2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
26 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
33 //#define DEBUG_TLB_CHECK
39 * If flush_global is true (the usual case), flush all tlb entries.
40 * If flush_global is false, flush (at least) all tlb entries not
43 * Since QEMU doesn't currently implement a global/not-global flag
44 * for tlb entries, at the moment tlb_flush() will also flush all
45 * tlb entries in the flush_global == false case. This is OK because
46 * CPU architectures generally permit an implementation to drop
47 * entries from the TLB at any time, so flushing more entries than
48 * required is only an efficiency issue, not a correctness issue.
50 void tlb_flush(CPUState *cpu, int flush_global)
52 CPUArchState *env = cpu->env_ptr;
54 #if defined(DEBUG_TLB)
55 printf("tlb_flush:\n");
57 /* must reset current TB so that interrupts cannot modify the
58 links while we are modifying them */
59 cpu->current_tb = NULL;
61 memset(env->tlb_table, -1, sizeof(env->tlb_table));
62 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
64 env->tlb_flush_addr = -1;
65 env->tlb_flush_mask = 0;
69 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
71 if (addr == (tlb_entry->addr_read &
72 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
73 addr == (tlb_entry->addr_write &
74 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
75 addr == (tlb_entry->addr_code &
76 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
77 memset(tlb_entry, -1, sizeof(*tlb_entry));
81 void tlb_flush_page(CPUState *cpu, target_ulong addr)
83 CPUArchState *env = cpu->env_ptr;
87 #if defined(DEBUG_TLB)
88 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
90 /* Check if we need to flush due to large pages. */
91 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
92 #if defined(DEBUG_TLB)
93 printf("tlb_flush_page: forced full flush ("
94 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
95 env->tlb_flush_addr, env->tlb_flush_mask);
100 /* must reset current TB so that interrupts cannot modify the
101 links while we are modifying them */
102 cpu->current_tb = NULL;
104 addr &= TARGET_PAGE_MASK;
105 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
106 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
107 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
110 tb_flush_jmp_cache(cpu, addr);
113 /* update the TLBs so that writes to code in the virtual page 'addr'
115 void tlb_protect_code(ram_addr_t ram_addr)
117 cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
121 /* update the TLB so that writes in physical page 'phys_addr' are no longer
122 tested for self modifying code */
123 void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
126 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
129 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
131 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
134 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
139 if (tlb_is_dirty_ram(tlb_entry)) {
140 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
141 if ((addr - start) < length) {
142 tlb_entry->addr_write |= TLB_NOTDIRTY;
147 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
151 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
152 fprintf(stderr, "Bad ram pointer %p\n", ptr);
158 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
167 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
170 for (i = 0; i < CPU_TLB_SIZE; i++) {
171 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
178 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
180 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
181 tlb_entry->addr_write = vaddr;
185 /* update the TLB corresponding to virtual page vaddr
186 so that it is no longer dirty */
187 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
192 vaddr &= TARGET_PAGE_MASK;
193 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
194 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
195 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
199 /* Our TLB does not support large pages, so remember the area covered by
200 large pages and trigger a full TLB flush if these are invalidated. */
201 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
204 target_ulong mask = ~(size - 1);
206 if (env->tlb_flush_addr == (target_ulong)-1) {
207 env->tlb_flush_addr = vaddr & mask;
208 env->tlb_flush_mask = mask;
211 /* Extend the existing region to include the new page.
212 This is a compromise between unnecessary flushes and the cost
213 of maintaining a full variable size TLB. */
214 mask &= env->tlb_flush_mask;
215 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
218 env->tlb_flush_addr &= mask;
219 env->tlb_flush_mask = mask;
222 /* Add a new TLB entry. At most one entry for a given virtual address
223 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
224 supplied size is only used by tlb_flush_page. */
225 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
226 hwaddr paddr, int prot,
227 int mmu_idx, target_ulong size)
229 CPUArchState *env = cpu->env_ptr;
230 MemoryRegionSection *section;
232 target_ulong address;
233 target_ulong code_address;
236 hwaddr iotlb, xlat, sz;
238 assert(size >= TARGET_PAGE_SIZE);
239 if (size != TARGET_PAGE_SIZE) {
240 tlb_add_large_page(env, vaddr, size);
244 section = address_space_translate_for_iotlb(cpu->as, paddr,
246 assert(sz >= TARGET_PAGE_SIZE);
248 #if defined(DEBUG_TLB)
249 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
251 vaddr, paddr, prot, mmu_idx);
255 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
260 /* TLB_MMIO for rom/romd handled below */
261 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
264 code_address = address;
265 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
268 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
269 env->iotlb[mmu_idx][index] = iotlb - vaddr;
270 te = &env->tlb_table[mmu_idx][index];
271 te->addend = addend - vaddr;
272 if (prot & PAGE_READ) {
273 te->addr_read = address;
278 if (prot & PAGE_EXEC) {
279 te->addr_code = code_address;
283 if (prot & PAGE_WRITE) {
284 if ((memory_region_is_ram(section->mr) && section->readonly)
285 || memory_region_is_romd(section->mr)) {
286 /* Write access calls the I/O callback. */
287 te->addr_write = address | TLB_MMIO;
288 } else if (memory_region_is_ram(section->mr)
289 && cpu_physical_memory_is_clean(section->mr->ram_addr
291 te->addr_write = address | TLB_NOTDIRTY;
293 te->addr_write = address;
300 /* NOTE: this function can trigger an exception */
301 /* NOTE2: the returned address is not exactly the physical address: it
302 * is actually a ram_addr_t (in system mode; the user mode emulation
303 * version of this function returns a guest virtual address).
305 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
307 int mmu_idx, page_index, pd;
310 CPUState *cpu = ENV_GET_CPU(env1);
312 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
313 mmu_idx = cpu_mmu_index(env1);
314 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
315 (addr & TARGET_PAGE_MASK))) {
316 cpu_ldub_code(env1, addr);
318 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
319 mr = iotlb_to_region(cpu->as, pd);
320 if (memory_region_is_unassigned(mr)) {
321 CPUClass *cc = CPU_GET_CLASS(cpu);
323 if (cc->do_unassigned_access) {
324 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
326 cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
327 TARGET_FMT_lx "\n", addr);
330 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
331 return qemu_ram_addr_from_host_nofail(p);
334 #define MMUSUFFIX _mmu
337 #include "softmmu_template.h"
340 #include "softmmu_template.h"
343 #include "softmmu_template.h"
346 #include "softmmu_template.h"
349 #define MMUSUFFIX _cmmu
353 #define GETRA() ((uintptr_t)0)
354 #define SOFTMMU_CODE_ACCESS
357 #include "softmmu_template.h"
360 #include "softmmu_template.h"
363 #include "softmmu_template.h"
366 #include "softmmu_template.h"