]> Git Repo - qemu.git/blob - dump.c
virtio-rng: Fix crash with non-default backend
[qemu.git] / dump.c
1 /*
2  * QEMU dump
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "exec/cpu-all.h"
18 #include "exec/hwaddr.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/dump.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/memory_mapping.h"
24 #include "sysemu/cpus.h"
25 #include "qapi/error.h"
26 #include "qmp-commands.h"
27
28 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
29 {
30     if (endian == ELFDATA2LSB) {
31         val = cpu_to_le16(val);
32     } else {
33         val = cpu_to_be16(val);
34     }
35
36     return val;
37 }
38
39 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
40 {
41     if (endian == ELFDATA2LSB) {
42         val = cpu_to_le32(val);
43     } else {
44         val = cpu_to_be32(val);
45     }
46
47     return val;
48 }
49
50 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
51 {
52     if (endian == ELFDATA2LSB) {
53         val = cpu_to_le64(val);
54     } else {
55         val = cpu_to_be64(val);
56     }
57
58     return val;
59 }
60
61 typedef struct DumpState {
62     ArchDumpInfo dump_info;
63     MemoryMappingList list;
64     uint16_t phdr_num;
65     uint32_t sh_info;
66     bool have_section;
67     bool resume;
68     size_t note_size;
69     hwaddr memory_offset;
70     int fd;
71
72     RAMBlock *block;
73     ram_addr_t start;
74     bool has_filter;
75     int64_t begin;
76     int64_t length;
77     Error **errp;
78 } DumpState;
79
80 static int dump_cleanup(DumpState *s)
81 {
82     int ret = 0;
83
84     memory_mapping_list_free(&s->list);
85     if (s->fd != -1) {
86         close(s->fd);
87     }
88     if (s->resume) {
89         vm_start();
90     }
91
92     return ret;
93 }
94
95 static void dump_error(DumpState *s, const char *reason)
96 {
97     dump_cleanup(s);
98 }
99
100 static int fd_write_vmcore(void *buf, size_t size, void *opaque)
101 {
102     DumpState *s = opaque;
103     size_t written_size;
104
105     written_size = qemu_write_full(s->fd, buf, size);
106     if (written_size != size) {
107         return -1;
108     }
109
110     return 0;
111 }
112
113 static int write_elf64_header(DumpState *s)
114 {
115     Elf64_Ehdr elf_header;
116     int ret;
117     int endian = s->dump_info.d_endian;
118
119     memset(&elf_header, 0, sizeof(Elf64_Ehdr));
120     memcpy(&elf_header, ELFMAG, SELFMAG);
121     elf_header.e_ident[EI_CLASS] = ELFCLASS64;
122     elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
123     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
124     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
125     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
126                                                    endian);
127     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
128     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
129     elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
130     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
131                                                      endian);
132     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
133     if (s->have_section) {
134         uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
135
136         elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
137         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
138                                                          endian);
139         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
140     }
141
142     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
143     if (ret < 0) {
144         dump_error(s, "dump: failed to write elf header.\n");
145         return -1;
146     }
147
148     return 0;
149 }
150
151 static int write_elf32_header(DumpState *s)
152 {
153     Elf32_Ehdr elf_header;
154     int ret;
155     int endian = s->dump_info.d_endian;
156
157     memset(&elf_header, 0, sizeof(Elf32_Ehdr));
158     memcpy(&elf_header, ELFMAG, SELFMAG);
159     elf_header.e_ident[EI_CLASS] = ELFCLASS32;
160     elf_header.e_ident[EI_DATA] = endian;
161     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
162     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
163     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
164                                                    endian);
165     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
166     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
167     elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
168     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
169                                                      endian);
170     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
171     if (s->have_section) {
172         uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
173
174         elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
175         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
176                                                          endian);
177         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
178     }
179
180     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
181     if (ret < 0) {
182         dump_error(s, "dump: failed to write elf header.\n");
