h"
2477 /* Unsigned saturating arithmetic. */
2478 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2487 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2495 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2504 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2512 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2513 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2514 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2515 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2518 #include "op_addsub.h"
2520 /* Signed modulo arithmetic. */
2521 #define SARITH16(a, b, n, op) do { \
2523 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2524 RESULT(sum, n, 16); \
2526 ge |= 3 << (n * 2); \
2529 #define SARITH8(a, b, n, op) do { \
2531 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2532 RESULT(sum, n, 8); \
2538 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2539 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2540 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2541 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2545 #include "op_addsub.h"
2547 /* Unsigned modulo arithmetic. */
2548 #define ADD16(a, b, n) do { \
2550 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2551 RESULT(sum, n, 16); \
2552 if ((sum >> 16) == 1) \
2553 ge |= 3 << (n * 2); \
2556 #define ADD8(a, b, n) do { \
2558 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2559 RESULT(sum, n, 8); \
2560 if ((sum >> 8) == 1) \
2564 #define SUB16(a, b, n) do { \
2566 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2567 RESULT(sum, n, 16); \
2568 if ((sum >> 16) == 0) \
2569 ge |= 3 << (n * 2); \
2572 #define SUB8(a, b, n) do { \
2574 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2575 RESULT(sum, n, 8); \
2576 if ((sum >> 8) == 0) \
2583 #include "op_addsub.h"
2585 /* Halved signed arithmetic. */
2586 #define ADD16(a, b, n) \
2587 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2588 #define SUB16(a, b, n) \
2589 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2590 #define ADD8(a, b, n) \
2591 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2592 #define SUB8(a, b, n) \
2593 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2596 #include "op_addsub.h"
2598 /* Halved unsigned arithmetic. */
2599 #define ADD16(a, b, n) \
2600 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2601 #define SUB16(a, b, n) \
2602 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2603 #define ADD8(a, b, n) \
2604 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2605 #define SUB8(a, b, n) \
2606 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2609 #include "op_addsub.h"
2611 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2619 /* Unsigned sum of absolute byte differences. */
2620 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2623 sum = do_usad(a, b);
2624 sum += do_usad(a >> 8, b >> 8);
2625 sum += do_usad(a >> 16, b >>16);
2626 sum += do_usad(a >> 24, b >> 24);
2630 /* For ARMv6 SEL instruction. */
2631 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2644 return (a & mask) | (b & ~mask);
2647 uint32_t HELPER(logicq_cc)(uint64_t val)
2649 return (val >> 32) | (val != 0);
2652 /* VFP support. We follow the convention used for VFP instrunctions:
2653 Single precition routines have a "s" suffix, double precision a
2656 /* Convert host exception flags to vfp form. */
2657 static inline int vfp_exceptbits_from_host(int host_bits)
2659 int target_bits = 0;
2661 if (host_bits & float_flag_invalid)
2663 if (host_bits & float_flag_divbyzero)
2665 if (host_bits & float_flag_overflow)
2667 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2669 if (host_bits & float_flag_inexact)
2670 target_bits |= 0x10;
2671 if (host_bits & float_flag_input_denormal)
2672 target_bits |= 0x80;
2676 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2681 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2682 | (env->vfp.vec_len << 16)
2683 | (env->vfp.vec_stride << 20);
2684 i = get_float_exception_flags(&env->vfp.fp_status);
2685 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2686 fpscr |= vfp_exceptbits_from_host(i);
2690 uint32_t vfp_get_fpscr(CPUARMState *env)
2692 return HELPER(vfp_get_fpscr)(env);
2695 /* Convert vfp exception flags to target form. */
2696 static inline int vfp_exceptbits_to_host(int target_bits)
2700 if (target_bits & 1)
2701 host_bits |= float_flag_invalid;
2702 if (target_bits & 2)
2703 host_bits |= float_flag_divbyzero;
