]> Git Repo - qemu.git/blob - block/qcow2-refcount.c
qemu-common: stop including qemu/bswap.h from qemu-common.h
[qemu.git] / block / qcow2-refcount.c
1 /*
2  * Block driver for the QCOW version 2 format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35                             int64_t offset, int64_t length, uint64_t addend,
36                             bool decrease, enum qcow2_discard_type type);
37
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
45
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47                              uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49                              uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51                              uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53                              uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55                              uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57                              uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59                              uint64_t value);
60
61
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63     &get_refcount_ro0,
64     &get_refcount_ro1,
65     &get_refcount_ro2,
66     &get_refcount_ro3,
67     &get_refcount_ro4,
68     &get_refcount_ro5,
69     &get_refcount_ro6
70 };
71
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73     &set_refcount_ro0,
74     &set_refcount_ro1,
75     &set_refcount_ro2,
76     &set_refcount_ro3,
77     &set_refcount_ro4,
78     &set_refcount_ro5,
79     &set_refcount_ro6
80 };
81
82
83 /*********************************************************/
84 /* refcount handling */
85
86 int qcow2_refcount_init(BlockDriverState *bs)
87 {
88     BDRVQcow2State *s = bs->opaque;
89     unsigned int refcount_table_size2, i;
90     int ret;
91
92     assert(s->refcount_order >= 0 && s->refcount_order <= 6);
93
94     s->get_refcount = get_refcount_funcs[s->refcount_order];
95     s->set_refcount = set_refcount_funcs[s->refcount_order];
96
97     assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
98     refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
99     s->refcount_table = g_try_malloc(refcount_table_size2);
100
101     if (s->refcount_table_size > 0) {
102         if (s->refcount_table == NULL) {
103             ret = -ENOMEM;
104             goto fail;
105         }
106         BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
107         ret = bdrv_pread(bs->file->bs, s->refcount_table_offset,
108                          s->refcount_table, refcount_table_size2);
109         if (ret < 0) {
110             goto fail;
111         }
112         for(i = 0; i < s->refcount_table_size; i++)
113             be64_to_cpus(&s->refcount_table[i]);
114     }
115     return 0;
116  fail:
117     return ret;
118 }
119
120 void qcow2_refcount_close(BlockDriverState *bs)
121 {
122     BDRVQcow2State *s = bs->opaque;
123     g_free(s->refcount_table);
124 }
125
126
127 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
128 {
129     return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
130 }
131
132 static void set_refcount_ro0(void *refcount_array, uint64_t index,
133                              uint64_t value)
134 {
135     assert(!(value >> 1));
136     ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
137     ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
138 }
139
140 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
141 {
142     return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
143            & 0x3;
144 }
145
146 static void set_refcount_ro1(void *refcount_array, uint64_t index,
147                              uint64_t value)
148 {
149     assert(!(value >> 2));
150     ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
151     ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
152 }
153
154 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
155 {
156     return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
157            & 0xf;
158 }
159
160 static void set_refcount_ro2(void *refcount_array, uint64_t index,
161                              uint64_t value)
162 {
163     assert(!(value >> 4));
164     ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
165     ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
166 }
167
168 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
169 {
170     return ((const uint8_t *)refcount_array)[index];
171 }
172
173 static void set_refcount_ro3(void *refcount_array, uint64_t index,
174                              uint64_t value)
175 {
176     assert(!(value >> 8));
177     ((uint8_t *)refcount_array)[index] = value;
178 }
179
180 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
181 {
182     return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
183 }
184
185 static void set_refcount_ro4(void *refcount_array, uint64_t index,
186                              uint64_t value)
187 {
188     assert(!(value >> 16));
189     ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
190 }
191
192 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
193 {
194     return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
195 }
196
197 static void set_refcount_ro5(void *refcount_array, uint64_t index,
198                              uint64_t value)
199 {
200     assert(!(value >> 32));
201     ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
202 }
203
204 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
205 {
206     return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
207 }
208
209 static void set_refcount_ro6(void *refcount_array, uint64_t index,
210                              uint64_t value)
211 {
212     ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
213 }
214
215
216 static int load_refcount_block(BlockDriverState *bs,
217                                int64_t refcount_block_offset,
218                                void **refcount_block)
219 {
220     BDRVQcow2State *s = bs->opaque;
221     int ret;
222
223     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
224     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
225         refcount_block);
226
227     return ret;
228 }
229
230 /*
231  * Retrieves the refcount of the cluster given by its index and stores it in
232  * *refcount. Returns 0 on success and -errno on failure.
233  */
234 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
235                        uint64_t *refcount)
236 {
237     BDRVQcow2State *s = bs->opaque;
238     uint64_t refcount_table_index, block_index;
239     int64_t refcount_block_offset;
240     int ret;
241     void *refcount_block;
242
243     refcount_table_index = cluster_index >> s->refcount_block_bits;
244     if (refcount_table_index >= s->refcount_table_size) {
245         *refcount = 0;
246         return 0;
247     }
248     refcount_block_offset =
249         s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
250     if (!refcount_block_offset) {
251         *refcount = 0;
252         return 0;
253     }
254
255     if (offset_into_cluster(s, refcount_block_offset)) {
256         qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
257                                 " unaligned (reftable index: %#" PRIx64 ")",
258                                 refcount_block_offset, refcount_table_index);
259         return -EIO;
260     }
261
262     ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
263                           &refcount_block);
264     if (ret < 0) {
265         return ret;
266     }
267
268     block_index = cluster_index & (s->refcount_block_size - 1);
269     *refcount = s->get_refcount(refcount_block, block_index);
270
271     qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
272
273     return 0;
274 }
275
276 /*
277  * Rounds the refcount table size up to avoid growing the table for each single
278  * refcount block that is allocated.
279  */
280 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
281     unsigned int min_size)
282 {
283     unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
284     unsigned int refcount_table_clusters =
285         MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
286
287     while (min_clusters > refcount_table_clusters) {
288         refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
289     }
290
291     return refcount_table_clusters << (s->cluster_bits - 3);
292 }
293
294
295 /* Checks if two offsets are described by the same refcount block */
296 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
297     uint64_t offset_b)
298 {
299     uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
300     uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
301
302     return (block_a == block_b);
303 }
304
305 /*
306  * Loads a refcount block. If it doesn't exist yet, it is allocated first
307  * (including growing the refcount table if needed).
308  *
309  * Returns 0 on success or -errno in error case
310  */
311 static int alloc_refcount_block(BlockDriverState *bs,
312                                 int64_t cluster_index, void **refcount_block)
313 {
314     BDRVQcow2State *s = bs->opaque;
315     unsigned int refcount_table_index;
316     int ret;
317
318     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
319
320     /* Find the refcount block for the given cluster */
321     refcount_table_index = cluster_index >> s->refcount_block_bits;
322
323     if (refcount_table_index < s->refcount_table_size) {
324
325         uint64_t refcount_block_offset =
326             s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
327
328         /* If it's already there, we're done */
329         if (refcount_block_offset) {
330             if (offset_into_cluster(s, refcount_block_offset)) {
331                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
332                                         PRIx64 " unaligned (reftable index: "
333                                         "%#x)", refcount_block_offset,
334                                         refcount_table_index);
335                 return -EIO;
336             }
337
338              return load_refcount_block(bs, refcount_block_offset,
339                                         refcount_block);
340         }
341     }
342
343     /*
344      * If we came here, we need to allocate something. Something is at least
345      * a cluster for the new refcount block. It may also include a new refcount
346      * table if the old refcount table is too small.
347      *
348      * Note that allocating clusters here needs some special care:
349      *
350      * - We can't use the normal qcow2_alloc_clusters(), it would try to
351      *   increase the refcount and very likely we would end up with an endless
352      *   recursion. Instead we must place the refcount blocks in a way that
353      *   they can describe them themselves.
354      *
355      * - We need to consider that at this point we are inside update_refcounts
356      *   and potentially doing an initial refcount increase. This means that
357      *   some clusters have already been allocated by the caller, but their
358      *   refcount isn't accurate yet. If we allocate clusters for metadata, we
359      *   need to return -EAGAIN to signal the caller that it needs to restart
360      *   the search for free clusters.