183         return -1;
184     }
185
186     return 0;
187 }
188
189 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
190                             int phdr_index, hwaddr offset)
191 {
192     Elf64_Phdr phdr;
193     int ret;
194     int endian = s->dump_info.d_endian;
195
196     memset(&phdr, 0, sizeof(Elf64_Phdr));
197     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
198     phdr.p_offset = cpu_convert_to_target64(offset, endian);
199     phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
200     if (offset == -1) {
201         /* When the memory is not stored into vmcore, offset will be -1 */
202         phdr.p_filesz = 0;
203     } else {
204         phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian);
205     }
206     phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
207     phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
208
209     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
210     if (ret < 0) {
211         dump_error(s, "dump: failed to write program header table.\n");
212         return -1;
213     }
214
215     return 0;
216 }
217
218 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
219                             int phdr_index, hwaddr offset)
220 {
221     Elf32_Phdr phdr;
222     int ret;
223     int endian = s->dump_info.d_endian;
224
225     memset(&phdr, 0, sizeof(Elf32_Phdr));
226     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
227     phdr.p_offset = cpu_convert_to_target32(offset, endian);
228     phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
229     if (offset == -1) {
230         /* When the memory is not stored into vmcore, offset will be -1 */
231         phdr.p_filesz = 0;
232     } else {
233         phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian);
234     }
235     phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
236     phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
237
238     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
239     if (ret < 0) {
240         dump_error(s, "dump: failed to write program header table.\n");
241         return -1;
242     }
243
244     return 0;
245 }
246
247 static int write_elf64_note(DumpState *s)
248 {
249     Elf64_Phdr phdr;
250     int endian = s->dump_info.d_endian;
251     hwaddr begin = s->memory_offset - s->note_size;
252     int ret;
253
254     memset(&phdr, 0, sizeof(Elf64_Phdr));
255     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
256     phdr.p_offset = cpu_convert_to_target64(begin, endian);
257     phdr.p_paddr = 0;
258     phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
259     phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
260     phdr.p_vaddr = 0;
261
262     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
263     if (ret < 0) {
264         dump_error(s, "dump: failed to write program header table.\n");
265         return -1;
266     }
267
268     return 0;
269 }
270
271 static inline int cpu_index(CPUState *cpu)
272 {
273     return cpu->cpu_index + 1;
274 }
275
276 static int write_elf64_notes(DumpState *s)
277 {
278     CPUArchState *env;
279     CPUState *cpu;
280     int ret;
281     int id;
282
283     for (env = first_cpu; env != NULL; env = env->next_cpu) {
284         cpu = ENV_GET_CPU(env);
285         id = cpu_index(cpu);
286         ret = cpu_write_elf64_note(fd_write_vmcore, cpu, id, s);
287         if (ret < 0) {
288             dump_error(s, "dump: failed to write elf notes.\n");
289             return -1;
290         }
291     }
292
293     for (env = first_cpu; env != NULL; env = env->next_cpu) {
294         ret = cpu_write_elf64_qemunote(fd_write_vmcore, cpu, s);
295         if (ret < 0) {
296             dump_error(s, "dump: failed to write CPU status.\n");
297             return -1;
298         }
299     }
300
301     return 0;
302 }
303
304 static int write_elf32_note(DumpState *s)
305 {
306     hwaddr begin = s->memory_offset - s->note_size;
307     Elf32_Phdr phdr;
308     int endian = s->dump_info.d_endian;
309     int ret;
310
311     memset(&phdr, 0, sizeof(Elf32_Phdr));
312     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
313     phdr.p_offset = cpu_convert_to_target32(begin, endian);
314     phdr.p_paddr = 0;
315     phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
316     phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
317     phdr.p_vaddr = 0;
318
319     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
320     if (ret < 0) {
321         dump_error(s, "dump: failed to write program header table.\n");
322         return -1;
323     }
324
325     return 0;
326 }
327
328 static int write_elf32_notes(DumpState *s)
329 {
330     CPUArchState *env;
331     CPUState *cpu;
332     int ret;
333     int id;
334
335     for (env = first_cpu; env != NULL; env = env->next_cpu) {
336         cpu = ENV_GET_CPU(env);
337         id = cpu_index(cpu);
338         ret = cpu_write_elf32_note(fd_write_vmcore, cpu, id, s);
339         if (ret < 0) {
340             dump_error(s, "dump: failed to write elf notes.\n");
341             return -1;
342         }
343     }
344
345     for (env = first_cpu; env != NULL; env = env->next_cpu) {
346         ret = cpu_write_elf32_qemunote(fd_write_vmcore, cpu, s);
347         if (ret < 0) {
