4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
28 #include "host-utils.h"
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) \
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
48 #define BUS_MCEERR_AR 4
51 #define BUS_MCEERR_AO 5
54 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55 KVM_CAP_INFO(SET_TSS_ADDR),
56 KVM_CAP_INFO(EXT_CPUID),
57 KVM_CAP_INFO(MP_STATE),
61 static bool has_msr_star;
62 static bool has_msr_hsave_pa;
63 static bool has_msr_tsc_deadline;
64 static bool has_msr_async_pf_en;
65 static bool has_msr_misc_enable;
66 static int lm_capable_kernel;
68 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
70 struct kvm_cpuid2 *cpuid;
73 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
76 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77 if (r == 0 && cpuid->nent >= max) {
85 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
93 struct kvm_para_features {
97 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
100 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
104 static int get_para_features(KVMState *s)
108 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
109 if (kvm_check_extension(s, para_features[i].cap)) {
110 features |= (1 << para_features[i].feature);
118 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
119 uint32_t index, int reg)
121 struct kvm_cpuid2 *cpuid;
124 uint32_t cpuid_1_edx;
125 int has_kvm_features = 0;
128 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
132 for (i = 0; i < cpuid->nent; ++i) {
133 if (cpuid->entries[i].function == function &&
134 cpuid->entries[i].index == index) {
135 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136 has_kvm_features = 1;
140 ret = cpuid->entries[i].eax;
143 ret = cpuid->entries[i].ebx;
146 ret = cpuid->entries[i].ecx;
149 ret = cpuid->entries[i].edx;
152 /* KVM before 2.6.30 misreports the following features */
153 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
156 /* On Intel, kvm returns cpuid according to the Intel spec,
157 * so add missing bits according to the AMD spec:
159 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
160 ret |= cpuid_1_edx & 0x183f7ff;
170 /* fallback for older kernels */
171 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
172 ret = get_para_features(s);
178 typedef struct HWPoisonPage {
180 QLIST_ENTRY(HWPoisonPage) list;
183 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
186 static void kvm_unpoison_all(void *param)
188 HWPoisonPage *page, *next_page;
190 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191 QLIST_REMOVE(page, list);
192 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
197 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
201 QLIST_FOREACH(page, &hwpoison_page_list, list) {
202 if (page->ram_addr == ram_addr) {
206 page = g_malloc(sizeof(HWPoisonPage));
207 page->ram_addr = ram_addr;
208 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
211 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
216 r = kvm_check_extension(s, KVM_CAP_MCE);
219 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
224 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
226 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228 uint64_t mcg_status = MCG_STATUS_MCIP;
230 if (code == BUS_MCEERR_AR) {
231 status |= MCI_STATUS_AR | 0x134;
232 mcg_status |= MCG_STATUS_EIPV;
235 mcg_status |= MCG_STATUS_RIPV;
237 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238 (MCM_ADDR_PHYS << 6) | 0xc,
239 cpu_x86_support_mca_broadcast(env) ?
240 MCE_INJECT_BROADCAST : 0);
243 static void hardware_memory_error(void)
245 fprintf(stderr, "Hardware memory error!\n");
249 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
252 target_phys_addr_t paddr;
254 if ((env->mcg_cap & MCG_SER_P) && addr
255 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
257 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
264 hardware_memory_error();
267 kvm_hwpoison_page_add(ram_addr);
268 kvm_mce_inject(env, paddr, code);
270 if (code == BUS_MCEERR_AO) {
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
281 int kvm_arch_on_sigbus(int code, void *addr)
283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
285 target_phys_addr_t paddr;
287 /* Hope we are lucky for AO MCE */
288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
295 kvm_hwpoison_page_add(ram_addr);
296 kvm_mce_inject(first_cpu, paddr, code);
298 if (code == BUS_MCEERR_AO) {
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
309 static int kvm_inject_mce_oldstyle(CPUState *env)
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
315 env->exception_injected = -1;
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
326 assert(bank < bank_num);
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
339 static void cpu_update_state(void *opaque, int running, RunState state)
341 CPUState *env = opaque;
344 env->tsc_valid = false;
348 int kvm_arch_init_vcpu(CPUState *env)
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