361      *
362      * - alloc_clusters_noref and qcow2_free_clusters may load a different
363      *   refcount block into the cache
364      */
365
366     *refcount_block = NULL;
367
368     /* We write to the refcount table, so we might depend on L2 tables */
369     ret = qcow2_cache_flush(bs, s->l2_table_cache);
370     if (ret < 0) {
371         return ret;
372     }
373
374     /* Allocate the refcount block itself and mark it as used */
375     int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
376     if (new_block < 0) {
377         return new_block;
378     }
379
380 #ifdef DEBUG_ALLOC2
381     fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
382         " at %" PRIx64 "\n",
383         refcount_table_index, cluster_index << s->cluster_bits, new_block);
384 #endif
385
386     if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
387         /* Zero the new refcount block before updating it */
388         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
389                                     refcount_block);
390         if (ret < 0) {
391             goto fail_block;
392         }
393
394         memset(*refcount_block, 0, s->cluster_size);
395
396         /* The block describes itself, need to update the cache */
397         int block_index = (new_block >> s->cluster_bits) &
398             (s->refcount_block_size - 1);
399         s->set_refcount(*refcount_block, block_index, 1);
400     } else {
401         /* Described somewhere else. This can recurse at most twice before we
402          * arrive at a block that describes itself. */
403         ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
404                               QCOW2_DISCARD_NEVER);
405         if (ret < 0) {
406             goto fail_block;
407         }
408
409         ret = qcow2_cache_flush(bs, s->refcount_block_cache);
410         if (ret < 0) {
411             goto fail_block;
412         }
413
414         /* Initialize the new refcount block only after updating its refcount,
415          * update_refcount uses the refcount cache itself */
416         ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
417                                     refcount_block);
418         if (ret < 0) {
419             goto fail_block;
420         }
421
422         memset(*refcount_block, 0, s->cluster_size);
423     }
424
425     /* Now the new refcount block needs to be written to disk */
426     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
427     qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
428     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
429     if (ret < 0) {
430         goto fail_block;
431     }
432
433     /* If the refcount table is big enough, just hook the block up there */
434     if (refcount_table_index < s->refcount_table_size) {
435         uint64_t data64 = cpu_to_be64(new_block);
436         BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
437         ret = bdrv_pwrite_sync(bs->file->bs,
438             s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
439             &data64, sizeof(data64));
440         if (ret < 0) {
441             goto fail_block;
442         }
443
444         s->refcount_table[refcount_table_index] = new_block;
445
446         /* The new refcount block may be where the caller intended to put its
447          * data, so let it restart the search. */
448         return -EAGAIN;
449     }
450
451     qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
452
453     /*
454      * If we come here, we need to grow the refcount table. Again, a new
455      * refcount table needs some space and we can't simply allocate to avoid
456      * endless recursion.
457      *
458      * Therefore let's grab new refcount blocks at the end of the image, which
459      * will describe themselves and the new refcount table. This way we can
460      * reference them only in the new table and do the switch to the new
461      * refcount table at once without producing an inconsistent state in
462      * between.
463      */
464     BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
465
466     /* Calculate the number of refcount blocks needed so far; this will be the
467      * basis for calculating the index of the first cluster used for the
468      * self-describing refcount structures which we are about to create.
469      *
470      * Because we reached this point, there cannot be any refcount entries for
471      * cluster_index or higher indices yet. However, because new_block has been
472      * allocated to describe that cluster (and it will assume this role later
473      * on), we cannot use that index; also, new_block may actually have a higher
474      * cluster index than cluster_index, so it needs to be taken into account
475      * here (and 1 needs to be added to its value because that cluster is used).
476      */
477     uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
478                                             (new_block >> s->cluster_bits) + 1),
479                                         s->refcount_block_size);
480
481     if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
482         return -EFBIG;
483     }
484
485     /* And now we need at least one block more for the new metadata */
486     uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
487     uint64_t last_table_size;
488     uint64_t blocks_clusters;
489     do {
490         uint64_t table_clusters =
491             size_to_clusters(s, table_size * sizeof(uint64_t));
492         blocks_clusters = 1 +
493             ((table_clusters + s->refcount_block_size - 1)
494             / s->refcount_block_size);
495         uint64_t meta_clusters = table_clusters + blocks_clusters;
496
497         last_table_size = table_size;
498         table_size = next_refcount_table_size(s, blocks_used +
499             ((meta_clusters + s->refcount_block_size - 1)
500             / s->refcount_block_size));
501
502     } while (last_table_size != table_size);
503
504 #ifdef DEBUG_ALLOC2
505     fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
506         s->refcount_table_size, table_size);
507 #endif
508
509     /* Create the new refcount table and blocks */
510     uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
511         s->cluster_size;
512     uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
513     uint64_t *new_table = g_try_new0(uint64_t, table_size);
514     void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
515
516     assert(table_size > 0 && blocks_clusters > 0);
517     if (new_table == NULL || new_blocks == NULL) {
518         ret = -ENOMEM;
519         goto fail_table;
520     }
521
522     /* Fill the new refcount table */
523     memcpy(new_table, s->refcount_table,
524         s->refcount_table_size * sizeof(uint64_t));
525     new_table[refcount_table_index] = new_block;
526
527     int i;
528     for (i = 0; i < blocks_clusters; i++) {
529         new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
530     }
531
532     /* Fill the refcount blocks */
533     uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
534     int block = 0;
535     for (i = 0; i < table_clusters + blocks_clusters; i++) {
536         s->set_refcount(new_blocks, block++, 1);
537     }
538
539     /* Write refcount blocks to disk */
540     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
541     ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks,
542         blocks_clusters * s->cluster_size);
543     g_free(new_blocks);
544     new_blocks = NULL;
545     if (ret < 0) {
546         goto fail_table;
547     }
548
549     /* Write refcount table to disk */
550     for(i = 0; i < table_size; i++) {
551         cpu_to_be64s(&new_table[i]);
552     }
553
554     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
555     ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table,
556         table_size * sizeof(uint64_t));
557     if (ret < 0) {
558         goto fail_table;
559     }
560
561     for(i = 0; i < table_size; i++) {
562         be64_to_cpus(&new_table[i]);
563     }
564
565     /* Hook up the new refcount table in the qcow2 header */
566     struct QEMU_PACKED {
567         uint64_t d64;
568         uint32_t d32;
569     } data;
570     cpu_to_be64w(&data.d64, table_offset);
571     cpu_to_be32w(&data.d32, table_clusters);
572     BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
573     ret = bdrv_pwrite_sync(bs->file->bs,
574                            offsetof(QCowHeader, refcount_table_offset),
575                            &data, sizeof(data));
576     if (ret < 0) {
577         goto fail_table;
578     }
579
580     /* And switch it in memory */
581     uint64_t old_table_offset = s->refcount_table_offset;
582     uint64_t old_table_size = s->refcount_table_size;
583
584     g_free(s->refcount_table);
585     s->refcount_table = new_table;
586     s->refcount_table_size = table_size;
587     s->refcount_table_offset = table_offset;
588
589     /* Free old table. */
590     qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
591                         QCOW2_DISCARD_OTHER);
592
593     ret = load_refcount_block(bs, new_block, refcount_block);
594     if (ret < 0) {
595         return ret;
596     }
597
598     /* If we were trying to do the initial refcount update for some cluster
599      * allocation, we might have used the same clusters to store newly
600      * allocated metadata. Make the caller search some new space. */
601     return -EAGAIN;
602
603 fail_table:
604     g_free(new_blocks);
605     g_free(new_table);
606 fail_block:
607     if (*refcount_block != NULL) {
608         qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
609     }
610     return ret;
611 }
612
613 void qcow2_process_discards(BlockDriverState *bs, int ret)
614 {
615     BDRVQcow2State *s = bs->opaque;
616     Qcow2DiscardRegion *d, *next;
617
618     QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
619         QTAILQ_REMOVE(&s->discards, d, next);
620
621         /* Discard is optional, ignore the return value */
622         if (ret >= 0) {
623             bdrv_discard(bs->file->bs,
624                          d->offset >> BDRV_SECTOR_BITS,
625                          d->bytes >> BDRV_SECTOR_BITS);
626         }
627
628         g_free(d);
629     }
630 }
631
632 static void update_refcount_discard(BlockDriverState *bs,
633                                     uint64_t offset, uint64_t length)
634 {
635     BDRVQcow2State *s = bs->opaque;
636     Qcow2DiscardRegion *d, *p, *next;
637
638     QTAILQ_FOREACH(d, &s->discards, next) {
639         uint64_t new_start = MIN(offset, d->offset);
640         uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
641
642         if (new_end - new_start <= length + d->bytes) {
643             /* There can't be any overlap, areas ending up here have no
644              * references any more and therefore shouldn't get freed another
645              * time. */
646             assert(d->bytes + length == new_end - new_start);
647             d->offset = new_start;
648             d->bytes = new_end - new_start;
649             goto found;
650         }
651     }
652
653     d = g_malloc(sizeof(*d));
654     *d = (Qcow2DiscardRegion) {
655         .bs     = bs,
