2 * QEMU model for the AXIS devboard 88.
4 * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
46 static struct nand_state_t nand_state;
47 static uint32_t nand_readl (void *opaque, target_phys_addr_t addr)
49 struct nand_state_t *s = opaque;
53 r = nand_getio(s->nand);
54 nand_getpins(s->nand, &rdy);
57 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
62 nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
64 struct nand_state_t *s = opaque;
67 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value));
68 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
69 nand_setio(s->nand, value);
70 nand_getpins(s->nand, &rdy);
74 static CPUReadMemoryFunc * const nand_read[] = {
80 static CPUWriteMemoryFunc * const nand_write[] = {
89 unsigned int shiftreg;
98 static void tempsensor_clkedge(struct tempsensor_t *s,
99 unsigned int clk, unsigned int data_in)
101 D(printf("%s clk=%d state=%d sr=%x\n", __func__,
102 clk, s->state, s->shiftreg));
109 /* Output reg is clocked at negedge. */
131 /* Indata is sampled at posedge. */
135 s->shiftreg |= data_in & 1;
137 D(printf("%s cfgreg=%x\n", __func__, s->shiftreg));
138 s->regs[0] = s->shiftreg;
142 if ((s->regs[0] & 0xff) == 0) {
143 /* 25 degrees celcius. */
144 s->shiftreg = 0x0b9f;
145 } else if ((s->regs[0] & 0xff) == 0xff) {
146 /* Sensor ID, 0x8100 LM70. */
147 s->shiftreg = 0x8100;
149 printf("Invalid tempsens state %x\n", s->regs[0]);
157 #define RW_PA_DOUT 0x00
158 #define R_PA_DIN 0x01
159 #define RW_PA_OE 0x02
160 #define RW_PD_DOUT 0x10
161 #define R_PD_DIN 0x11
162 #define RW_PD_OE 0x12
164 static struct gpio_state_t
166 struct nand_state_t *nand;
167 struct tempsensor_t tempsensor;
168 uint32_t regs[0x5c / 4];
171 static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr)
173 struct gpio_state_t *s = opaque;
180 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
182 /* Encode pins from the nand. */
183 r |= s->nand->rdy << 7;
186 r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE];
188 /* Encode temp sensor pins. */
189 r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4;
197 D(printf("%s %x=%x\n", __func__, addr, r));
200 static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
202 struct gpio_state_t *s = opaque;
203 D(printf("%s %x=%x\n", __func__, addr, value));
209 /* Decode nand pins. */
210 s->nand->ale = !!(value & (1 << 6));
211 s->nand->cle = !!(value & (1 << 5));
212 s->nand->ce = !!(value & (1 << 4));
214 s->regs[addr] = value;
218 /* Temp sensor clk. */
219 if ((s->regs[addr] ^ value) & 2)
220 tempsensor_clkedge(&s->tempsensor, !!(value & 2),
222 s->regs[addr] = value;
226 s->regs[addr] = value;
231 static CPUReadMemoryFunc * const gpio_read[] = {
236 static CPUWriteMemoryFunc * const gpio_write[] = {
241 #define INTMEM_SIZE (128 * 1024)
243 static uint32_t bootstrap_pc;
244 static void main_cpu_reset(void *opaque)
246 CPUState *env = opaque;
249 env->pc = bootstrap_pc;
252 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
254 return addr - 0x80000000LL;
258 void axisdev88_init (ram_addr_t ram_size,
259 const char *boot_device,
260 const char *kernel_filename, const char *kernel_cmdline,
261 const char *initrd_filename, const char *cpu_model)
266 qemu_irq irq[30], nmi[2], *cpu_irq;
268 struct etraxfs_dma_client *eth[2] = {NULL, NULL};
274 ram_addr_t phys_intmem;
277 if (cpu_model == NULL) {
278 cpu_model = "crisv32";
280 env = cpu_init(cpu_model);