348             dump_error(s, "dump: failed to write CPU status.\n");
349             return -1;
350         }
351     }
352
353     return 0;
354 }
355
356 static int write_elf_section(DumpState *s, int type)
357 {
358     Elf32_Shdr shdr32;
359     Elf64_Shdr shdr64;
360     int endian = s->dump_info.d_endian;
361     int shdr_size;
362     void *shdr;
363     int ret;
364
365     if (type == 0) {
366         shdr_size = sizeof(Elf32_Shdr);
367         memset(&shdr32, 0, shdr_size);
368         shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
369         shdr = &shdr32;
370     } else {
371         shdr_size = sizeof(Elf64_Shdr);
372         memset(&shdr64, 0, shdr_size);
373         shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
374         shdr = &shdr64;
375     }
376
377     ret = fd_write_vmcore(&shdr, shdr_size, s);
378     if (ret < 0) {
379         dump_error(s, "dump: failed to write section header table.\n");
380         return -1;
381     }
382
383     return 0;
384 }
385
386 static int write_data(DumpState *s, void *buf, int length)
387 {
388     int ret;
389
390     ret = fd_write_vmcore(buf, length, s);
391     if (ret < 0) {
392         dump_error(s, "dump: failed to save memory.\n");
393         return -1;
394     }
395
396     return 0;
397 }
398
399 /* write the memroy to vmcore. 1 page per I/O. */
400 static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start,
401                         int64_t size)
402 {
403     int64_t i;
404     int ret;
405
406     for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
407         ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
408                          TARGET_PAGE_SIZE);
409         if (ret < 0) {
410             return ret;
411         }
412     }
413
414     if ((size % TARGET_PAGE_SIZE) != 0) {
415         ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
416                          size % TARGET_PAGE_SIZE);
417         if (ret < 0) {
418             return ret;
419         }
420     }
421
422     return 0;
423 }
424
425 /* get the memory's offset in the vmcore */
426 static hwaddr get_offset(hwaddr phys_addr,
427                                      DumpState *s)
428 {
429     RAMBlock *block;
430     hwaddr offset = s->memory_offset;
431     int64_t size_in_block, start;
432
433     if (s->has_filter) {
434         if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
435             return -1;
436         }
437     }
438
439     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
440         if (s->has_filter) {
441             if (block->offset >= s->begin + s->length ||
442                 block->offset + block->length <= s->begin) {
443                 /* This block is out of the range */
444                 continue;
445             }
446
447             if (s->begin <= block->offset) {
448                 start = block->offset;
449             } else {
450                 start = s->begin;
451             }
452
453             size_in_block = block->length - (start - block->offset);
454             if (s->begin + s->length < block->offset + block->length) {
455                 size_in_block -= block->offset + block->length -
456                                  (s->begin + s->length);
457             }
458         } else {
459             start = block->offset;
460             size_in_block = block->length;
461         }
462
463         if (phys_addr >= start && phys_addr < start + size_in_block) {
464             return phys_addr - start + offset;
465         }
466
467         offset += size_in_block;
468     }
469
470     return -1;
471 }
472
473 static int write_elf_loads(DumpState *s)
474 {
475     hwaddr offset;
476     MemoryMapping *memory_mapping;
477     uint32_t phdr_index = 1;
478     int ret;
479     uint32_t max_index;
480
481     if (s->have_section) {
482         max_index = s->sh_info;
483     } else {
484         max_index = s->phdr_num;
485     }
486
487     QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
488         offset = get_offset(memory_mapping->phys_addr, s);
489         if (s->dump_info.d_class == ELFCLASS64) {
490             ret = write_elf64_load(s, memory_mapping, phdr_index++, offset);
491         } else {
492             ret = write_elf32_load(s, memory_mapping, phdr_index++, offset);
493         }
494
495         if (ret < 0) {
496             return -1;
497         }
498
499         if (phdr_index >= max_index) {
500             break;
501         }
502     }
503
504     return 0;
505 }
506
507 /* write elf header, PT_NOTE and elf note to vmcore. */
508 static int dump_begin(DumpState *s)
509 {
510     int ret;
511
512     /*
513      * the vmcore's format is:
514      *   --------------
515      *   |  elf header |
516      *   --------------
517      *   |  PT_NOTE    |
518      *   --------------
519      *   |  PT_LOAD    |
520      *   --------------
521      *   |  ......     |
522      *   --------------
523      *   |  PT_LOAD    |
524      *   --------------
525      *   |  sec_hdr    |
526      *   --------------
527      *   |  elf note   |
528      *   --------------
529      *   |  memory     |
530      *   --------------
531      *
532      * we only know where the memory is saved after we write elf note into
533      * vmcore.