656         .offset = offset,
657         .bytes  = length,
658     };
659     QTAILQ_INSERT_TAIL(&s->discards, d, next);
660
661 found:
662     /* Merge discard requests if they are adjacent now */
663     QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
664         if (p == d
665             || p->offset > d->offset + d->bytes
666             || d->offset > p->offset + p->bytes)
667         {
668             continue;
669         }
670
671         /* Still no overlap possible */
672         assert(p->offset == d->offset + d->bytes
673             || d->offset == p->offset + p->bytes);
674
675         QTAILQ_REMOVE(&s->discards, p, next);
676         d->offset = MIN(d->offset, p->offset);
677         d->bytes += p->bytes;
678         g_free(p);
679     }
680 }
681
682 /* XXX: cache several refcount block clusters ? */
683 /* @addend is the absolute value of the addend; if @decrease is set, @addend
684  * will be subtracted from the current refcount, otherwise it will be added */
685 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
686                                                    int64_t offset,
687                                                    int64_t length,
688                                                    uint64_t addend,
689                                                    bool decrease,
690                                                    enum qcow2_discard_type type)
691 {
692     BDRVQcow2State *s = bs->opaque;
693     int64_t start, last, cluster_offset;
694     void *refcount_block = NULL;
695     int64_t old_table_index = -1;
696     int ret;
697
698 #ifdef DEBUG_ALLOC2
699     fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
700             " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
701             addend);
702 #endif
703     if (length < 0) {
704         return -EINVAL;
705     } else if (length == 0) {
706         return 0;
707     }
708
709     if (decrease) {
710         qcow2_cache_set_dependency(bs, s->refcount_block_cache,
711             s->l2_table_cache);
712     }
713
714     start = start_of_cluster(s, offset);
715     last = start_of_cluster(s, offset + length - 1);
716     for(cluster_offset = start; cluster_offset <= last;
717         cluster_offset += s->cluster_size)
718     {
719         int block_index;
720         uint64_t refcount;
721         int64_t cluster_index = cluster_offset >> s->cluster_bits;
722         int64_t table_index = cluster_index >> s->refcount_block_bits;
723
724         /* Load the refcount block and allocate it if needed */
725         if (table_index != old_table_index) {
726             if (refcount_block) {
727                 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
728             }
729             ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
730             if (ret < 0) {
731                 goto fail;
732             }
733         }
734         old_table_index = table_index;
735
736         qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
737                                      refcount_block);
738
739         /* we can update the count and save it */
740         block_index = cluster_index & (s->refcount_block_size - 1);
741
742         refcount = s->get_refcount(refcount_block, block_index);
743         if (decrease ? (refcount - addend > refcount)
744                      : (refcount + addend < refcount ||
745                         refcount + addend > s->refcount_max))
746         {
747             ret = -EINVAL;
748             goto fail;
749         }
750         if (decrease) {
751             refcount -= addend;
752         } else {
753             refcount += addend;
754         }
755         if (refcount == 0 && cluster_index < s->free_cluster_index) {
756             s->free_cluster_index = cluster_index;
757         }
758         s->set_refcount(refcount_block, block_index, refcount);
759
760         if (refcount == 0 && s->discard_passthrough[type]) {
761             update_refcount_discard(bs, cluster_offset, s->cluster_size);
762         }
763     }
764
765     ret = 0;
766 fail:
767     if (!s->cache_discards) {
768         qcow2_process_discards(bs, ret);
769     }
770
771     /* Write last changed block to disk */
772     if (refcount_block) {
773         qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
774     }
775
776     /*
777      * Try do undo any updates if an error is returned (This may succeed in
778      * some cases like ENOSPC for allocating a new refcount block)
779      */
780     if (ret < 0) {
781         int dummy;
782         dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
783                                 !decrease, QCOW2_DISCARD_NEVER);
784         (void)dummy;
785     }
786
787     return ret;
788 }
789
790 /*
791  * Increases or decreases the refcount of a given cluster.
792  *
793  * @addend is the absolute value of the addend; if @decrease is set, @addend
794  * will be subtracted from the current refcount, otherwise it will be added.
795  *
796  * On success 0 is returned; on failure -errno is returned.
797  */
798 int qcow2_update_cluster_refcount(BlockDriverState *bs,
799                                   int64_t cluster_index,
800                                   uint64_t addend, bool decrease,
801                                   enum qcow2_discard_type type)
802 {
803     BDRVQcow2State *s = bs->opaque;
804     int ret;
805
806     ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
807                           decrease, type);
808     if (ret < 0) {
809         return ret;
810     }
811
812     return 0;
813 }
814
815
816
817 /*********************************************************/
818 /* cluster allocation functions */
819
820
821
822 /* return < 0 if error */
823 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
824 {
825     BDRVQcow2State *s = bs->opaque;
826     uint64_t i, nb_clusters, refcount;
827     int ret;
828
829     /* We can't allocate clusters if they may still be queued for discard. */
830     if (s->cache_discards) {
831         qcow2_process_discards(bs, 0);
832     }
833
834     nb_clusters = size_to_clusters(s, size);
835 retry:
836     for(i = 0; i < nb_clusters; i++) {
837         uint64_t next_cluster_index = s->free_cluster_index++;
838         ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
839
840         if (ret < 0) {
841             return ret;
842         } else if (refcount != 0) {
843             goto retry;
844         }
845     }
846
847     /* Make sure that all offsets in the "allocated" range are representable
848      * in an int64_t */
849     if (s->free_cluster_index > 0 &&
850         s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
851     {
852         return -EFBIG;
853     }
854
855 #ifdef DEBUG_ALLOC2
856     fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
857             size,
858             (s->free_cluster_index - nb_clusters) << s->cluster_bits);
859 #endif
860     return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
861 }
862
863 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
864 {
865     int64_t offset;
866     int ret;
867
868     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
869     do {
870         offset = alloc_clusters_noref(bs, size);
871         if (offset < 0) {
872             return offset;
873         }
874
875         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
876     } while (ret == -EAGAIN);
877
878     if (ret < 0) {
879         return ret;
880     }
881
882     return offset;
883 }
884
885 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
886                                 int64_t nb_clusters)
887 {
888     BDRVQcow2State *s = bs->opaque;
889     uint64_t cluster_index, refcount;
890     uint64_t i;
891     int ret;
892
893     assert(nb_clusters >= 0);
894     if (nb_clusters == 0) {
895         return 0;
896     }
897
898     do {
899         /* Check how many clusters there are free */
900         cluster_index = offset >> s->cluster_bits;
901         for(i = 0; i < nb_clusters; i++) {
902             ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
903             if (ret < 0) {
904                 return ret;
905             } else if (refcount != 0) {
906                 break;
907             }
908         }
909
910         /* And then allocate them */
911         ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
912                               QCOW2_DISCARD_NEVER);
913     } while (ret == -EAGAIN);
914
915     if (ret < 0) {
916         return ret;
917     }
918
919     return i;
920 }
921
922 /* only used to allocate compressed sectors. We try to allocate
923    contiguous sectors. size must be <= cluster_size */
924 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
925 {
926     BDRVQcow2State *s = bs->opaque;
927     int64_t offset;
928     size_t free_in_cluster;
929     int ret;
930
931     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
932     assert(size > 0 && size <= s->cluster_size);
933     assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
934
935     offset = s->free_byte_offset;
936
937     if (offset) {
938         uint64_t refcount;
939         ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
940         if (ret < 0) {
941             return ret;
942         }
943
944         if (refcount == s->refcount_max) {
945             offset = 0;
946         }
947     }
948
949     free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
950     do {
951         if (!offset || free_in_cluster < size) {
952             int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
953             if (new_cluster < 0) {
954                 return new_cluster;
955             }
956
957             if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
958                 offset = new_cluster;
959                 free_in_cluster = s->cluster_size;
960             } else {
961                 free_in_cluster += s->cluster_size;
962             }
963         }
964
965         assert(offset);
966         ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
967         if (ret < 0) {
968             offset = 0;
969         }
970     } while (ret == -EAGAIN);
971     if (ret < 0) {
972         return ret;
973     }
974
975     /* The cluster refcount was incremented; refcount blocks must be flushed
976      * before the caller's L2 table updates. */
977     qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
978
979     s->free_byte_offset = offset + size;
980     if (!offset_into_cluster(s, s->free_byte_offset)) {
981         s->free_byte_offset = 0;
982     }
983
984     return offset;
985 }
986
987 void qcow2_free_clusters(BlockDriverState *bs,
988                           int64_t offset, int64_t size,
989                           enum qcow2_discard_type type)
990 {
991     int ret;
992
993     BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
994     ret = update_refcount(bs, offset, size, 1, true, type);
995     if (ret < 0) {
996         fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
997         /* TODO Remember the clusters to free them later and avoid leaking */
998     }
999 }
1000
1001 /*
1002  * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1003  * normal cluster, compressed cluster, etc.)
