]> Git Repo - qemu.git/blob - hw/lm32_boards.c
Merge branch pci into master
[qemu.git] / hw / lm32_boards.c
1 /*
2  *  QEMU models for LatticeMico32 uclinux and evr32 boards.
3  *
4  *  Copyright (c) 2010 Michael Walle <[email protected]>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "sysbus.h"
21 #include "hw.h"
22 #include "net.h"
23 #include "flash.h"
24 #include "devices.h"
25 #include "boards.h"
26 #include "loader.h"
27 #include "blockdev.h"
28 #include "elf.h"
29 #include "lm32_hwsetup.h"
30 #include "lm32.h"
31 #include "exec-memory.h"
32
33 typedef struct {
34     LM32CPU *cpu;
35     target_phys_addr_t bootstrap_pc;
36     target_phys_addr_t flash_base;
37     target_phys_addr_t hwsetup_base;
38     target_phys_addr_t initrd_base;
39     size_t initrd_size;
40     target_phys_addr_t cmdline_base;
41 } ResetInfo;
42
43 static void cpu_irq_handler(void *opaque, int irq, int level)
44 {
45     CPULM32State *env = opaque;
46
47     if (level) {
48         cpu_interrupt(env, CPU_INTERRUPT_HARD);
49     } else {
50         cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
51     }
52 }
53
54 static void main_cpu_reset(void *opaque)
55 {
56     ResetInfo *reset_info = opaque;
57     CPULM32State *env = &reset_info->cpu->env;
58
59     cpu_reset(CPU(reset_info->cpu));
60
61     /* init defaults */
62     env->pc = (uint32_t)reset_info->bootstrap_pc;
63     env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
64     env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
65     env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
66     env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
67         reset_info->initrd_size);
68     env->eba = reset_info->flash_base;
69     env->deba = reset_info->flash_base;
70 }
71
72 static void lm32_evr_init(ram_addr_t ram_size_not_used,
73                           const char *boot_device,
74                           const char *kernel_filename,
75                           const char *kernel_cmdline,
76                           const char *initrd_filename, const char *cpu_model)
77 {
78     LM32CPU *cpu;
79     CPULM32State *env;
80     DriveInfo *dinfo;
81     MemoryRegion *address_space_mem =  get_system_memory();
82     MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
83     qemu_irq *cpu_irq, irq[32];
84     ResetInfo *reset_info;
85     int i;
86
87     /* memory map */
88     target_phys_addr_t flash_base  = 0x04000000;
89     size_t flash_sector_size       = 256 * 1024;
90     size_t flash_size              = 32 * 1024 * 1024;
91     target_phys_addr_t ram_base    = 0x08000000;
92     size_t ram_size                = 64 * 1024 * 1024;
93     target_phys_addr_t timer0_base = 0x80002000;
94     target_phys_addr_t uart0_base  = 0x80006000;
95     target_phys_addr_t timer1_base = 0x8000a000;
96     int uart0_irq                  = 0;
97     int timer0_irq                 = 1;
98     int timer1_irq                 = 3;
99
100     reset_info = g_malloc0(sizeof(ResetInfo));
101
102     if (cpu_model == NULL) {
103         cpu_model = "lm32-full";
104     }
105     cpu = cpu_lm32_init(cpu_model);
106     env = &cpu->env;
107     reset_info->cpu = cpu;
108
109     reset_info->flash_base = flash_base;
110
111     memory_region_init_ram(phys_ram, "lm32_evr.sdram", ram_size);
112     vmstate_register_ram_global(phys_ram);
113     memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
114
115     dinfo = drive_get(IF_PFLASH, 0, 0);
116     /* Spansion S29NS128P */
117     pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
118                           dinfo ? dinfo->bdrv : NULL, flash_sector_size,
119                           flash_size / flash_sector_size, 1, 2,
120                           0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
121
122     /* create irq lines */
123     cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
124     env->pic_state = lm32_pic_init(*cpu_irq);
125     for (i = 0; i < 32; i++) {
126         irq[i] = qdev_get_gpio_in(env->pic_state, i);
127     }
128
129     sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
130     sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
131     sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
132
133     /* make sure juart isn't the first chardev */
134     env->juart_state = lm32_juart_init();
135
136     reset_info->bootstrap_pc = flash_base;
137
138     if (kernel_filename) {
139         uint64_t entry;
140         int kernel_size;
141
142         kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
143                                1, ELF_MACHINE, 0);
144         reset_info->bootstrap_pc = entry;
145
146         if (kernel_size < 0) {
147             kernel_size = load_image_targphys(kernel_filename, ram_base,
148                                               ram_size);
149             reset_info->bootstrap_pc = ram_base;
150         }
151
152         if (kernel_size < 0) {
153             fprintf(stderr, "qemu: could not load kernel '%s'\n",
154                     kernel_filename);
155             exit(1);
156         }
157     }
158
159     qemu_register_reset(main_cpu_reset, reset_info);
160 }
161
162 static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
163                           const char *boot_device,
164                           const char *kernel_filename,
165                           const char *kernel_cmdline,