353 } QEMU_PACKED cpuid_data;
354 KVMState *s = env->kvm_state;
355 uint32_t limit, i, j, cpuid_i;
357 struct kvm_cpuid_entry2 *c;
358 uint32_t signature[3];
361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
365 env->cpuid_ext_features |= i;
367 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
369 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
371 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
376 /* Paravirtualization CPUIDs */
377 c = &cpuid_data.entries[cpuid_i++];
378 memset(c, 0, sizeof(*c));
379 c->function = KVM_CPUID_SIGNATURE;
380 if (!hyperv_enabled()) {
381 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
384 memcpy(signature, "Microsoft Hv", 12);
385 c->eax = HYPERV_CPUID_MIN;
387 c->ebx = signature[0];
388 c->ecx = signature[1];
389 c->edx = signature[2];
391 c = &cpuid_data.entries[cpuid_i++];
392 memset(c, 0, sizeof(*c));
393 c->function = KVM_CPUID_FEATURES;
394 c->eax = env->cpuid_kvm_features &
395 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
397 if (hyperv_enabled()) {
398 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
399 c->eax = signature[0];
401 c = &cpuid_data.entries[cpuid_i++];
402 memset(c, 0, sizeof(*c));
403 c->function = HYPERV_CPUID_VERSION;
407 c = &cpuid_data.entries[cpuid_i++];
408 memset(c, 0, sizeof(*c));
409 c->function = HYPERV_CPUID_FEATURES;
410 if (hyperv_relaxed_timing_enabled()) {
411 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
413 if (hyperv_vapic_recommended()) {
414 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
415 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
418 c = &cpuid_data.entries[cpuid_i++];
419 memset(c, 0, sizeof(*c));
420 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
421 if (hyperv_relaxed_timing_enabled()) {
422 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
424 if (hyperv_vapic_recommended()) {
425 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
427 c->ebx = hyperv_get_spinlock_retries();
429 c = &cpuid_data.entries[cpuid_i++];
430 memset(c, 0, sizeof(*c));
431 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
435 c = &cpuid_data.entries[cpuid_i++];
436 memset(c, 0, sizeof(*c));
437 c->function = KVM_CPUID_SIGNATURE_NEXT;
438 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
440 c->ebx = signature[0];
441 c->ecx = signature[1];
442 c->edx = signature[2];
445 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
447 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
449 for (i = 0; i <= limit; i++) {
450 c = &cpuid_data.entries[cpuid_i++];
454 /* Keep reading function 2 till all the input is received */
458 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
459 KVM_CPUID_FLAG_STATE_READ_NEXT;
460 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
461 times = c->eax & 0xff;
463 for (j = 1; j < times; ++j) {
464 c = &cpuid_data.entries[cpuid_i++];
466 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
467 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
475 if (i == 0xd && j == 64) {
479 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
481 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
483 if (i == 4 && c->eax == 0) {
486 if (i == 0xb && !(c->ecx & 0xff00)) {
489 if (i == 0xd && c->eax == 0) {
492 c = &cpuid_data.entries[cpuid_i++];
498 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
502 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
504 for (i = 0x80000000; i <= limit; i++) {
505 c = &cpuid_data.entries[cpuid_i++];
509 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
512 /* Call Centaur's CPUID instructions they are supported. */
513 if (env->cpuid_xlevel2 > 0) {
514 env->cpuid_ext4_features &=
515 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
516 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
518 for (i = 0xC0000000; i <= limit; i++) {
519 c = &cpuid_data.entries[cpuid_i++];
523 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
527 cpuid_data.cpuid.nent = cpuid_i;
529 if (((env->cpuid_version >> 8)&0xF) >= 6
530 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
531 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
536 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
538 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
542 if (banks > MCE_BANKS_DEF) {
543 banks = MCE_BANKS_DEF;
545 mcg_cap &= MCE_CAP_DEF;
547 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
549 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
553 env->mcg_cap = mcg_cap;
556 qemu_add_vm_change_state_handler(cpu_update_state, env);
558 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
563 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
564 if (r && env->tsc_khz) {
565 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
567 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
572 if (kvm_has_xsave()) {
573 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
579 void kvm_arch_reset_vcpu(CPUState *env)
581 env->exception_injected = -1;