1004  */
1005 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1006                              int nb_clusters, enum qcow2_discard_type type)
1007 {
1008     BDRVQcow2State *s = bs->opaque;
1009
1010     switch (qcow2_get_cluster_type(l2_entry)) {
1011     case QCOW2_CLUSTER_COMPRESSED:
1012         {
1013             int nb_csectors;
1014             nb_csectors = ((l2_entry >> s->csize_shift) &
1015                            s->csize_mask) + 1;
1016             qcow2_free_clusters(bs,
1017                 (l2_entry & s->cluster_offset_mask) & ~511,
1018                 nb_csectors * 512, type);
1019         }
1020         break;
1021     case QCOW2_CLUSTER_NORMAL:
1022     case QCOW2_CLUSTER_ZERO:
1023         if (l2_entry & L2E_OFFSET_MASK) {
1024             if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1025                 qcow2_signal_corruption(bs, false, -1, -1,
1026                                         "Cannot free unaligned cluster %#llx",
1027                                         l2_entry & L2E_OFFSET_MASK);
1028             } else {
1029                 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1030                                     nb_clusters << s->cluster_bits, type);
1031             }
1032         }
1033         break;
1034     case QCOW2_CLUSTER_UNALLOCATED:
1035         break;
1036     default:
1037         abort();
1038     }
1039 }
1040
1041
1042
1043 /*********************************************************/
1044 /* snapshots and image creation */
1045
1046
1047
1048 /* update the refcounts of snapshots and the copied flag */
1049 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1050     int64_t l1_table_offset, int l1_size, int addend)
1051 {
1052     BDRVQcow2State *s = bs->opaque;
1053     uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1054     bool l1_allocated = false;
1055     int64_t old_offset, old_l2_offset;
1056     int i, j, l1_modified = 0, nb_csectors;
1057     int ret;
1058
1059     assert(addend >= -1 && addend <= 1);
1060
1061     l2_table = NULL;
1062     l1_table = NULL;
1063     l1_size2 = l1_size * sizeof(uint64_t);
1064
1065     s->cache_discards = true;
1066
1067     /* WARNING: qcow2_snapshot_goto relies on this function not using the
1068      * l1_table_offset when it is the current s->l1_table_offset! Be careful
1069      * when changing this! */
1070     if (l1_table_offset != s->l1_table_offset) {
1071         l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1072         if (l1_size2 && l1_table == NULL) {
1073             ret = -ENOMEM;
1074             goto fail;
1075         }
1076         l1_allocated = true;
1077
1078         ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1079         if (ret < 0) {
1080             goto fail;
1081         }
1082
1083         for(i = 0;i < l1_size; i++)
1084             be64_to_cpus(&l1_table[i]);
1085     } else {
1086         assert(l1_size == s->l1_size);
1087         l1_table = s->l1_table;
1088         l1_allocated = false;
1089     }
1090
1091     for(i = 0; i < l1_size; i++) {
1092         l2_offset = l1_table[i];
1093         if (l2_offset) {
1094             old_l2_offset = l2_offset;
1095             l2_offset &= L1E_OFFSET_MASK;
1096
1097             if (offset_into_cluster(s, l2_offset)) {
1098                 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1099                                         PRIx64 " unaligned (L1 index: %#x)",
1100                                         l2_offset, i);
1101                 ret = -EIO;
1102                 goto fail;
1103             }
1104
1105             ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1106                 (void**) &l2_table);
1107             if (ret < 0) {
1108                 goto fail;
1109             }
1110
1111             for(j = 0; j < s->l2_size; j++) {
1112                 uint64_t cluster_index;
1113
1114                 offset = be64_to_cpu(l2_table[j]);
1115                 old_offset = offset;
1116                 offset &= ~QCOW_OFLAG_COPIED;
1117
1118                 switch (qcow2_get_cluster_type(offset)) {
1119                     case QCOW2_CLUSTER_COMPRESSED:
1120                         nb_csectors = ((offset >> s->csize_shift) &
1121                                        s->csize_mask) + 1;
1122                         if (addend != 0) {
1123                             ret = update_refcount(bs,
1124                                 (offset & s->cluster_offset_mask) & ~511,
1125                                 nb_csectors * 512, abs(addend), addend < 0,
1126                                 QCOW2_DISCARD_SNAPSHOT);
1127                             if (ret < 0) {
1128                                 goto fail;
1129                             }
1130                         }
1131                         /* compressed clusters are never modified */
1132                         refcount = 2;
1133                         break;
1134
1135                     case QCOW2_CLUSTER_NORMAL:
1136                     case QCOW2_CLUSTER_ZERO:
1137                         if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1138                             qcow2_signal_corruption(bs, true, -1, -1, "Data "
1139                                                     "cluster offset %#llx "
1140                                                     "unaligned (L2 offset: %#"
1141                                                     PRIx64 ", L2 index: %#x)",
1142                                                     offset & L2E_OFFSET_MASK,
1143                                                     l2_offset, j);
1144                             ret = -EIO;
1145                             goto fail;
1146                         }
1147
1148                         cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1149                         if (!cluster_index) {
1150                             /* unallocated */
1151                             refcount = 0;
1152                             break;
1153                         }
1154                         if (addend != 0) {
1155                             ret = qcow2_update_cluster_refcount(bs,
1156                                     cluster_index, abs(addend), addend < 0,
1157                                     QCOW2_DISCARD_SNAPSHOT);
1158                             if (ret < 0) {
1159                                 goto fail;
1160                             }
1161                         }
1162
1163                         ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1164                         if (ret < 0) {
1165                             goto fail;
1166                         }
1167                         break;
1168
1169                     case QCOW2_CLUSTER_UNALLOCATED:
1170                         refcount = 0;
1171                         break;
1172
1173                     default:
1174                         abort();
1175                 }
1176
1177                 if (refcount == 1) {
1178                     offset |= QCOW_OFLAG_COPIED;
1179                 }
1180                 if (offset != old_offset) {
1181                     if (addend > 0) {
1182                         qcow2_cache_set_dependency(bs, s->l2_table_cache,
1183                             s->refcount_block_cache);
1184                     }
1185                     l2_table[j] = cpu_to_be64(offset);
1186                     qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1187                                                  l2_table);
1188                 }
1189             }
1190
1191             qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1192
1193             if (addend != 0) {
1194                 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1195                                                         s->cluster_bits,
1196                                                     abs(addend), addend < 0,
1197                                                     QCOW2_DISCARD_SNAPSHOT);
1198                 if (ret < 0) {
1199                     goto fail;
1200                 }
1201             }
1202             ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1203                                      &refcount);
1204             if (ret < 0) {
1205                 goto fail;
1206             } else if (refcount == 1) {
1207                 l2_offset |= QCOW_OFLAG_COPIED;
1208             }
1209             if (l2_offset != old_l2_offset) {
1210                 l1_table[i] = l2_offset;
1211                 l1_modified = 1;
1212             }
1213         }
1214     }
1215
1216     ret = bdrv_flush(bs);
1217 fail:
1218     if (l2_table) {
1219         qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1220     }
1221
1222     s->cache_discards = false;
1223     qcow2_process_discards(bs, ret);
1224
1225     /* Update L1 only if it isn't deleted anyway (addend = -1) */
1226     if (ret == 0 && addend >= 0 && l1_modified) {
1227         for (i = 0; i < l1_size; i++) {
1228             cpu_to_be64s(&l1_table[i]);
1229         }
1230
1231         ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset,
1232                                l1_table, l1_size2);
1233
1234         for (i = 0; i < l1_size; i++) {
1235             be64_to_cpus(&l1_table[i]);
1236         }
1237     }
1238     if (l1_allocated)
1239         g_free(l1_table);
1240     return ret;
1241 }
1242
1243
1244
1245
1246 /*********************************************************/
1247 /* refcount checking functions */
1248
1249
1250 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1251 {
1252     /* This assertion holds because there is no way we can address more than
1253      * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1254      * offsets have to be representable in bytes); due to every cluster
1255      * corresponding to one refcount entry, we are well below that limit */
1256     assert(entries < (UINT64_C(1) << (64 - 9)));
1257
1258     /* Thanks to the assertion this will not overflow, because
1259      * s->refcount_order < 7.