534      */
535
536     /* write elf header to vmcore */
537     if (s->dump_info.d_class == ELFCLASS64) {
538         ret = write_elf64_header(s);
539     } else {
540         ret = write_elf32_header(s);
541     }
542     if (ret < 0) {
543         return -1;
544     }
545
546     if (s->dump_info.d_class == ELFCLASS64) {
547         /* write PT_NOTE to vmcore */
548         if (write_elf64_note(s) < 0) {
549             return -1;
550         }
551
552         /* write all PT_LOAD to vmcore */
553         if (write_elf_loads(s) < 0) {
554             return -1;
555         }
556
557         /* write section to vmcore */
558         if (s->have_section) {
559             if (write_elf_section(s, 1) < 0) {
560                 return -1;
561             }
562         }
563
564         /* write notes to vmcore */
565         if (write_elf64_notes(s) < 0) {
566             return -1;
567         }
568
569     } else {
570         /* write PT_NOTE to vmcore */
571         if (write_elf32_note(s) < 0) {
572             return -1;
573         }
574
575         /* write all PT_LOAD to vmcore */
576         if (write_elf_loads(s) < 0) {
577             return -1;
578         }
579
580         /* write section to vmcore */
581         if (s->have_section) {
582             if (write_elf_section(s, 0) < 0) {
583                 return -1;
584             }
585         }
586
587         /* write notes to vmcore */
588         if (write_elf32_notes(s) < 0) {
589             return -1;
590         }
591     }
592
593     return 0;
594 }
595
596 /* write PT_LOAD to vmcore */
597 static int dump_completed(DumpState *s)
598 {
599     dump_cleanup(s);
600     return 0;
601 }
602
603 static int get_next_block(DumpState *s, RAMBlock *block)
604 {
605     while (1) {
606         block = QTAILQ_NEXT(block, next);
607         if (!block) {
608             /* no more block */
609             return 1;
610         }
611
612         s->start = 0;
613         s->block = block;
614         if (s->has_filter) {
615             if (block->offset >= s->begin + s->length ||
616                 block->offset + block->length <= s->begin) {
617                 /* This block is out of the range */
618                 continue;
619             }
620
621             if (s->begin > block->offset) {
622                 s->start = s->begin - block->offset;
623             }
624         }
625
626         return 0;
627     }
628 }
629
630 /* write all memory to vmcore */
631 static int dump_iterate(DumpState *s)
632 {
633     RAMBlock *block;
634     int64_t size;
635     int ret;
636
637     while (1) {
638         block = s->block;
639
640         size = block->length;
641         if (s->has_filter) {
642             size -= s->start;
643             if (s->begin + s->length < block->offset + block->length) {
644                 size -= block->offset + block->length - (s->begin + s->length);
645             }
646         }
647         ret = write_memory(s, block, s->start, size);
648         if (ret == -1) {
649             return ret;
650         }
651
652         ret = get_next_block(s, block);
653         if (ret == 1) {
654             dump_completed(s);
655             return 0;
656         }
657     }
658 }
659
660 static int create_vmcore(DumpState *s)
661 {
662     int ret;
663
664     ret = dump_begin(s);
665     if (ret < 0) {
666         return -1;
667     }
668
669     ret = dump_iterate(s);
670     if (ret < 0) {
671         return -1;
672     }
673
674     return 0;
675 }
676
677 static ram_addr_t get_start_block(DumpState *s)
678 {
679     RAMBlock *block;
680
681     if (!s->has_filter) {
682         s->block = QTAILQ_FIRST(&ram_list.blocks);
683         return 0;
684     }
685
686     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
687         if (block->offset >= s->begin + s->length ||
688             block->offset + block->length <= s->begin) {
689             /* This block is out of the range */
690             continue;
691         }
692
693         s->block = block;
694         if (s->begin > block->offset) {
695             s->start = s->begin - block->offset;
696         } else {
697             s->start = 0;
698         }
699         return s->start;
700     }
701
702     return -1;
703 }
704
705 static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
706                      int64_t begin, int64_t length, Error **errp)
707 {
708     CPUArchState *env;
709     int nr_cpus;
710     Error *err = NULL;
711     int ret;
712
713     if (runstate_is_running()) {
714         vm_stop(RUN_STATE_SAVE_VM);
715         s->resume = true;
716     } else {
717         s->resume = false;
718     }
719
720     s->errp = errp;
721     s->fd = fd;
722     s->has_filter = has_filter;
723     s->begin = begin;
724     s->length = length;
725     s->start = get_start_block(s);
726     if (s->start == -1) {
727         error_set(errp, QERR_INVALID_PARAMETER, "begin");
728         goto cleanup;
729     }
730
731     /*
732      * get dump info: endian, class and architecture.