582 env->interrupt_injected = -1;
584 if (kvm_irqchip_in_kernel()) {
585 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
586 KVM_MP_STATE_UNINITIALIZED;
588 env->mp_state = KVM_MP_STATE_RUNNABLE;
592 static int kvm_get_supported_msrs(KVMState *s)
594 static int kvm_supported_msrs;
598 if (kvm_supported_msrs == 0) {
599 struct kvm_msr_list msr_list, *kvm_msr_list;
601 kvm_supported_msrs = -1;
603 /* Obtain MSR list from KVM. These are the MSRs that we must
606 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
607 if (ret < 0 && ret != -E2BIG) {
610 /* Old kernel modules had a bug and could write beyond the provided
611 memory. Allocate at least a safe amount of 1K. */
612 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
614 sizeof(msr_list.indices[0])));
616 kvm_msr_list->nmsrs = msr_list.nmsrs;
617 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
621 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
622 if (kvm_msr_list->indices[i] == MSR_STAR) {
626 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
627 has_msr_hsave_pa = true;
630 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
631 has_msr_tsc_deadline = true;
634 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
635 has_msr_misc_enable = true;
641 g_free(kvm_msr_list);
647 int kvm_arch_init(KVMState *s)
649 QemuOptsList *list = qemu_find_opts("machine");
650 uint64_t identity_base = 0xfffbc000;
653 struct utsname utsname;
655 ret = kvm_get_supported_msrs(s);
661 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
664 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
665 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
666 * Since these must be part of guest physical memory, we need to allocate
667 * them, both by setting their start addresses in the kernel and by
668 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
670 * Older KVM versions may not support setting the identity map base. In
671 * that case we need to stick with the default, i.e. a 256K maximum BIOS
674 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
675 /* Allows up to 16M BIOSes. */
676 identity_base = 0xfeffc000;
678 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
684 /* Set TSS base one page after EPT identity map. */
685 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
690 /* Tell fw_cfg to notify the BIOS to reserve the range. */
691 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
693 fprintf(stderr, "e820_add_entry() table is full\n");
696 qemu_register_reset(kvm_unpoison_all, NULL);
698 if (!QTAILQ_EMPTY(&list->head)) {
699 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
700 "kvm_shadow_mem", -1);
701 if (shadow_mem != -1) {
703 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
712 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
714 lhs->selector = rhs->selector;
715 lhs->base = rhs->base;
716 lhs->limit = rhs->limit;
728 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730 unsigned flags = rhs->flags;
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
735 lhs->present = (flags & DESC_P_MASK) != 0;
736 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
737 lhs->db = (flags >> DESC_B_SHIFT) & 1;
738 lhs->s = (flags & DESC_S_MASK) != 0;
739 lhs->l = (flags >> DESC_L_SHIFT) & 1;
740 lhs->g = (flags & DESC_G_MASK) != 0;
741 lhs->avl = (flags & DESC_AVL_MASK) != 0;
745 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
747 lhs->selector = rhs->selector;
748 lhs->base = rhs->base;
749 lhs->limit = rhs->limit;
750 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
751 (rhs->present * DESC_P_MASK) |
752 (rhs->dpl << DESC_DPL_SHIFT) |
753 (rhs->db << DESC_B_SHIFT) |
754 (rhs->s * DESC_S_MASK) |
755 (rhs->l << DESC_L_SHIFT) |
756 (rhs->g * DESC_G_MASK) |
757 (rhs->avl * DESC_AVL_MASK);
760 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
763 *kvm_reg = *qemu_reg;
765 *qemu_reg = *kvm_reg;
769 static int kvm_getput_regs(CPUState *env, int set)
771 struct kvm_regs regs;
775 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
781 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
782 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
783 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
784 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
785 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
786 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
787 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
788 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
790 kvm_getput_reg(®s.r8, &env->regs[8], set);
791 kvm_getput_reg(®s.r9, &env->regs[9], set);
792 kvm_getput_reg(®s.r10, &env->regs[10], set);
793 kvm_getput_reg(®s.r11, &env->regs[11], set);
794 kvm_getput_reg(®s.r12, &env->regs[12], set);
795 kvm_getput_reg(®s.r13, &env->regs[13], set);
796 kvm_getput_reg(®s.r14, &env->regs[14], set);
797 kvm_getput_reg(®s.r15, &env->regs[15], set);
800 kvm_getput_reg(®s.rflags, &env->eflags, set);
