2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
25 #include "hw/block/flash.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "exec/memory.h"
30 #include "exec/address-spaces.h"
31 #include "hw/sysbus.h"
32 #include "qemu/error-report.h"
34 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
38 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
40 #define TYPE_ONE_NAND "onenand"
41 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
43 typedef struct OneNANDState {
44 SysBusDevice parent_obj;
56 BlockBackend *blk_cur;
61 MemoryRegion mapped_ram;
62 uint8_t current_direction;
66 MemoryRegion container;
92 ONEN_BUF_DEST_BLOCK = 2,
93 ONEN_BUF_DEST_PAGE = 3,
98 ONEN_ERR_CMD = 1 << 10,
99 ONEN_ERR_ERASE = 1 << 11,
100 ONEN_ERR_PROG = 1 << 12,
101 ONEN_ERR_LOAD = 1 << 13,
105 ONEN_INT_RESET = 1 << 4,
106 ONEN_INT_ERASE = 1 << 5,
107 ONEN_INT_PROG = 1 << 6,
108 ONEN_INT_LOAD = 1 << 7,
113 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
114 ONEN_LOCK_LOCKED = 1 << 1,
115 ONEN_LOCK_UNLOCKED = 1 << 2,
118 static void onenand_mem_setup(OneNANDState *s)
120 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
121 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
122 * write boot commands. Also take note of the BWPS bit. */
123 memory_region_init(&s->container, OBJECT(s), "onenand",
124 0x10000 << s->shift);
125 memory_region_add_subregion(&s->container, 0, &s->iomem);
126 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
127 &s->ram, 0x0200 << s->shift,
129 memory_region_add_subregion_overlap(&s->container,
135 static void onenand_intr_update(OneNANDState *s)
137 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
140 static void onenand_pre_save(void *opaque)
142 OneNANDState *s = opaque;
143 if (s->current == s->otp) {
144 s->current_direction = 1;
145 } else if (s->current == s->image) {
146 s->current_direction = 2;
148 s->current_direction = 0;
152 static int onenand_post_load(void *opaque, int version_id)
154 OneNANDState *s = opaque;
155 switch (s->current_direction) {
162 s->current = s->image;
167 onenand_intr_update(s);
171 static const VMStateDescription vmstate_onenand = {
174 .minimum_version_id = 1,
175 .pre_save = onenand_pre_save,
176 .post_load = onenand_post_load,
177 .fields = (VMStateField[]) {
178 VMSTATE_UINT8(current_direction, OneNANDState),
179 VMSTATE_INT32(cycle, OneNANDState),
180 VMSTATE_INT32(otpmode, OneNANDState),
181 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
182 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
183 VMSTATE_INT32(bufaddr, OneNANDState),
184 VMSTATE_INT32(count, OneNANDState),
185 VMSTATE_UINT16(command, OneNANDState),
186 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
187 VMSTATE_UINT16(status, OneNANDState),
188 VMSTATE_UINT16(intstatus, OneNANDState),
189 VMSTATE_UINT16(wpstatus, OneNANDState),
190 VMSTATE_INT32(secs_cur, OneNANDState),
191 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
192 VMSTATE_UINT8(ecc.cp, OneNANDState),
193 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
194 VMSTATE_UINT16(ecc.count, OneNANDState),
195 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
196 ((64 + 2) << PAGE_SHIFT)),
197 VMSTATE_END_OF_LIST()
201 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
202 static void onenand_reset(OneNANDState *s, int cold)
204 memset(&s->addr, 0, sizeof(s->addr));
208 s->config[0] = 0x40c0;
209 s->config[1] = 0x0000;
210 onenand_intr_update(s);
211 qemu_irq_raise(s->rdy);
213 s->intstatus = cold ? 0x8080 : 0x8010;
216 s->wpstatus = 0x0002;
220 s->current = s->image;
221 s->secs_cur = s->secs;
224 /* Lock the whole flash */
225 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
227 if (s->blk_cur && blk_read(s->blk_cur, 0, s->boot[0], 8) < 0) {
228 hw_error("%s: Loading the BootRAM failed.\n", __func__);
233 static void onenand_system_reset(DeviceState *dev)
235 OneNANDState *s = ONE_NAND(dev);
240 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
244 return blk_read(s->blk_cur, sec, dest, secn) < 0;
245 } else if (sec + secn > s->secs_cur) {
249 memcpy(dest, s->current + (sec << 9), secn << 9);
254 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
260 uint32_t size = (uint32_t)secn * 512;
261 const uint8_t *sp = (const uint8_t *)src;