1260      * (note: x << s->refcount_order == x * s->refcount_bits) */
1261     return DIV_ROUND_UP(entries << s->refcount_order, 8);
1262 }
1263
1264 /**
1265  * Reallocates *array so that it can hold new_size entries. *size must contain
1266  * the current number of entries in *array. If the reallocation fails, *array
1267  * and *size will not be modified and -errno will be returned. If the
1268  * reallocation is successful, *array will be set to the new buffer, *size
1269  * will be set to new_size and 0 will be returned. The size of the reallocated
1270  * refcount array buffer will be aligned to a cluster boundary, and the newly
1271  * allocated area will be zeroed.
1272  */
1273 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1274                                   int64_t *size, int64_t new_size)
1275 {
1276     int64_t old_byte_size, new_byte_size;
1277     void *new_ptr;
1278
1279     /* Round to clusters so the array can be directly written to disk */
1280     old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1281                     * s->cluster_size;
1282     new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1283                     * s->cluster_size;
1284
1285     if (new_byte_size == old_byte_size) {
1286         *size = new_size;
1287         return 0;
1288     }
1289
1290     assert(new_byte_size > 0);
1291
1292     if (new_byte_size > SIZE_MAX) {
1293         return -ENOMEM;
1294     }
1295
1296     new_ptr = g_try_realloc(*array, new_byte_size);
1297     if (!new_ptr) {
1298         return -ENOMEM;
1299     }
1300
1301     if (new_byte_size > old_byte_size) {
1302         memset((char *)new_ptr + old_byte_size, 0,
1303                new_byte_size - old_byte_size);
1304     }
1305
1306     *array = new_ptr;
1307     *size  = new_size;
1308
1309     return 0;
1310 }
1311
1312 /*
1313  * Increases the refcount for a range of clusters in a given refcount table.
1314  * This is used to construct a temporary refcount table out of L1 and L2 tables
1315  * which can be compared to the refcount table saved in the image.
1316  *
1317  * Modifies the number of errors in res.
1318  */
1319 static int inc_refcounts(BlockDriverState *bs,
1320                          BdrvCheckResult *res,
1321                          void **refcount_table,
1322                          int64_t *refcount_table_size,
1323                          int64_t offset, int64_t size)
1324 {
1325     BDRVQcow2State *s = bs->opaque;
1326     uint64_t start, last, cluster_offset, k, refcount;
1327     int ret;
1328
1329     if (size <= 0) {
1330         return 0;
1331     }
1332
1333     start = start_of_cluster(s, offset);
1334     last = start_of_cluster(s, offset + size - 1);
1335     for(cluster_offset = start; cluster_offset <= last;
1336         cluster_offset += s->cluster_size) {
1337         k = cluster_offset >> s->cluster_bits;
1338         if (k >= *refcount_table_size) {
1339             ret = realloc_refcount_array(s, refcount_table,
1340                                          refcount_table_size, k + 1);
1341             if (ret < 0) {
1342                 res->check_errors++;
1343                 return ret;
1344             }
1345         }
1346
1347         refcount = s->get_refcount(*refcount_table, k);
1348         if (refcount == s->refcount_max) {
1349             fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1350                     "\n", cluster_offset);
1351             fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1352                     "width or qemu-img convert to create a clean copy if the "
1353                     "image cannot be opened for writing\n");
1354             res->corruptions++;
1355             continue;
1356         }
1357         s->set_refcount(*refcount_table, k, refcount + 1);
1358     }
1359
1360     return 0;
1361 }
1362
1363 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1364 enum {
1365     CHECK_FRAG_INFO = 0x2,      /* update BlockFragInfo counters */
1366 };
1367
1368 /*
1369  * Increases the refcount in the given refcount table for the all clusters
1370  * referenced in the L2 table. While doing so, performs some checks on L2
1371  * entries.
1372  *
1373  * Returns the number of errors found by the checks or -errno if an internal
1374  * error occurred.
1375  */
1376 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1377                               void **refcount_table,
1378                               int64_t *refcount_table_size, int64_t l2_offset,
1379                               int flags)
1380 {
1381     BDRVQcow2State *s = bs->opaque;
1382     uint64_t *l2_table, l2_entry;
1383     uint64_t next_contiguous_offset = 0;
1384     int i, l2_size, nb_csectors, ret;
1385
1386     /* Read L2 table from disk */
1387     l2_size = s->l2_size * sizeof(uint64_t);
1388     l2_table = g_malloc(l2_size);
1389
1390     ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size);
1391     if (ret < 0) {
1392         fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1393         res->check_errors++;
1394         goto fail;
1395     }
1396
1397     /* Do the actual checks */
1398     for(i = 0; i < s->l2_size; i++) {
1399         l2_entry = be64_to_cpu(l2_table[i]);
1400
1401         switch (qcow2_get_cluster_type(l2_entry)) {
1402         case QCOW2_CLUSTER_COMPRESSED:
1403             /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1404             if (l2_entry & QCOW_OFLAG_COPIED) {
1405                 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1406                     "copied flag must never be set for compressed "
1407                     "clusters\n", l2_entry >> s->cluster_bits);
1408                 l2_entry &= ~QCOW_OFLAG_COPIED;
1409                 res->corruptions++;
1410             }
1411
1412             /* Mark cluster as used */
1413             nb_csectors = ((l2_entry >> s->csize_shift) &
1414                            s->csize_mask) + 1;
1415             l2_entry &= s->cluster_offset_mask;
1416             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1417                                 l2_entry & ~511, nb_csectors * 512);
1418             if (ret < 0) {
1419                 goto fail;
1420             }
1421
1422             if (flags & CHECK_FRAG_INFO) {
1423                 res->bfi.allocated_clusters++;
1424                 res->bfi.compressed_clusters++;
1425
1426                 /* Compressed clusters are fragmented by nature.  Since they
1427                  * take up sub-sector space but we only have sector granularity
1428                  * I/O we need to re-read the same sectors even for adjacent
1429                  * compressed clusters.
1430                  */
1431                 res->bfi.fragmented_clusters++;
1432             }
1433             break;
1434
1435         case QCOW2_CLUSTER_ZERO:
1436             if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1437                 break;
1438             }
1439             /* fall through */
1440
1441         case QCOW2_CLUSTER_NORMAL:
1442         {
1443             uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1444
1445             if (flags & CHECK_FRAG_INFO) {
1446                 res->bfi.allocated_clusters++;
1447                 if (next_contiguous_offset &&
1448                     offset != next_contiguous_offset) {
1449                     res->bfi.fragmented_clusters++;
1450                 }
1451                 next_contiguous_offset = offset + s->cluster_size;
1452             }
1453
1454             /* Mark cluster as used */
1455             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1456                                 offset, s->cluster_size);
1457             if (ret < 0) {
1458                 goto fail;
1459             }
1460
1461             /* Correct offsets are cluster aligned */
1462             if (offset_into_cluster(s, offset)) {
1463                 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1464                     "properly aligned; L2 entry corrupted.\n", offset);
1465                 res->corruptions++;
1466             }
1467             break;
1468         }
1469
1470         case QCOW2_CLUSTER_UNALLOCATED:
1471             break;
1472
1473         default:
1474             abort();
1475         }
1476     }
1477
1478     g_free(l2_table);
1479     return 0;
1480
1481 fail:
1482     g_free(l2_table);
1483     return ret;
1484 }
1485
1486 /*
1487  * Increases the refcount for the L1 table, its L2 tables and all referenced
1488  * clusters in the given refcount table. While doing so, performs some checks
1489  * on L1 and L2 entries.