801 kvm_getput_reg(®s.rip, &env->eip, set);
804 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
810 static int kvm_put_fpu(CPUState *env)
815 memset(&fpu, 0, sizeof fpu);
816 fpu.fsw = env->fpus & ~(7 << 11);
817 fpu.fsw |= (env->fpstt & 7) << 11;
819 fpu.last_opcode = env->fpop;
820 fpu.last_ip = env->fpip;
821 fpu.last_dp = env->fpdp;
822 for (i = 0; i < 8; ++i) {
823 fpu.ftwx |= (!env->fptags[i]) << i;
825 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
826 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
827 fpu.mxcsr = env->mxcsr;
829 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
832 #define XSAVE_FCW_FSW 0
833 #define XSAVE_FTW_FOP 1
834 #define XSAVE_CWD_RIP 2
835 #define XSAVE_CWD_RDP 4
836 #define XSAVE_MXCSR 6
837 #define XSAVE_ST_SPACE 8
838 #define XSAVE_XMM_SPACE 40
839 #define XSAVE_XSTATE_BV 128
840 #define XSAVE_YMMH_SPACE 144
842 static int kvm_put_xsave(CPUState *env)
844 struct kvm_xsave* xsave = env->kvm_xsave_buf;
845 uint16_t cwd, swd, twd;
848 if (!kvm_has_xsave()) {
849 return kvm_put_fpu(env);
852 memset(xsave, 0, sizeof(struct kvm_xsave));
854 swd = env->fpus & ~(7 << 11);
855 swd |= (env->fpstt & 7) << 11;
857 for (i = 0; i < 8; ++i) {
858 twd |= (!env->fptags[i]) << i;
860 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
861 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
862 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
863 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
864 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
866 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
867 sizeof env->xmm_regs);
868 xsave->region[XSAVE_MXCSR] = env->mxcsr;
869 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
870 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
871 sizeof env->ymmh_regs);
872 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
876 static int kvm_put_xcrs(CPUState *env)
878 struct kvm_xcrs xcrs;
880 if (!kvm_has_xcrs()) {
886 xcrs.xcrs[0].xcr = 0;
887 xcrs.xcrs[0].value = env->xcr0;
888 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
891 static int kvm_put_sregs(CPUState *env)
893 struct kvm_sregs sregs;
895 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
896 if (env->interrupt_injected >= 0) {
897 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
898 (uint64_t)1 << (env->interrupt_injected % 64);
901 if ((env->eflags & VM_MASK)) {
902 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
903 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
904 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
905 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
906 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
907 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
909 set_seg(&sregs.cs, &env->segs[R_CS]);
910 set_seg(&sregs.ds, &env->segs[R_DS]);
911 set_seg(&sregs.es, &env->segs[R_ES]);
912 set_seg(&sregs.fs, &env->segs[R_FS]);
913 set_seg(&sregs.gs, &env->segs[R_GS]);
914 set_seg(&sregs.ss, &env->segs[R_SS]);
917 set_seg(&sregs.tr, &env->tr);
918 set_seg(&sregs.ldt, &env->ldt);
920 sregs.idt.limit = env->idt.limit;
921 sregs.idt.base = env->idt.base;
922 sregs.gdt.limit = env->gdt.limit;
923 sregs.gdt.base = env->gdt.base;
925 sregs.cr0 = env->cr[0];
926 sregs.cr2 = env->cr[2];
927 sregs.cr3 = env->cr[3];
928 sregs.cr4 = env->cr[4];
930 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
931 sregs.apic_base = cpu_get_apic_base(env->apic_state);
933 sregs.efer = env->efer;
935 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
938 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
939 uint32_t index, uint64_t value)
941 entry->index = index;
945 static int kvm_put_msrs(CPUState *env, int level)
948 struct kvm_msrs info;
949 struct kvm_msr_entry entries[100];
951 struct kvm_msr_entry *msrs = msr_data.entries;
954 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
955 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
956 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
957 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
959 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
961 if (has_msr_hsave_pa) {
962 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
964 if (has_msr_tsc_deadline) {
965 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
967 if (has_msr_misc_enable) {
968 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
969 env->msr_ia32_misc_enable);
972 if (lm_capable_kernel) {
973 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
974 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
975 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
976 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
979 if (level == KVM_PUT_FULL_STATE) {
981 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
982 * writeback. Until this is fixed, we only write the offset to SMP
983 * guests after migration, desynchronizing the VCPUs, but avoiding
984 * huge jump-backs that would occur without any writeback at all.