2704 if (target_bits & 4)
2705 host_bits |= float_flag_overflow;
2706 if (target_bits & 8)
2707 host_bits |= float_flag_underflow;
2708 if (target_bits & 0x10)
2709 host_bits |= float_flag_inexact;
2710 if (target_bits & 0x80)
2711 host_bits |= float_flag_input_denormal;
2715 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2720 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2721 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2722 env->vfp.vec_len = (val >> 16) & 7;
2723 env->vfp.vec_stride = (val >> 20) & 3;
2726 if (changed & (3 << 22)) {
2727 i = (val >> 22) & 3;
2730 i = float_round_nearest_even;
2736 i = float_round_down;
2739 i = float_round_to_zero;
2742 set_float_rounding_mode(i, &env->vfp.fp_status);
2744 if (changed & (1 << 24)) {
2745 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2746 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2748 if (changed & (1 << 25))
2749 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2751 i = vfp_exceptbits_to_host(val);
2752 set_float_exception_flags(i, &env->vfp.fp_status);
2753 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2756 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2758 HELPER(vfp_set_fpscr)(env, val);
2761 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2763 #define VFP_BINOP(name) \
2764 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2766 float_status *fpst = fpstp; \
2767 return float32_ ## name(a, b, fpst); \
2769 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2771 float_status *fpst = fpstp; \
2772 return float64_ ## name(a, b, fpst); \
2780 float32 VFP_HELPER(neg, s)(float32 a)
2782 return float32_chs(a);
2785 float64 VFP_HELPER(neg, d)(float64 a)
2787 return float64_chs(a);
2790 float32 VFP_HELPER(abs, s)(float32 a)
2792 return float32_abs(a);
2795 float64 VFP_HELPER(abs, d)(float64 a)
2797 return float64_abs(a);
2800 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2802 return float32_sqrt(a, &env->vfp.fp_status);
2805 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2807 return float64_sqrt(a, &env->vfp.fp_status);
2810 /* XXX: check quiet/signaling case */
2811 #define DO_VFP_cmp(p, type) \
2812 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2815 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2816 case 0: flags = 0x6; break; \
2817 case -1: flags = 0x8; break; \
2818 case 1: flags = 0x2; break; \
2819 default: case 2: flags = 0x3; break; \
2821 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2822 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2824 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2827 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2828 case 0: flags = 0x6; break; \
2829 case -1: flags = 0x8; break; \
2830 case 1: flags = 0x2; break; \
2831 default: case 2: flags = 0x3; break; \
2833 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2834 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2836 DO_VFP_cmp(s, float32)
2837 DO_VFP_cmp(d, float64)
2840 /* Integer to float and float to integer conversions */
2842 #define CONV_ITOF(name, fsz, sign) \
2843 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2845 float_status *fpst = fpstp; \
2846 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2849 #define CONV_FTOI(name, fsz, sign, round) \
2850 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2852 float_status *fpst = fpstp; \
2853 if (float##fsz##_is_any_nan(x)) { \
2854 float_raise(float_flag_invalid, fpst); \
2857 return float##fsz##_to_##sign##int32##round(x, fpst); \
2860 #define FLOAT_CONVS(name, p, fsz, sign) \
2861 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2862 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2863 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2865 FLOAT_CONVS(si, s, 32, )
2866 FLOAT_CONVS(si, d, 64, )
2867 FLOAT_CONVS(ui, s, 32, u)
2868 FLOAT_CONVS(ui, d, 64, u)
2874 /* floating point conversion */
2875 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2877 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2878 /* ARM requires that S<->D conversion of any kind of NaN generates
2879 * a quiet NaN by forcing the most significant frac bit to 1.
2881 return float64_maybe_silence_nan(r);
2884 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2886 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2887 /* ARM requires that S<->D conversion of any kind of NaN generates
2888 * a quiet NaN by forcing the most significant frac bit to 1.