166                           const char *initrd_filename, const char *cpu_model)
167 {
168     LM32CPU *cpu;
169     CPULM32State *env;
170     DriveInfo *dinfo;
171     MemoryRegion *address_space_mem =  get_system_memory();
172     MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
173     qemu_irq *cpu_irq, irq[32];
174     HWSetup *hw;
175     ResetInfo *reset_info;
176     int i;
177
178     /* memory map */
179     target_phys_addr_t flash_base   = 0x04000000;
180     size_t flash_sector_size        = 256 * 1024;
181     size_t flash_size               = 32 * 1024 * 1024;
182     target_phys_addr_t ram_base     = 0x08000000;
183     size_t ram_size                 = 64 * 1024 * 1024;
184     target_phys_addr_t uart0_base   = 0x80000000;
185     target_phys_addr_t timer0_base  = 0x80002000;
186     target_phys_addr_t timer1_base  = 0x80010000;
187     target_phys_addr_t timer2_base  = 0x80012000;
188     int uart0_irq                   = 0;
189     int timer0_irq                  = 1;
190     int timer1_irq                  = 20;
191     int timer2_irq                  = 21;
192     target_phys_addr_t hwsetup_base = 0x0bffe000;
193     target_phys_addr_t cmdline_base = 0x0bfff000;
194     target_phys_addr_t initrd_base  = 0x08400000;
195     size_t initrd_max               = 0x01000000;
196
197     reset_info = g_malloc0(sizeof(ResetInfo));
198
199     if (cpu_model == NULL) {
200         cpu_model = "lm32-full";
201     }
202     cpu = cpu_lm32_init(cpu_model);
203     env = &cpu->env;
204     reset_info->cpu = cpu;
205
206     reset_info->flash_base = flash_base;
207
208     memory_region_init_ram(phys_ram, "lm32_uclinux.sdram", ram_size);
209     vmstate_register_ram_global(phys_ram);
210     memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
211
212     dinfo = drive_get(IF_PFLASH, 0, 0);
213     /* Spansion S29NS128P */
214     pflash_cfi02_register(flash_base, NULL, "lm32_uclinux.flash", flash_size,
215                           dinfo ? dinfo->bdrv : NULL, flash_sector_size,
216                           flash_size / flash_sector_size, 1, 2,
217                           0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
218
219     /* create irq lines */
220     cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
221     env->pic_state = lm32_pic_init(*cpu_irq);
222     for (i = 0; i < 32; i++) {
223         irq[i] = qdev_get_gpio_in(env->pic_state, i);
224     }
225
226     sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
227     sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
228     sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
229     sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
230
231     /* make sure juart isn't the first chardev */
232     env->juart_state = lm32_juart_init();
233
234     reset_info->bootstrap_pc = flash_base;
235
236     if (kernel_filename) {
237         uint64_t entry;
238         int kernel_size;
239
240         kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
241                                1, ELF_MACHINE, 0);
242         reset_info->bootstrap_pc = entry;
243
244         if (kernel_size < 0) {
245             kernel_size = load_image_targphys(kernel_filename, ram_base,
246                                               ram_size);
247             reset_info->bootstrap_pc = ram_base;
248         }
249
250         if (kernel_size < 0) {
251             fprintf(stderr, "qemu: could not load kernel '%s'\n",
252                     kernel_filename);
253             exit(1);
254         }
255     }
256
257     /* generate a rom with the hardware description */
258     hw = hwsetup_init();
259     hwsetup_add_cpu(hw, "LM32", 75000000);
260     hwsetup_add_flash(hw, "flash", flash_base, flash_size);
261     hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
262     hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
263     hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
264     hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
265     hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
266     hwsetup_add_trailer(hw);
267     hwsetup_create_rom(hw, hwsetup_base);
268     hwsetup_free(hw);
269
270     reset_info->hwsetup_base = hwsetup_base;
271
272     if (kernel_cmdline && strlen(kernel_cmdline)) {
273         pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
274                 kernel_cmdline);
275         reset_info->cmdline_base = cmdline_base;
276     }
277
278     if (initrd_filename) {
279         size_t initrd_size;
280         initrd_size = load_image_targphys(initrd_filename, initrd_base,
281                 initrd_max);
282         reset_info->initrd_base = initrd_base;
283         reset_info->initrd_size = initrd_size;
284     }
285
286     qemu_register_reset(main_cpu_reset, reset_info);
287 }
288
289 static QEMUMachine lm32_evr_machine = {
290     .name = "lm32-evr",
291     .desc = "LatticeMico32 EVR32 eval system",
292     .init = lm32_evr_init,
293     .is_default = 1
294 };
295
296 static QEMUMachine lm32_uclinux_machine = {
297     .name = "lm32-uclinux",
298     .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
299     .init = lm32_uclinux_init,
300     .is_default = 0
301 };
302
303 static void lm32_machine_init(void)
304 {
305     qemu_register_machine(&lm32_uclinux_machine);
306     qemu_register_machine(&lm32_evr_machine);
307 }
308
309 machine_init(lm32_machine_init);
This page took 0.039183 seconds and 4 git commands to generate.