986 if (smp_cpus == 1 || env->tsc != 0) {
987 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
991 * The following paravirtual MSRs have side effects on the guest or are
992 * too heavy for normal writeback. Limit them to reset or full state
995 if (level >= KVM_PUT_RESET_STATE) {
996 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
997 env->system_time_msr);
998 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
999 if (has_msr_async_pf_en) {
1000 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1001 env->async_pf_en_msr);
1003 if (hyperv_hypercall_available()) {
1004 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1005 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1007 if (hyperv_vapic_recommended()) {
1008 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1014 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1015 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1016 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1017 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1021 msr_data.info.nmsrs = n;
1023 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1028 static int kvm_get_fpu(CPUState *env)
1033 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1038 env->fpstt = (fpu.fsw >> 11) & 7;
1039 env->fpus = fpu.fsw;
1040 env->fpuc = fpu.fcw;
1041 env->fpop = fpu.last_opcode;
1042 env->fpip = fpu.last_ip;
1043 env->fpdp = fpu.last_dp;
1044 for (i = 0; i < 8; ++i) {
1045 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1047 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1048 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1049 env->mxcsr = fpu.mxcsr;
1054 static int kvm_get_xsave(CPUState *env)
1056 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1058 uint16_t cwd, swd, twd;
1060 if (!kvm_has_xsave()) {
1061 return kvm_get_fpu(env);
1064 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1069 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1070 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1071 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1072 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1073 env->fpstt = (swd >> 11) & 7;
1076 for (i = 0; i < 8; ++i) {
1077 env->fptags[i] = !((twd >> i) & 1);
1079 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1080 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1081 env->mxcsr = xsave->region[XSAVE_MXCSR];
1082 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1083 sizeof env->fpregs);
1084 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1085 sizeof env->xmm_regs);
1086 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1087 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1088 sizeof env->ymmh_regs);
1092 static int kvm_get_xcrs(CPUState *env)
1095 struct kvm_xcrs xcrs;
1097 if (!kvm_has_xcrs()) {
1101 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1106 for (i = 0; i < xcrs.nr_xcrs; i++) {
1107 /* Only support xcr0 now */
1108 if (xcrs.xcrs[0].xcr == 0) {
1109 env->xcr0 = xcrs.xcrs[0].value;
1116 static int kvm_get_sregs(CPUState *env)
1118 struct kvm_sregs sregs;
1122 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1127 /* There can only be one pending IRQ set in the bitmap at a time, so try
1128 to find it and save its number instead (-1 for none). */
1129 env->interrupt_injected = -1;
1130 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1131 if (sregs.interrupt_bitmap[i]) {
1132 bit = ctz64(sregs.interrupt_bitmap[i]);
1133 env->interrupt_injected = i * 64 + bit;
1138 get_seg(&env->segs[R_CS], &sregs.cs);
1139 get_seg(&env->segs[R_DS], &sregs.ds);
1140 get_seg(&env->segs[R_ES], &sregs.es);
1141 get_seg(&env->segs[R_FS], &sregs.fs);
1142 get_seg(&env->segs[R_GS], &sregs.gs);
1143 get_seg(&env->segs[R_SS], &sregs.ss);
1145 get_seg(&env->tr, &sregs.tr);
1146 get_seg(&env->ldt, &sregs.ldt);
1148 env->idt.limit = sregs.idt.limit;
1149 env->idt.base = sregs.idt.base;
1150 env->gdt.limit = sregs.gdt.limit;
1151 env->gdt.base = sregs.gdt.base;
1153 env->cr[0] = sregs.cr0;
1154 env->cr[2] = sregs.cr2;
1155 env->cr[3] = sregs.cr3;
1156 env->cr[4] = sregs.cr4;
1158 env->efer = sregs.efer;
1160 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1162 #define HFLAG_COPY_MASK \
1163 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1164 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1165 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1166 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1168 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1169 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1170 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1171 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1172 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1173 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1174 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1176 if (env->efer & MSR_EFER_LMA) {
1177 hflags |= HF_LMA_MASK;
1180 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1181 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1183 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1184 (DESC_B_SHIFT - HF_CS32_SHIFT);
1185 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1186 (DESC_B_SHIFT - HF_SS32_SHIFT);
1187 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1188 !(hflags & HF_CS32_MASK)) {
1189 hflags |= HF_ADDSEG_MASK;
1191 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1192 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1195 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1200 static int kvm_get_msrs(CPUState *env)
1203 struct kvm_msrs info;
1204 struct kvm_msr_entry entries[100];
1206 struct kvm_msr_entry *msrs = msr_data.entries;