733      * If the target architecture is not supported, cpu_get_dump_info() will
734      * return -1.
735      *
736      * If we use KVM, we should synchronize the registers before we get dump
737      * info.
738      */
739     cpu_synchronize_all_states();
740     nr_cpus = 0;
741     for (env = first_cpu; env != NULL; env = env->next_cpu) {
742         nr_cpus++;
743     }
744
745     ret = cpu_get_dump_info(&s->dump_info);
746     if (ret < 0) {
747         error_set(errp, QERR_UNSUPPORTED);
748         goto cleanup;
749     }
750
751     s->note_size = cpu_get_note_size(s->dump_info.d_class,
752                                      s->dump_info.d_machine, nr_cpus);
753     if (ret < 0) {
754         error_set(errp, QERR_UNSUPPORTED);
755         goto cleanup;
756     }
757
758     /* get memory mapping */
759     memory_mapping_list_init(&s->list);
760     if (paging) {
761         qemu_get_guest_memory_mapping(&s->list, &err);
762         if (err != NULL) {
763             error_propagate(errp, err);
764             goto cleanup;
765         }
766     } else {
767         qemu_get_guest_simple_memory_mapping(&s->list);
768     }
769
770     if (s->has_filter) {
771         memory_mapping_filter(&s->list, s->begin, s->length);
772     }
773
774     /*
775      * calculate phdr_num
776      *
777      * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
778      */
779     s->phdr_num = 1; /* PT_NOTE */
780     if (s->list.num < UINT16_MAX - 2) {
781         s->phdr_num += s->list.num;
782         s->have_section = false;
783     } else {
784         s->have_section = true;
785         s->phdr_num = PN_XNUM;
786         s->sh_info = 1; /* PT_NOTE */
787
788         /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
789         if (s->list.num <= UINT32_MAX - 1) {
790             s->sh_info += s->list.num;
791         } else {
792             s->sh_info = UINT32_MAX;
793         }
794     }
795
796     if (s->dump_info.d_class == ELFCLASS64) {
797         if (s->have_section) {
798             s->memory_offset = sizeof(Elf64_Ehdr) +
799                                sizeof(Elf64_Phdr) * s->sh_info +
800                                sizeof(Elf64_Shdr) + s->note_size;
801         } else {
802             s->memory_offset = sizeof(Elf64_Ehdr) +
803                                sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
804         }
805     } else {
806         if (s->have_section) {
807             s->memory_offset = sizeof(Elf32_Ehdr) +
808                                sizeof(Elf32_Phdr) * s->sh_info +
809                                sizeof(Elf32_Shdr) + s->note_size;
810         } else {
811             s->memory_offset = sizeof(Elf32_Ehdr) +
812                                sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
813         }
814     }
815
816     return 0;
817
818 cleanup:
819     if (s->resume) {
820         vm_start();
821     }
822
823     return -1;
824 }
825
826 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
827                            int64_t begin, bool has_length, int64_t length,
828                            Error **errp)
829 {
830     const char *p;
831     int fd = -1;
832     DumpState *s;
833     int ret;
834
835     if (has_begin && !has_length) {
836         error_set(errp, QERR_MISSING_PARAMETER, "length");
837         return;
838     }
839     if (!has_begin && has_length) {
840         error_set(errp, QERR_MISSING_PARAMETER, "begin");
841         return;
842     }
843
844 #if !defined(WIN32)
845     if (strstart(file, "fd:", &p)) {
846         fd = monitor_get_fd(cur_mon, p, errp);
847         if (fd == -1) {
848             return;
849         }
850     }
851 #endif
852
853     if  (strstart(file, "file:", &p)) {
854         fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
855         if (fd < 0) {
856             error_setg_file_open(errp, errno, p);
857             return;
858         }
859     }
860
861     if (fd == -1) {
862         error_set(errp, QERR_INVALID_PARAMETER, "protocol");
863         return;
864     }
865
866     s = g_malloc(sizeof(DumpState));
867
868     ret = dump_init(s, fd, paging, has_begin, begin, length, errp);
869     if (ret < 0) {
870         g_free(s);
871         return;
872     }
873
874     if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
875         error_set(errp, QERR_IO_ERROR);
876     }
877
878     g_free(s);
879 }
This page took 0.074981 seconds and 4 git commands to generate.