281 qemu_register_reset(main_cpu_reset, env);
284 phys_ram = qemu_ram_alloc(ram_size);
285 cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM);
287 /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
289 phys_intmem = qemu_ram_alloc(INTMEM_SIZE);
290 cpu_register_physical_memory(0x38000000, INTMEM_SIZE,
291 phys_intmem | IO_MEM_RAM);
294 /* Attach a NAND flash to CS1. */
295 nand_state.nand = nand_init(NAND_MFR_STMICRO, 0x39);
296 nand_regs = cpu_register_io_memory(nand_read, nand_write, &nand_state);
297 cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs);
299 gpio_state.nand = &nand_state;
300 gpio_regs = cpu_register_io_memory(gpio_read, gpio_write, &gpio_state);
301 cpu_register_physical_memory(0x3001a000, 0x5c, gpio_regs);
304 cpu_irq = cris_pic_init_cpu(env);
305 dev = qdev_create(NULL, "etraxfs,pic");
306 /* FIXME: Is there a proper way to signal vectors to the CPU core? */
307 qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector);
308 qdev_init_nofail(dev);
309 s = sysbus_from_qdev(dev);
310 sysbus_mmio_map(s, 0, 0x3001c000);
311 sysbus_connect_irq(s, 0, cpu_irq[0]);
312 sysbus_connect_irq(s, 1, cpu_irq[1]);
313 for (i = 0; i < 30; i++) {
314 irq[i] = qdev_get_gpio_in(dev, i);
316 nmi[0] = qdev_get_gpio_in(dev, 30);
317 nmi[1] = qdev_get_gpio_in(dev, 31);
319 etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10);
320 for (i = 0; i < 10; i++) {
321 /* On ETRAX, odd numbered channels are inputs. */
322 etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1);
325 /* Add the two ethernet blocks. */
326 eth[0] = etraxfs_eth_init(&nd_table[0], 0x30034000, 1);
328 eth[1] = etraxfs_eth_init(&nd_table[1], 0x30036000, 2);
330 /* The DMA Connector block is missing, hardwire things for now. */
331 etraxfs_dmac_connect_client(etraxfs_dmac, 0, eth[0]);
332 etraxfs_dmac_connect_client(etraxfs_dmac, 1, eth[0] + 1);
334 etraxfs_dmac_connect_client(etraxfs_dmac, 6, eth[1]);
335 etraxfs_dmac_connect_client(etraxfs_dmac, 7, eth[1] + 1);
339 sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL);
340 sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL);
342 for (i = 0; i < 4; i++) {
343 sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000,
347 if (kernel_filename) {
348 uint64_t entry, high;
351 /* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis
353 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
354 &entry, NULL, &high, 0, ELF_MACHINE, 0);
355 bootstrap_pc = entry;
356 if (kernel_size < 0) {
357 /* Takes a kimage from the axis devboard SDK. */
358 kernel_size = load_image_targphys(kernel_filename, 0x40004000,
360 bootstrap_pc = 0x40004000;
361 env->regs[9] = 0x40004000 + kernel_size;
363 env->regs[8] = 0x56902387; /* RAM init magic. */
365 if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) {
366 if (kcmdline_len > 256) {
367 fprintf(stderr, "Too long CRIS kernel cmdline (max 256)\n");
370 /* Let the kernel know we are modifying the cmdline. */
371 env->regs[10] = 0x87109563;
372 env->regs[11] = 0x40000000;
373 pstrcpy_targphys("cmdline", env->regs[11], 256, kernel_cmdline);
376 env->pc = bootstrap_pc;
378 printf ("pc =%x\n", env->pc);
379 printf ("ram size =%ld\n", ram_size);
382 static QEMUMachine axisdev88_machine = {
383 .name = "axis-dev88",
384 .desc = "AXIS devboard 88",
385 .init = axisdev88_init,
388 static void axisdev88_machine_init(void)
390 qemu_register_machine(&axisdev88_machine);
393 machine_init(axisdev88_machine_init);