1210 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1211 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1212 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1213 msrs[n++].index = MSR_PAT;
1215 msrs[n++].index = MSR_STAR;
1217 if (has_msr_hsave_pa) {
1218 msrs[n++].index = MSR_VM_HSAVE_PA;
1220 if (has_msr_tsc_deadline) {
1221 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1223 if (has_msr_misc_enable) {
1224 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1227 if (!env->tsc_valid) {
1228 msrs[n++].index = MSR_IA32_TSC;
1229 env->tsc_valid = !runstate_is_running();
1232 #ifdef TARGET_X86_64
1233 if (lm_capable_kernel) {
1234 msrs[n++].index = MSR_CSTAR;
1235 msrs[n++].index = MSR_KERNELGSBASE;
1236 msrs[n++].index = MSR_FMASK;
1237 msrs[n++].index = MSR_LSTAR;
1240 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1241 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1242 if (has_msr_async_pf_en) {
1243 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1247 msrs[n++].index = MSR_MCG_STATUS;
1248 msrs[n++].index = MSR_MCG_CTL;
1249 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1250 msrs[n++].index = MSR_MC0_CTL + i;
1254 msr_data.info.nmsrs = n;
1255 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1260 for (i = 0; i < ret; i++) {
1261 switch (msrs[i].index) {
1262 case MSR_IA32_SYSENTER_CS:
1263 env->sysenter_cs = msrs[i].data;
1265 case MSR_IA32_SYSENTER_ESP:
1266 env->sysenter_esp = msrs[i].data;
1268 case MSR_IA32_SYSENTER_EIP:
1269 env->sysenter_eip = msrs[i].data;
1272 env->pat = msrs[i].data;
1275 env->star = msrs[i].data;
1277 #ifdef TARGET_X86_64
1279 env->cstar = msrs[i].data;
1281 case MSR_KERNELGSBASE:
1282 env->kernelgsbase = msrs[i].data;
1285 env->fmask = msrs[i].data;
1288 env->lstar = msrs[i].data;
1292 env->tsc = msrs[i].data;
1294 case MSR_IA32_TSCDEADLINE:
1295 env->tsc_deadline = msrs[i].data;
1297 case MSR_VM_HSAVE_PA:
1298 env->vm_hsave = msrs[i].data;
1300 case MSR_KVM_SYSTEM_TIME:
1301 env->system_time_msr = msrs[i].data;
1303 case MSR_KVM_WALL_CLOCK:
1304 env->wall_clock_msr = msrs[i].data;
1306 case MSR_MCG_STATUS:
1307 env->mcg_status = msrs[i].data;
1310 env->mcg_ctl = msrs[i].data;
1312 case MSR_IA32_MISC_ENABLE:
1313 env->msr_ia32_misc_enable = msrs[i].data;
1316 if (msrs[i].index >= MSR_MC0_CTL &&
1317 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1318 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1321 case MSR_KVM_ASYNC_PF_EN:
1322 env->async_pf_en_msr = msrs[i].data;
1330 static int kvm_put_mp_state(CPUState *env)
1332 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1334 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1337 static int kvm_get_mp_state(CPUState *env)
1339 struct kvm_mp_state mp_state;
1342 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1346 env->mp_state = mp_state.mp_state;
1347 if (kvm_irqchip_in_kernel()) {
1348 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1353 static int kvm_get_apic(CPUState *env)
1355 DeviceState *apic = env->apic_state;
1356 struct kvm_lapic_state kapic;
1359 if (apic && kvm_irqchip_in_kernel()) {
1360 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1365 kvm_get_apic_state(apic, &kapic);
1370 static int kvm_put_apic(CPUState *env)
1372 DeviceState *apic = env->apic_state;
1373 struct kvm_lapic_state kapic;
1375 if (apic && kvm_irqchip_in_kernel()) {
1376 kvm_put_apic_state(apic, &kapic);
1378 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1383 static int kvm_put_vcpu_events(CPUState *env, int level)
1385 struct kvm_vcpu_events events;
1387 if (!kvm_has_vcpu_events()) {
1391 events.exception.injected = (env->exception_injected >= 0);
1392 events.exception.nr = env->exception_injected;
1393 events.exception.has_error_code = env->has_error_code;
1394 events.exception.error_code = env->error_code;
1396 events.interrupt.injected = (env->interrupt_injected >= 0);
1397 events.interrupt.nr = env->interrupt_injected;
1398 events.interrupt.soft = env->soft_interrupt;
1400 events.nmi.injected = env->nmi_injected;
1401 events.nmi.pending = env->nmi_pending;
1402 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1404 events.sipi_vector = env->sipi_vector;
1407 if (level >= KVM_PUT_RESET_STATE) {
1409 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1412 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1415 static int kvm_get_vcpu_events(CPUState *env)
1417 struct kvm_vcpu_events events;
1420 if (!kvm_has_vcpu_events()) {
1424 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1428 env->exception_injected =
1429 events.exception.injected ? events.exception.nr : -1;
1430 env->has_error_code = events.exception.has_error_code;
1431 env->error_code = events.exception.error_code;
1433 env->interrupt_injected =
1434 events.interrupt.injected ? events.interrupt.nr : -1;
1435 env->soft_interrupt = events.interrupt.soft;
1437 env->nmi_injected = events.nmi.injected;
1438 env->nmi_pending = events.nmi.pending;
1439 if (events.nmi.masked) {
1440 env->hflags2 |= HF2_NMI_MASK;
1442 env->hflags2 &= ~HF2_NMI_MASK;
1445 env->sipi_vector = events.sipi_vector;
1450 static int kvm_guest_debug_workarounds(CPUState *env)
1453 unsigned long reinject_trap = 0;
1455 if (!kvm_has_vcpu_events()) {
1456 if (env->exception_injected == 1) {
1457 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1458 } else if (env->exception_injected == 3) {
1459 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1461 env->exception_injected = -1;
1465 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1466 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1467 * by updating the debug state once again if single-stepping is on.