2890 return float32_maybe_silence_nan(r);
2893 /* VFP3 fixed point conversion. */
2894 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2895 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2898 float_status *fpst = fpstp; \
2900 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2901 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2903 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2906 float_status *fpst = fpstp; \
2908 if (float##fsz##_is_any_nan(x)) { \
2909 float_raise(float_flag_invalid, fpst); \
2912 tmp = float##fsz##_scalbn(x, shift, fpst); \
2913 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2916 VFP_CONV_FIX(sh, d, 64, int16, )
2917 VFP_CONV_FIX(sl, d, 64, int32, )
2918 VFP_CONV_FIX(uh, d, 64, uint16, u)
2919 VFP_CONV_FIX(ul, d, 64, uint32, u)
2920 VFP_CONV_FIX(sh, s, 32, int16, )
2921 VFP_CONV_FIX(sl, s, 32, int32, )
2922 VFP_CONV_FIX(uh, s, 32, uint16, u)
2923 VFP_CONV_FIX(ul, s, 32, uint32, u)
2926 /* Half precision conversions. */
2927 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2929 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2930 float32 r = float16_to_float32(make_float16(a), ieee, s);
2932 return float32_maybe_silence_nan(r);
2937 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2939 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2940 float16 r = float32_to_float16(a, ieee, s);
2942 r = float16_maybe_silence_nan(r);
2944 return float16_val(r);
2947 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2949 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2952 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2954 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2957 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2959 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2962 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2964 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2967 #define float32_two make_float32(0x40000000)
2968 #define float32_three make_float32(0x40400000)
2969 #define float32_one_point_five make_float32(0x3fc00000)
2971 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2973 float_status *s = &env->vfp.standard_fp_status;
2974 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2975 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2976 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2977 float_raise(float_flag_input_denormal, s);
2981 return float32_sub(float32_two, float32_mul(a, b, s), s);
2984 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2986 float_status *s = &env->vfp.standard_fp_status;
2988 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2989 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2990 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2991 float_raise(float_flag_input_denormal, s);
2993 return float32_one_point_five;
2995 product = float32_mul(a, b, s);
2996 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3001 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3002 * int->float conversions at run-time. */
3003 #define float64_256 make_float64(0x4070000000000000LL)
3004 #define float64_512 make_float64(0x4080000000000000LL)
3006 /* The algorithm that must be used to calculate the estimate
3007 * is specified by the ARM ARM.
3009 static float64 recip_estimate(float64 a, CPUARMState *env)
3011 /* These calculations mustn't set any fp exception flags,
3012 * so we use a local copy of the fp_status.
3014 float_status dummy_status = env->vfp.standard_fp_status;
3015 float_status *s = &dummy_status;
3016 /* q = (int)(a * 512.0) */
3017 float64 q = float64_mul(float64_512, a, s);
3018 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3020 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3021 q = int64_to_float64(q_int, s);
3022 q = float64_add(q, float64_half, s);
3023 q = float64_div(q, float64_512, s);
3024 q = float64_div(float64_one, q, s);
3026 /* s = (int)(256.0 * r + 0.5) */
3027 q = float64_mul(q, float64_256, s);
3028 q = float64_add(q, float64_half, s);
3029 q_int = float64_to_int64_round_to_zero(q, s);
3031 /* return (double)s / 256.0 */
3032 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3035 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3037 float_status *s = &env->vfp.standard_fp_status;
3039 uint32_t val32 = float32_val(a);
3042 int a_exp = (val32 & 0x7f800000) >> 23;
3043 int sign = val32 & 0x80000000;
3045 if (float32_is_any_nan(a)) {
3046 if (float32_is_signaling_nan(a)) {
3047 float_raise(float_flag_invalid, s);
3049 return float32_default_nan;
3050 } else if (float32_is_infinity(a)) {
3051 return float32_set_sign(float32_zero, float32_is_neg(a));
3052 } else if (float32_is_zero_or_denormal(a)) {
3053 if (!float32_is_zero(a)) {
3054 float_raise(float_flag_input_denormal, s);
3056 float_raise(float_flag_divbyzero, s);
3057 return float32_set_sign(float32_infinity, float32_is_neg(a));
3058 } else if (a_exp >= 253) {
3059 float_raise(float_flag_underflow, s);
3060 return float32_set_sign(float32_zero, float32_is_neg(a));
3063 f64 = make_float64((0x3feULL << 52)
3064 | ((int64_t)(val32 & 0x7fffff) << 29));
3066 result_exp = 253 - a_exp;
3068 f64 = recip_estimate(f64, env);
3071 | ((result_exp & 0xff) << 23)
3072 | ((float64_val(f64) >> 29) & 0x7fffff);
3073 return make_float32(val32);
3076 /* The algorithm that must be used to calculate the estimate
3077 * is specified by the ARM ARM.