265 if (!dp || blk_read(s->blk_cur, sec, dp, secn) < 0) {
269 if (sec + secn > s->secs_cur) {
272 dp = (uint8_t *)s->current + (sec << 9);
277 for (i = 0; i < size; i++) {
281 result = blk_write(s->blk_cur, sec, dp, secn) < 0;
284 if (dp && s->blk_cur) {
292 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
298 if (blk_read(s->blk_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) {
301 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
302 } else if (sec + secn > s->secs_cur) {
305 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
311 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
316 const uint8_t *sp = (const uint8_t *)src;
317 uint8_t *dp = 0, *dpp = 0;
321 || blk_read(s->blk_cur, s->secs_cur + (sec >> 5), dp, 1) < 0) {
324 dpp = dp + ((sec & 31) << 4);
327 if (sec + secn > s->secs_cur) {
330 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
335 for (i = 0; i < (secn << 4); i++) {
339 result = blk_write(s->blk_cur, s->secs_cur + (sec >> 5),
348 static inline int onenand_erase(OneNANDState *s, int sec, int num)
350 uint8_t *blankbuf, *tmpbuf;
352 blankbuf = g_malloc(512);
353 tmpbuf = g_malloc(512);
354 memset(blankbuf, 0xff, 512);
355 for (; num > 0; num--, sec++) {
357 int erasesec = s->secs_cur + (sec >> 5);
358 if (blk_write(s->blk_cur, sec, blankbuf, 1) < 0) {
361 if (blk_read(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
364 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
365 if (blk_write(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
369 if (sec + 1 > s->secs_cur) {
372 memcpy(s->current + (sec << 9), blankbuf, 512);
373 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
388 static void onenand_command(OneNANDState *s)
393 #define SETADDR(block, page) \
394 sec = (s->addr[page] & 3) + \
395 ((((s->addr[page] >> 2) & 0x3f) + \
396 (((s->addr[block] & 0xfff) | \
397 (s->addr[block] >> 15 ? \
398 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
400 buf = (s->bufaddr & 8) ? \
401 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
402 buf += (s->bufaddr & 3) << 9;
404 buf = (s->bufaddr & 8) ? \
405 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
406 buf += (s->bufaddr & 3) << 4;
408 switch (s->command) {
409 case 0x00: /* Load single/multiple sector data unit into buffer */
410 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
413 if (onenand_load_main(s, sec, s->count, buf))
414 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
418 if (onenand_load_spare(s, sec, s->count, buf))
419 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
422 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
423 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
424 * then we need two split the read/write into two chunks.
426 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
428 case 0x13: /* Load single/multiple spare sector into buffer */
429 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
432 if (onenand_load_spare(s, sec, s->count, buf))
433 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
435 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
436 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
437 * then we need two split the read/write into two chunks.
439 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
441 case 0x80: /* Program single/multiple sector data unit from buffer */
442 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
445 if (onenand_prog_main(s, sec, s->count, buf))
446 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
450 if (onenand_prog_spare(s, sec, s->count, buf))
451 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
454 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
455 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
456 * then we need two split the read/write into two chunks.
458 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
460 case 0x1a: /* Program single/multiple spare area sector from buffer */
461 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
464 if (onenand_prog_spare(s, sec, s->count, buf))
465 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
467 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
468 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
469 * then we need two split the read/write into two chunks.