1468 * Another reason to call kvm_update_guest_debug here is a pending debug
1469 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1470 * reinject them via SET_GUEST_DEBUG.
1472 if (reinject_trap ||
1473 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1474 ret = kvm_update_guest_debug(env, reinject_trap);
1479 static int kvm_put_debugregs(CPUState *env)
1481 struct kvm_debugregs dbgregs;
1484 if (!kvm_has_debugregs()) {
1488 for (i = 0; i < 4; i++) {
1489 dbgregs.db[i] = env->dr[i];
1491 dbgregs.dr6 = env->dr[6];
1492 dbgregs.dr7 = env->dr[7];
1495 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1498 static int kvm_get_debugregs(CPUState *env)
1500 struct kvm_debugregs dbgregs;
1503 if (!kvm_has_debugregs()) {
1507 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1511 for (i = 0; i < 4; i++) {
1512 env->dr[i] = dbgregs.db[i];
1514 env->dr[4] = env->dr[6] = dbgregs.dr6;
1515 env->dr[5] = env->dr[7] = dbgregs.dr7;
1520 int kvm_arch_put_registers(CPUState *env, int level)
1524 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1526 ret = kvm_getput_regs(env, 1);
1530 ret = kvm_put_xsave(env);
1534 ret = kvm_put_xcrs(env);
1538 ret = kvm_put_sregs(env);
1542 /* must be before kvm_put_msrs */
1543 ret = kvm_inject_mce_oldstyle(env);
1547 ret = kvm_put_msrs(env, level);
1551 if (level >= KVM_PUT_RESET_STATE) {
1552 ret = kvm_put_mp_state(env);
1556 ret = kvm_put_apic(env);
1561 ret = kvm_put_vcpu_events(env, level);
1565 ret = kvm_put_debugregs(env);
1570 ret = kvm_guest_debug_workarounds(env);
1577 int kvm_arch_get_registers(CPUState *env)
1581 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1583 ret = kvm_getput_regs(env, 0);
1587 ret = kvm_get_xsave(env);
1591 ret = kvm_get_xcrs(env);
1595 ret = kvm_get_sregs(env);
1599 ret = kvm_get_msrs(env);
1603 ret = kvm_get_mp_state(env);
1607 ret = kvm_get_apic(env);
1611 ret = kvm_get_vcpu_events(env);
1615 ret = kvm_get_debugregs(env);
1622 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1627 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1628 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1629 DPRINTF("injected NMI\n");
1630 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1632 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1637 if (!kvm_irqchip_in_kernel()) {
1638 /* Force the VCPU out of its inner loop to process any INIT requests
1639 * or pending TPR access reports. */
1640 if (env->interrupt_request &
1641 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1642 env->exit_request = 1;
1645 /* Try to inject an interrupt if the guest can accept it */
1646 if (run->ready_for_interrupt_injection &&
1647 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1648 (env->eflags & IF_MASK)) {
1651 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1652 irq = cpu_get_pic_interrupt(env);
1654 struct kvm_interrupt intr;
1657 DPRINTF("injected interrupt %d\n", irq);
1658 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1661 "KVM: injection failed, interrupt lost (%s)\n",
1667 /* If we have an interrupt but the guest is not ready to receive an
1668 * interrupt, request an interrupt window exit. This will
1669 * cause a return to userspace as soon as the guest is ready to
1670 * receive interrupts. */
1671 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1672 run->request_interrupt_window = 1;
1674 run->request_interrupt_window = 0;
1677 DPRINTF("setting tpr\n");
1678 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1682 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1685 env->eflags |= IF_MASK;
1687 env->eflags &= ~IF_MASK;
1689 cpu_set_apic_tpr(env->apic_state, run->cr8);
1690 cpu_set_apic_base(env->apic_state, run->apic_base);
1693 int kvm_arch_process_async_events(CPUState *env)
1695 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1696 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1697 assert(env->mcg_cap);
1699 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1701 kvm_cpu_synchronize_state(env);
1703 if (env->exception_injected == EXCP08_DBLE) {
1704 /* this means triple fault */
1705 qemu_system_reset_request();
1706 env->exit_request = 1;
1709 env->exception_injected = EXCP12_MCHK;
1710 env->has_error_code = 0;
1713 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1714 env->mp_state = KVM_MP_STATE_RUNNABLE;
1718 if (kvm_irqchip_in_kernel()) {
1722 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1723 (env->eflags & IF_MASK)) ||
1724 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1727 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1728 kvm_cpu_synchronize_state(env);
1731 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1732 kvm_cpu_synchronize_state(env);
1735 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1736 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1737 kvm_cpu_synchronize_state(env);
1738 apic_handle_tpr_access_report(env->apic_state, env->eip,
1739 env->tpr_access_type);
1745 static int kvm_handle_halt(CPUState *env)
1747 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1748 (env->eflags & IF_MASK)) &&