3079 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3081 /* These calculations mustn't set any fp exception flags,
3082 * so we use a local copy of the fp_status.
3084 float_status dummy_status = env->vfp.standard_fp_status;
3085 float_status *s = &dummy_status;
3089 if (float64_lt(a, float64_half, s)) {
3090 /* range 0.25 <= a < 0.5 */
3092 /* a in units of 1/512 rounded down */
3093 /* q0 = (int)(a * 512.0); */
3094 q = float64_mul(float64_512, a, s);
3095 q_int = float64_to_int64_round_to_zero(q, s);
3097 /* reciprocal root r */
3098 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3099 q = int64_to_float64(q_int, s);
3100 q = float64_add(q, float64_half, s);
3101 q = float64_div(q, float64_512, s);
3102 q = float64_sqrt(q, s);
3103 q = float64_div(float64_one, q, s);
3105 /* range 0.5 <= a < 1.0 */
3107 /* a in units of 1/256 rounded down */
3108 /* q1 = (int)(a * 256.0); */
3109 q = float64_mul(float64_256, a, s);
3110 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3112 /* reciprocal root r */
3113 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3114 q = int64_to_float64(q_int, s);
3115 q = float64_add(q, float64_half, s);
3116 q = float64_div(q, float64_256, s);
3117 q = float64_sqrt(q, s);
3118 q = float64_div(float64_one, q, s);
3120 /* r in units of 1/256 rounded to nearest */
3121 /* s = (int)(256.0 * r + 0.5); */
3123 q = float64_mul(q, float64_256,s );
3124 q = float64_add(q, float64_half, s);
3125 q_int = float64_to_int64_round_to_zero(q, s);
3127 /* return (double)s / 256.0;*/
3128 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3131 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3133 float_status *s = &env->vfp.standard_fp_status;
3139 val = float32_val(a);
3141 if (float32_is_any_nan(a)) {
3142 if (float32_is_signaling_nan(a)) {
3143 float_raise(float_flag_invalid, s);
3145 return float32_default_nan;
3146 } else if (float32_is_zero_or_denormal(a)) {
3147 if (!float32_is_zero(a)) {
3148 float_raise(float_flag_input_denormal, s);
3150 float_raise(float_flag_divbyzero, s);
3151 return float32_set_sign(float32_infinity, float32_is_neg(a));
3152 } else if (float32_is_neg(a)) {
3153 float_raise(float_flag_invalid, s);
3154 return float32_default_nan;
3155 } else if (float32_is_infinity(a)) {
3156 return float32_zero;
3159 /* Normalize to a double-precision value between 0.25 and 1.0,
3160 * preserving the parity of the exponent. */
3161 if ((val & 0x800000) == 0) {
3162 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3164 | ((uint64_t)(val & 0x7fffff) << 29));
3166 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3168 | ((uint64_t)(val & 0x7fffff) << 29));
3171 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3173 f64 = recip_sqrt_estimate(f64, env);
3175 val64 = float64_val(f64);
3177 val = ((result_exp & 0xff) << 23)
3178 | ((val64 >> 29) & 0x7fffff);
3179 return make_float32(val);
3182 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3186 if ((a & 0x80000000) == 0) {
3190 f64 = make_float64((0x3feULL << 52)
3191 | ((int64_t)(a & 0x7fffffff) << 21));
3193 f64 = recip_estimate (f64, env);
3195 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3198 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3202 if ((a & 0xc0000000) == 0) {
3206 if (a & 0x80000000) {
3207 f64 = make_float64((0x3feULL << 52)
3208 | ((uint64_t)(a & 0x7fffffff) << 21));
3209 } else { /* bits 31-30 == '01' */
3210 f64 = make_float64((0x3fdULL << 52)
3211 | ((uint64_t)(a & 0x3fffffff) << 22));
3214 f64 = recip_sqrt_estimate(f64, env);
3216 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3219 /* VFPv4 fused multiply-accumulate */
3220 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3222 float_status *fpst = fpstp;
3223 return float32_muladd(a, b, c, 0, fpst);
3226 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3228 float_status *fpst = fpstp;
3229 return float64_muladd(a, b, c, 0, fpst);
3232 void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
3235 if (env->teecr != val) {