1490  *
1491  * Returns the number of errors found by the checks or -errno if an internal
1492  * error occurred.
1493  */
1494 static int check_refcounts_l1(BlockDriverState *bs,
1495                               BdrvCheckResult *res,
1496                               void **refcount_table,
1497                               int64_t *refcount_table_size,
1498                               int64_t l1_table_offset, int l1_size,
1499                               int flags)
1500 {
1501     BDRVQcow2State *s = bs->opaque;
1502     uint64_t *l1_table = NULL, l2_offset, l1_size2;
1503     int i, ret;
1504
1505     l1_size2 = l1_size * sizeof(uint64_t);
1506
1507     /* Mark L1 table as used */
1508     ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1509                         l1_table_offset, l1_size2);
1510     if (ret < 0) {
1511         goto fail;
1512     }
1513
1514     /* Read L1 table entries from disk */
1515     if (l1_size2 > 0) {
1516         l1_table = g_try_malloc(l1_size2);
1517         if (l1_table == NULL) {
1518             ret = -ENOMEM;
1519             res->check_errors++;
1520             goto fail;
1521         }
1522         ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1523         if (ret < 0) {
1524             fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1525             res->check_errors++;
1526             goto fail;
1527         }
1528         for(i = 0;i < l1_size; i++)
1529             be64_to_cpus(&l1_table[i]);
1530     }
1531
1532     /* Do the actual checks */
1533     for(i = 0; i < l1_size; i++) {
1534         l2_offset = l1_table[i];
1535         if (l2_offset) {
1536             /* Mark L2 table as used */
1537             l2_offset &= L1E_OFFSET_MASK;
1538             ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1539                                 l2_offset, s->cluster_size);
1540             if (ret < 0) {
1541                 goto fail;
1542             }
1543
1544             /* L2 tables are cluster aligned */
1545             if (offset_into_cluster(s, l2_offset)) {
1546                 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1547                     "cluster aligned; L1 entry corrupted\n", l2_offset);
1548                 res->corruptions++;
1549             }
1550
1551             /* Process and check L2 entries */
1552             ret = check_refcounts_l2(bs, res, refcount_table,
1553                                      refcount_table_size, l2_offset, flags);
1554             if (ret < 0) {
1555                 goto fail;
1556             }
1557         }
1558     }
1559     g_free(l1_table);
1560     return 0;
1561
1562 fail:
1563     g_free(l1_table);
1564     return ret;
1565 }
1566
1567 /*
1568  * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1569  *
1570  * This function does not print an error message nor does it increment
1571  * check_errors if qcow2_get_refcount fails (this is because such an error will
1572  * have been already detected and sufficiently signaled by the calling function
1573  * (qcow2_check_refcounts) by the time this function is called).
1574  */
1575 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1576                               BdrvCheckMode fix)
1577 {
1578     BDRVQcow2State *s = bs->opaque;
1579     uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1580     int ret;
1581     uint64_t refcount;
1582     int i, j;
1583
1584     for (i = 0; i < s->l1_size; i++) {
1585         uint64_t l1_entry = s->l1_table[i];
1586         uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1587         bool l2_dirty = false;
1588
1589         if (!l2_offset) {
1590             continue;
1591         }
1592
1593         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1594                                  &refcount);
1595         if (ret < 0) {
1596             /* don't print message nor increment check_errors */
1597             continue;
1598         }
1599         if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1600             fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1601                     "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1602                     fix & BDRV_FIX_ERRORS ? "Repairing" :
1603                                             "ERROR",
1604                     i, l1_entry, refcount);
1605             if (fix & BDRV_FIX_ERRORS) {
1606                 s->l1_table[i] = refcount == 1
1607                                ? l1_entry |  QCOW_OFLAG_COPIED
1608                                : l1_entry & ~QCOW_OFLAG_COPIED;
1609                 ret = qcow2_write_l1_entry(bs, i);
1610                 if (ret < 0) {
1611                     res->check_errors++;
1612                     goto fail;
1613                 }
1614                 res->corruptions_fixed++;
1615             } else {
1616                 res->corruptions++;
1617             }
1618         }
1619
1620         ret = bdrv_pread(bs->file->bs, l2_offset, l2_table,
1621                          s->l2_size * sizeof(uint64_t));
1622         if (ret < 0) {
1623             fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1624                     strerror(-ret));
1625             res->check_errors++;
1626             goto fail;
1627         }
1628
1629         for (j = 0; j < s->l2_size; j++) {
1630             uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1631             uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1632             int cluster_type = qcow2_get_cluster_type(l2_entry);
1633
1634             if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1635                 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1636                 ret = qcow2_get_refcount(bs,
1637                                          data_offset >> s->cluster_bits,
1638                                          &refcount);
1639                 if (ret < 0) {
1640                     /* don't print message nor increment check_errors */
1641                     continue;
1642                 }
1643                 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1644                     fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1645                             "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1646                             fix & BDRV_FIX_ERRORS ? "Repairing" :
1647                                                     "ERROR",
1648                             l2_entry, refcount);
1649                     if (fix & BDRV_FIX_ERRORS) {
1650                         l2_table[j] = cpu_to_be64(refcount == 1
1651                                     ? l2_entry |  QCOW_OFLAG_COPIED
1652                                     : l2_entry & ~QCOW_OFLAG_COPIED);
1653                         l2_dirty = true;
1654                         res->corruptions_fixed++;
1655                     } else {
1656                         res->corruptions++;
1657                     }
1658                 }
1659             }
1660         }
1661
1662         if (l2_dirty) {
1663             ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1664                                                 l2_offset, s->cluster_size);
1665             if (ret < 0) {
1666                 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1667                         "overlap check failed: %s\n", strerror(-ret));
1668                 res->check_errors++;
1669                 goto fail;
1670             }
1671
1672             ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table,
1673                               s->cluster_size);
1674             if (ret < 0) {
1675                 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1676                         strerror(-ret));
1677                 res->check_errors++;
1678                 goto fail;
1679             }
1680         }
1681     }
1682
1683     ret = 0;
1684
1685 fail:
1686     qemu_vfree(l2_table);
1687     return ret;
1688 }
1689
1690 /*
1691  * Checks consistency of refblocks and accounts for each refblock in
1692  * *refcount_table.
1693  */
1694 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1695                            BdrvCheckMode fix, bool *rebuild,
1696                            void **refcount_table, int64_t *nb_clusters)
1697 {
1698     BDRVQcow2State *s = bs->opaque;
1699     int64_t i, size;
1700     int ret;
1701
1702     for(i = 0; i < s->refcount_table_size; i++) {
1703         uint64_t offset, cluster;
1704         offset = s->refcount_table[i];
1705         cluster = offset >> s->cluster_bits;
1706
1707         /* Refcount blocks are cluster aligned */
1708         if (offset_into_cluster(s, offset)) {
1709             fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1710                 "cluster aligned; refcount table entry corrupted\n", i);
1711             res->corruptions++;
1712             *rebuild = true;
1713             continue;
1714         }
1715
1716         if (cluster >= *nb_clusters) {
1717             fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1718                     fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1719
1720             if (fix & BDRV_FIX_ERRORS) {
1721                 int64_t new_nb_clusters;
1722
1723                 if (offset > INT64_MAX - s->cluster_size) {
1724                     ret = -EINVAL;
1725                     goto resize_fail;
1726                 }
1727
1728                 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
1729                 if (ret < 0) {
1730                     goto resize_fail;
1731                 }
1732                 size = bdrv_getlength(bs->file->bs);
1733                 if (size < 0) {
1734                     ret = size;
1735                     goto resize_fail;
1736                 }
1737
1738                 new_nb_clusters = size_to_clusters(s, size);
1739                 assert(new_nb_clusters >= *nb_clusters);
1740
1741                 ret = realloc_refcount_array(s, refcount_table,
1742                                              nb_clusters, new_nb_clusters);
1743                 if (ret < 0) {
1744                     res->check_errors++;
1745                     return ret;
1746                 }
1747
1748                 if (cluster >= *nb_clusters) {
1749                     ret = -EINVAL;
1750                     goto resize_fail;
1751                 }
1752
1753                 res->corruptions_fixed++;
1754                 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1755                                     offset, s->cluster_size);
1756                 if (ret < 0) {
1757                     return ret;
1758                 }
1759                 /* No need to check whether the refcount is now greater than 1:
1760                  * This area was just allocated and zeroed, so it can only be
1761                  * exactly 1 after inc_refcounts() */
1762                 continue;
1763
1764 resize_fail:
1765                 res->corruptions++;
1766                 *rebuild = true;
1767                 fprintf(stderr, "ERROR could not resize image: %s\n",
1768                         strerror(-ret));
1769             } else {
1770                 res->corruptions++;
1771             }
1772             continue;
1773         }
1774
1775         if (offset != 0) {
1776             ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1777                                 offset, s->cluster_size);
1778             if (ret < 0) {
1779                 return ret;
1780             }
1781             if (s->get_refcount(*refcount_table, cluster) != 1) {
1782                 fprintf(stderr, "ERROR refcount block %" PRId64
1783                         " refcount=%" PRIu64 "\n", i,
1784                         s->get_refcount(*refcount_table, cluster));
1785                 res->corruptions++;
1786                 *rebuild = true;
1787             }
1788         }
1789     }
1790
1791     return 0;
1792 }
1793
1794 /*
1795  * Calculates an in-memory refcount table.