471 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
473 case 0x1b: /* Copy-back program */
476 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
477 if (onenand_load_main(s, sec, s->count, buf))
478 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
480 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
481 if (onenand_prog_main(s, sec, s->count, buf))
482 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
484 /* TODO: spare areas */
486 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
489 case 0x23: /* Unlock NAND array block(s) */
490 s->intstatus |= ONEN_INT;
492 /* XXX the previous (?) area should be locked automatically */
493 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
494 if (b >= s->blocks) {
495 s->status |= ONEN_ERR_CMD;
498 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
501 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
504 case 0x27: /* Unlock All NAND array blocks */
505 s->intstatus |= ONEN_INT;
507 for (b = 0; b < s->blocks; b ++) {
508 if (b >= s->blocks) {
509 s->status |= ONEN_ERR_CMD;
512 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
515 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
519 case 0x2a: /* Lock NAND array block(s) */
520 s->intstatus |= ONEN_INT;
522 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
523 if (b >= s->blocks) {
524 s->status |= ONEN_ERR_CMD;
527 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
530 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
533 case 0x2c: /* Lock-tight NAND array block(s) */
534 s->intstatus |= ONEN_INT;
536 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
537 if (b >= s->blocks) {
538 s->status |= ONEN_ERR_CMD;
541 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
544 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
548 case 0x71: /* Erase-Verify-Read */
549 s->intstatus |= ONEN_INT;
551 case 0x95: /* Multi-block erase */
552 qemu_irq_pulse(s->intr);
554 case 0x94: /* Block erase */
555 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
556 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
557 << (BLOCK_SHIFT - 9);
558 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
559 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
561 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
563 case 0xb0: /* Erase suspend */
565 case 0x30: /* Erase resume */
566 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
569 case 0xf0: /* Reset NAND Flash core */
572 case 0xf3: /* Reset OneNAND */
576 case 0x65: /* OTP Access */
577 s->intstatus |= ONEN_INT;
580 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
581 s->addr[ONEN_BUF_BLOCK] = 0;
586 s->status |= ONEN_ERR_CMD;
587 s->intstatus |= ONEN_INT;
588 fprintf(stderr, "%s: unknown OneNAND command %x\n",
589 __func__, s->command);
592 onenand_intr_update(s);
595 static uint64_t onenand_read(void *opaque, hwaddr addr,
598 OneNANDState *s = (OneNANDState *) opaque;
599 int offset = addr >> s->shift;
602 case 0x0000 ... 0xc000:
603 return lduw_le_p(s->boot[0] + addr);
605 case 0xf000: /* Manufacturer ID */
607 case 0xf001: /* Device ID */
609 case 0xf002: /* Version ID */
611 /* TODO: get the following values from a real chip! */
612 case 0xf003: /* Data Buffer size */
613 return 1 << PAGE_SHIFT;
614 case 0xf004: /* Boot Buffer size */
616 case 0xf005: /* Amount of buffers */
618 case 0xf006: /* Technology */
621 case 0xf100 ... 0xf107: /* Start addresses */
622 return s->addr[offset - 0xf100];
624 case 0xf200: /* Start buffer */
625 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
627 case 0xf220: /* Command */
629 case 0xf221: /* System Configuration 1 */
630 return s->config[0] & 0xffe0;
631 case 0xf222: /* System Configuration 2 */
634 case 0xf240: /* Controller Status */
636 case 0xf241: /* Interrupt */
638 case 0xf24c: /* Unlock Start Block Address */
639 return s->unladdr[0];
640 case 0xf24d: /* Unlock End Block Address */
641 return s->unladdr[1];
642 case 0xf24e: /* Write Protection Status */
645 case 0xff00: /* ECC Status */
647 case 0xff01: /* ECC Result of main area data */
648 case 0xff02: /* ECC Result of spare area data */
649 case 0xff03: /* ECC Result of main area data */
650 case 0xff04: /* ECC Result of spare area data */
651 hw_error("%s: imeplement ECC\n", __FUNCTION__);
655 fprintf(stderr, "%s: unknown OneNAND register %x\n",
656 __FUNCTION__, offset);
660 static void onenand_write(void *opaque, hwaddr addr,
661 uint64_t value, unsigned size)
663 OneNANDState *s = (OneNANDState *) opaque;
664 int offset = addr >> s->shift;
668 case 0x0000 ... 0x01ff:
669 case 0x8000 ... 0x800f:
673 if (value == 0x0000) {
674 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
675 onenand_load_main(s, sec,
676 1 << (PAGE_SHIFT - 9), s->data[0][0]);
677 s->addr[ONEN_BUF_PAGE] += 4;
678 s->addr[ONEN_BUF_PAGE] &= 0xff;
684 case 0x00f0: /* Reset OneNAND */
688 case 0x00e0: /* Load Data into Buffer */
692 case 0x0090: /* Read Identification Data */
693 memset(s->boot[0], 0, 3 << s->shift);
694 s->boot[0][0 << s->shift] = s->id.man & 0xff;
695 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
696 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
700 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
701 __FUNCTION__, value);
705 case 0xf100 ... 0xf107: /* Start addresses */
706 s->addr[offset - 0xf100] = value;
709 case 0xf200: /* Start buffer */
710 s->bufaddr = (value >> 8) & 0xf;
711 if (PAGE_SHIFT == 11)
712 s->count = (value & 3) ?: 4;
713 else if (PAGE_SHIFT == 10)
714 s->count = (value & 1) ?: 2;
717 case 0xf220: /* Command */
718 if (s->intstatus & (1 << 15))
723 case 0xf221: /* System Configuration 1 */
724 s->config[0] = value;
725 onenand_intr_update(s);
726 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
728 case 0xf222: /* System Configuration 2 */
729 s->config[1] = value;
732 case 0xf241: /* Interrupt */
733 s->intstatus &= value;
734 if ((1 << 15) & ~s->intstatus)
735 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
736 ONEN_ERR_PROG | ONEN_ERR_LOAD);
737 onenand_intr_update(s);
739 case 0xf24c: /* Unlock Start Block Address */
740 s->unladdr[0] = value & (s->blocks - 1);
741 /* For some reason we have to set the end address to by default
742 * be same as start because the software forgets to write anything
744 s->unladdr[1] = value & (s->blocks - 1);
746 case 0xf24d: /* Unlock End Block Address */
747 s->unladdr[1] = value & (s->blocks - 1);
751 fprintf(stderr, "%s: unknown OneNAND register %x\n",
752 __FUNCTION__, offset);
756 static const MemoryRegionOps onenand_ops = {
757 .read = onenand_read,
758 .write = onenand_write,
759 .endianness = DEVICE_NATIVE_ENDIAN,
762 static int onenand_initfn(SysBusDevice *sbd)
764 DeviceState *dev = DEVICE(sbd);
765 OneNANDState *s = ONE_NAND(dev);
766 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
769 s->base = (hwaddr)-1;
771 s->blocks = size >> BLOCK_SHIFT;
773 s->blockwp = g_malloc(s->blocks);
774 s->density_mask = (s->id.dev & 0x08)
775 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
776 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
777 0x10000 << s->shift);
779 s->image = memset(g_malloc(size + (size >> 5)),
780 0xff, size + (size >> 5));
782 if (blk_is_read_only(s->blk)) {
783 error_report("Can't use a read-only drive");
788 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
789 0xff, (64 + 2) << PAGE_SHIFT);
790 memory_region_init_ram(&s->ram, OBJECT(s), "onenand.ram",
791 0xc000 << s->shift, &error_fatal);
792 vmstate_register_ram_global(&s->ram);
793 ram = memory_region_get_ram_ptr(&s->ram);
794 s->boot[0] = ram + (0x0000 << s->shift);
795 s->boot[1] = ram + (0x8000 << s->shift);
796 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
797 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
798 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
799 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
800 onenand_mem_setup(s);
801 sysbus_init_irq(sbd, &s->intr);
802 sysbus_init_mmio(sbd, &s->container);
803 vmstate_register(dev,
804 ((s->shift & 0x7f) << 24)
805 | ((s->id.man & 0xff) << 16)
806 | ((s->id.dev & 0xff) << 8)
807 | (s->id.ver & 0xff),
808 &vmstate_onenand, s);
812 static Property onenand_properties[] = {
813 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
814 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
815 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
816 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
817 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
818 DEFINE_PROP_END_OF_LIST(),
821 static void onenand_class_init(ObjectClass *klass, void *data)
823 DeviceClass *dc = DEVICE_CLASS(klass);
824 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
826 k->init = onenand_initfn;
827 dc->reset = onenand_system_reset;
828 dc->props = onenand_properties;
831 static const TypeInfo onenand_info = {
832 .name = TYPE_ONE_NAND,
833 .parent = TYPE_SYS_BUS_DEVICE,
834 .instance_size = sizeof(OneNANDState),
835 .class_init = onenand_class_init,
838 static void onenand_register_types(void)
840 type_register_static(&onenand_info);
843 void *onenand_raw_otp(DeviceState *onenand_device)
845 OneNANDState *s = ONE_NAND(onenand_device);
850 type_init(onenand_register_types)