1749 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1757 static int kvm_handle_tpr_access(CPUState *env)
1759 struct kvm_run *run = env->kvm_run;
1761 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1762 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1767 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1769 static const uint8_t int3 = 0xcc;
1771 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1772 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1778 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1782 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1783 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1795 static int nb_hw_breakpoint;
1797 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1801 for (n = 0; n < nb_hw_breakpoint; n++) {
1802 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1803 (hw_breakpoint[n].len == len || len == -1)) {
1810 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1811 target_ulong len, int type)
1814 case GDB_BREAKPOINT_HW:
1817 case GDB_WATCHPOINT_WRITE:
1818 case GDB_WATCHPOINT_ACCESS:
1825 if (addr & (len - 1)) {
1837 if (nb_hw_breakpoint == 4) {
1840 if (find_hw_breakpoint(addr, len, type) >= 0) {
1843 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1844 hw_breakpoint[nb_hw_breakpoint].len = len;
1845 hw_breakpoint[nb_hw_breakpoint].type = type;
1851 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1852 target_ulong len, int type)
1856 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1861 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1866 void kvm_arch_remove_all_hw_breakpoints(void)
1868 nb_hw_breakpoint = 0;
1871 static CPUWatchpoint hw_watchpoint;
1873 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1878 if (arch_info->exception == 1) {
1879 if (arch_info->dr6 & (1 << 14)) {
1880 if (cpu_single_env->singlestep_enabled) {
1884 for (n = 0; n < 4; n++) {
1885 if (arch_info->dr6 & (1 << n)) {
1886 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1892 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1893 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1894 hw_watchpoint.flags = BP_MEM_WRITE;
1898 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1899 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1900 hw_watchpoint.flags = BP_MEM_ACCESS;
1906 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1910 cpu_synchronize_state(cpu_single_env);
1911 assert(cpu_single_env->exception_injected == -1);
1914 cpu_single_env->exception_injected = arch_info->exception;
1915 cpu_single_env->has_error_code = 0;
1921 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1923 const uint8_t type_code[] = {
1924 [GDB_BREAKPOINT_HW] = 0x0,
1925 [GDB_WATCHPOINT_WRITE] = 0x1,
1926 [GDB_WATCHPOINT_ACCESS] = 0x3
1928 const uint8_t len_code[] = {
1929 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1933 if (kvm_sw_breakpoints_active(env)) {
1934 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1936 if (nb_hw_breakpoint > 0) {
1937 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1938 dbg->arch.debugreg[7] = 0x0600;
1939 for (n = 0; n < nb_hw_breakpoint; n++) {
1940 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1941 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1942 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1943 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1948 static bool host_supports_vmx(void)
1950 uint32_t ecx, unused;
1952 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1953 return ecx & CPUID_EXT_VMX;
1956 #define VMX_INVALID_GUEST_STATE 0x80000021
1958 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1963 switch (run->exit_reason) {
1965 DPRINTF("handle_hlt\n");
1966 ret = kvm_handle_halt(env);
1968 case KVM_EXIT_SET_TPR:
1971 case KVM_EXIT_TPR_ACCESS:
1972 ret = kvm_handle_tpr_access(env);
1974 case KVM_EXIT_FAIL_ENTRY:
1975 code = run->fail_entry.hardware_entry_failure_reason;
1976 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1978 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1980 "\nIf you're running a guest on an Intel machine without "
1981 "unrestricted mode\n"
1982 "support, the failure can be most likely due to the guest "
1983 "entering an invalid\n"
1984 "state for Intel VT. For example, the guest maybe running "
1985 "in big real mode\n"
1986 "which is not supported on less recent Intel processors."
1991 case KVM_EXIT_EXCEPTION:
1992 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1993 run->ex.exception, run->ex.error_code);
1996 case KVM_EXIT_DEBUG:
1997 DPRINTF("kvm_exit_debug\n");
1998 ret = kvm_handle_debug(&run->debug.arch);
2001 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2009 bool kvm_arch_stop_on_emulation_error(CPUState *env)
2011 kvm_cpu_synchronize_state(env);
2012 return !(env->cr[0] & CR0_PE_MASK) ||
2013 ((env->segs[R_CS].selector & 3) != 3);
2016 void kvm_arch_init_irq_routing(KVMState *s)
2018 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2019 /* If kernel can't do irq routing, interrupt source
2020 * override 0->2 cannot be set up as required by HPET.
2021 * So we have to disable it.