1796  */
1797 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1798                                BdrvCheckMode fix, bool *rebuild,
1799                                void **refcount_table, int64_t *nb_clusters)
1800 {
1801     BDRVQcow2State *s = bs->opaque;
1802     int64_t i;
1803     QCowSnapshot *sn;
1804     int ret;
1805
1806     if (!*refcount_table) {
1807         int64_t old_size = 0;
1808         ret = realloc_refcount_array(s, refcount_table,
1809                                      &old_size, *nb_clusters);
1810         if (ret < 0) {
1811             res->check_errors++;
1812             return ret;
1813         }
1814     }
1815
1816     /* header */
1817     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1818                         0, s->cluster_size);
1819     if (ret < 0) {
1820         return ret;
1821     }
1822
1823     /* current L1 table */
1824     ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1825                              s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1826     if (ret < 0) {
1827         return ret;
1828     }
1829
1830     /* snapshots */
1831     for (i = 0; i < s->nb_snapshots; i++) {
1832         sn = s->snapshots + i;
1833         ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1834                                  sn->l1_table_offset, sn->l1_size, 0);
1835         if (ret < 0) {
1836             return ret;
1837         }
1838     }
1839     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1840                         s->snapshots_offset, s->snapshots_size);
1841     if (ret < 0) {
1842         return ret;
1843     }
1844
1845     /* refcount data */
1846     ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1847                         s->refcount_table_offset,
1848                         s->refcount_table_size * sizeof(uint64_t));
1849     if (ret < 0) {
1850         return ret;
1851     }
1852
1853     return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1854 }
1855
1856 /*
1857  * Compares the actual reference count for each cluster in the image against the
1858  * refcount as reported by the refcount structures on-disk.
1859  */
1860 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1861                               BdrvCheckMode fix, bool *rebuild,
1862                               int64_t *highest_cluster,
1863                               void *refcount_table, int64_t nb_clusters)
1864 {
1865     BDRVQcow2State *s = bs->opaque;
1866     int64_t i;
1867     uint64_t refcount1, refcount2;
1868     int ret;
1869
1870     for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1871         ret = qcow2_get_refcount(bs, i, &refcount1);
1872         if (ret < 0) {
1873             fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1874                     i, strerror(-ret));
1875             res->check_errors++;
1876             continue;
1877         }
1878
1879         refcount2 = s->get_refcount(refcount_table, i);
1880
1881         if (refcount1 > 0 || refcount2 > 0) {
1882             *highest_cluster = i;
1883         }
1884
1885         if (refcount1 != refcount2) {
1886             /* Check if we're allowed to fix the mismatch */
1887             int *num_fixed = NULL;
1888             if (refcount1 == 0) {
1889                 *rebuild = true;
1890             } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1891                 num_fixed = &res->leaks_fixed;
1892             } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1893                 num_fixed = &res->corruptions_fixed;
1894             }
1895
1896             fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1897                     " reference=%" PRIu64 "\n",
1898                    num_fixed != NULL     ? "Repairing" :
1899                    refcount1 < refcount2 ? "ERROR" :
1900                                            "Leaked",
1901                    i, refcount1, refcount2);
1902
1903             if (num_fixed) {
1904                 ret = update_refcount(bs, i << s->cluster_bits, 1,
1905                                       refcount_diff(refcount1, refcount2),
1906                                       refcount1 > refcount2,
1907                                       QCOW2_DISCARD_ALWAYS);
1908                 if (ret >= 0) {
1909                     (*num_fixed)++;
1910                     continue;
1911                 }
1912             }
1913
1914             /* And if we couldn't, print an error */
1915             if (refcount1 < refcount2) {
1916                 res->corruptions++;
1917             } else {
1918                 res->leaks++;
1919             }
1920         }
1921     }
1922 }
1923
1924 /*
1925  * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1926  * the on-disk refcount structures.
1927  *
1928  * On input, *first_free_cluster tells where to start looking, and need not
1929  * actually be a free cluster; the returned offset will not be before that
1930  * cluster.  On output, *first_free_cluster points to the first gap found, even
1931  * if that gap was too small to be used as the returned offset.
1932  *
1933  * Note that *first_free_cluster is a cluster index whereas the return value is
1934  * an offset.
1935  */
1936 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1937                                    int cluster_count,
1938                                    void **refcount_table,
1939                                    int64_t *imrt_nb_clusters,
1940                                    int64_t *first_free_cluster)
1941 {
1942     BDRVQcow2State *s = bs->opaque;
1943     int64_t cluster = *first_free_cluster, i;
1944     bool first_gap = true;
1945     int contiguous_free_clusters;
1946     int ret;
1947
1948     /* Starting at *first_free_cluster, find a range of at least cluster_count
1949      * continuously free clusters */
1950     for (contiguous_free_clusters = 0;
1951          cluster < *imrt_nb_clusters &&
1952          contiguous_free_clusters < cluster_count;
1953          cluster++)
1954     {
1955         if (!s->get_refcount(*refcount_table, cluster)) {
1956             contiguous_free_clusters++;
1957             if (first_gap) {
1958                 /* If this is the first free cluster found, update
1959                  * *first_free_cluster accordingly */
1960                 *first_free_cluster = cluster;
1961                 first_gap = false;
1962             }
1963         } else if (contiguous_free_clusters) {
1964             contiguous_free_clusters = 0;
1965         }
1966     }
1967
1968     /* If contiguous_free_clusters is greater than zero, it contains the number
1969      * of continuously free clusters until the current cluster; the first free
1970      * cluster in the current "gap" is therefore
1971      * cluster - contiguous_free_clusters */
1972
1973     /* If no such range could be found, grow the in-memory refcount table
1974      * accordingly to append free clusters at the end of the image */
1975     if (contiguous_free_clusters < cluster_count) {
1976         /* contiguous_free_clusters clusters are already empty at the image end;
1977          * we need cluster_count clusters; therefore, we have to allocate
1978          * cluster_count - contiguous_free_clusters new clusters at the end of
1979          * the image (which is the current value of cluster; note that cluster
1980          * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1981          * the image end) */
1982         ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1983                                      cluster + cluster_count
1984                                      - contiguous_free_clusters);
1985         if (ret < 0) {
1986             return ret;
1987         }
1988     }
1989
1990     /* Go back to the first free cluster */
1991     cluster -= contiguous_free_clusters;
1992     for (i = 0; i < cluster_count; i++) {
1993         s->set_refcount(*refcount_table, cluster + i, 1);
1994     }
1995
1996     return cluster << s->cluster_bits;
1997 }
1998
1999 /*
2000  * Creates a new refcount structure based solely on the in-memory information
2001  * given through *refcount_table. All necessary allocations will be reflected
2002  * in that array.
2003  *
2004  * On success, the old refcount structure is leaked (it will be covered by the
2005  * new refcount structure).
2006  */
2007 static int rebuild_refcount_structure(BlockDriverState *bs,
2008                                       BdrvCheckResult *res,
2009                                       void **refcount_table,
2010                                       int64_t *nb_clusters)
2011 {
2012     BDRVQcow2State *s = bs->opaque;
2013     int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2014     int64_t refblock_offset, refblock_start, refblock_index;
2015     uint32_t reftable_size = 0;
2016     uint64_t *on_disk_reftable = NULL;
2017     void *on_disk_refblock;
2018     int ret = 0;
2019     struct {
2020         uint64_t reftable_offset;
2021         uint32_t reftable_clusters;
2022     } QEMU_PACKED reftable_offset_and_clusters;
2023
2024     qcow2_cache_empty(bs, s->refcount_block_cache);
2025
2026 write_refblocks:
2027     for (; cluster < *nb_clusters; cluster++) {
2028         if (!s->get_refcount(*refcount_table, cluster)) {
2029             continue;
2030         }
2031
2032         refblock_index = cluster >> s->refcount_block_bits;
2033         refblock_start = refblock_index << s->refcount_block_bits;
2034
2035         /* Don't allocate a cluster in a refblock already written to disk */
2036         if (first_free_cluster < refblock_start) {
2037             first_free_cluster = refblock_start;
2038         }
2039         refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2040                                               nb_clusters, &first_free_cluster);
2041         if (refblock_offset < 0) {
2042             fprintf(stderr, "ERROR allocating refblock: %s\n",
2043                     strerror(-refblock_offset));
2044             res->check_errors++;
2045             ret = refblock_offset;
2046             goto fail;
2047         }
2048
2049         if (reftable_size <= refblock_index) {
2050             uint32_t old_reftable_size = reftable_size;
2051             uint64_t *new_on_disk_reftable;
2052
2053             reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2054                                      s->cluster_size) / sizeof(uint64_t);
2055             new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2056                                                  reftable_size *
2057                                                  sizeof(uint64_t));
2058             if (!new_on_disk_reftable) {
2059                 res->check_errors++;
2060                 ret = -ENOMEM;
2061                 goto fail;
2062             }
2063             on_disk_reftable = new_on_disk_reftable;
2064
2065             memset(on_disk_reftable + old_reftable_size, 0,
2066                    (reftable_size - old_reftable_size) * sizeof(uint64_t));
2067
2068             /* The offset we have for the reftable is now no longer valid;
2069              * this will leak that range, but we can easily fix that by running
2070              * a leak-fixing check after this rebuild operation */
2071             reftable_offset = -1;
2072         }
2073         on_disk_reftable[refblock_index] = refblock_offset;
2074
2075         /* If this is apparently the last refblock (for now), try to squeeze the
2076          * reftable in */
2077         if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2078             reftable_offset < 0)
2079         {
2080             uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2081                                                           sizeof(uint64_t));
2082             reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2083                                                   refcount_table, nb_clusters,
2084                                                   &first_free_cluster);
2085             if (reftable_offset < 0) {
2086                 fprintf(stderr, "ERROR allocating reftable: %s\n",
2087                         strerror(-reftable_offset));
2088                 res->check_errors++;
2089                 ret = reftable_offset;
2090                 goto fail;
2091             }
2092         }
2093
2094         ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2095                                             s->cluster_size);
2096         if (ret < 0) {
2097             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2098             goto fail;
2099         }
2100
2101         /* The size of *refcount_table is always cluster-aligned, therefore the
2102          * write operation will not overflow */
2103         on_disk_refblock = (void *)((char *) *refcount_table +
2104                                     refblock_index * s->cluster_size);
2105
2106         ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE,
2107                          on_disk_refblock, s->cluster_sectors);
2108         if (ret < 0) {
2109             fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2110             goto fail;
2111         }
2112
2113         /* Go to the end of this refblock */
2114         cluster = refblock_start + s->refcount_block_size - 1;
2115     }
2116
2117     if (reftable_offset < 0) {
2118         uint64_t post_refblock_start, reftable_clusters;
2119
2120         post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2121         reftable_clusters = size_to_clusters(s,
2122                                              reftable_size * sizeof(uint64_t));
2123         /* Not pretty but simple */
2124         if (first_free_cluster < post_refblock_start) {
2125             first_free_cluster = post_refblock_start;
2126         }
2127         reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2128                                               refcount_table, nb_clusters,
2129                                               &first_free_cluster);
2130         if (reftable_offset < 0) {
2131             fprintf(stderr, "ERROR allocating reftable: %s\n",
2132                     strerror(-reftable_offset));
2133             res->check_errors++;
2134             ret = reftable_offset;
2135             goto fail;
2136         }
2137
2138         goto write_refblocks;
2139     }
2140
2141     assert(on_disk_reftable);
2142
2143     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2144         cpu_to_be64s(&on_disk_reftable[refblock_index]);
2145     }
2146
2147     ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2148                                         reftable_size * sizeof(uint64_t));
2149     if (ret < 0) {
2150         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2151         goto fail;
2152     }
2153
2154     assert(reftable_size < INT_MAX / sizeof(uint64_t));
2155     ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable,
2156                       reftable_size * sizeof(uint64_t));
2157     if (ret < 0) {
2158         fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2159         goto fail;
2160     }
2161
2162     /* Enter new reftable into the image header */
2163     cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
2164                  reftable_offset);
2165     cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
2166                  size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2167     ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader,
2168                                                   refcount_table_offset),
2169                            &reftable_offset_and_clusters,
2170                            sizeof(reftable_offset_and_clusters));
2171     if (ret < 0) {
2172         fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2173         goto fail;
2174     }
2175
2176     for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2177         be64_to_cpus(&on_disk_reftable[refblock_index]);
2178     }
2179     s->refcount_table = on_disk_reftable;
2180     s->refcount_table_offset = reftable_offset;
2181     s->refcount_table_size = reftable_size;
2182
2183     return 0;
2184
2185 fail:
2186     g_free(on_disk_reftable);
2187     return ret;
2188 }
2189
2190 /*
2191  * Checks an image for refcount consistency.
2192  *
2193  * Returns 0 if no errors are found, the number of errors in case the image is
2194  * detected as corrupted, and -errno when an internal error occurred.
2195  */
2196 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2197                           BdrvCheckMode fix)
2198 {
2199     BDRVQcow2State *s = bs->opaque;
2200     BdrvCheckResult pre_compare_res;
2201     int64_t size, highest_cluster, nb_clusters;
2202     void *refcount_table = NULL;
2203     bool rebuild = false;
2204     int ret;
2205
2206     size = bdrv_getlength(bs->file->bs);
2207     if (size < 0) {
2208         res->check_errors++;
2209         return size;
2210     }
2211
2212     nb_clusters = size_to_clusters(s, size);
2213     if (nb_clusters > INT_MAX) {
2214         res->check_errors++;
2215         return -EFBIG;
2216     }
2217
2218     res->bfi.total_clusters =
2219         size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2220
2221     ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2222                               &nb_clusters);
2223     if (ret < 0) {
2224         goto fail;
2225     }
2226
2227     /* In case we don't need to rebuild the refcount structure (but want to fix
2228      * something), this function is immediately called again, in which case the
2229      * result should be ignored */
2230     pre_compare_res = *res;
2231     compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2232                       nb_clusters);
2233
2234     if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2235         BdrvCheckResult old_res = *res;
2236         int fresh_leaks = 0;
2237
2238         fprintf(stderr, "Rebuilding refcount structure\n");
2239         ret = rebuild_refcount_structure(bs, res, &refcount_table,
2240                                          &nb_clusters);
2241         if (ret < 0) {
2242             goto fail;
2243         }
2244
2245         res->corruptions = 0;
2246         res->leaks = 0;
2247
2248         /* Because the old reftable has been exchanged for a new one the
2249          * references have to be recalculated */
2250         rebuild = false;
2251         memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2252         ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2253                                   &nb_clusters);
2254         if (ret < 0) {
2255             goto fail;
2256         }
2257
2258         if (fix & BDRV_FIX_LEAKS) {
2259             /* The old refcount structures are now leaked, fix it; the result
2260              * can be ignored, aside from leaks which were introduced by
2261              * rebuild_refcount_structure() that could not be fixed */
2262             BdrvCheckResult saved_res = *res;
2263             *res = (BdrvCheckResult){ 0 };
2264
2265             compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2266                               &highest_cluster, refcount_table, nb_clusters);
2267             if (rebuild) {
2268                 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2269                         "broken\n");
2270             }
2271
2272             /* Any leaks accounted for here were introduced by
2273              * rebuild_refcount_structure() because that function has created a
2274              * new refcount structure from scratch */
2275             fresh_leaks = res->leaks;
2276             *res = saved_res;
2277         }
2278
2279         if (res->corruptions < old_res.corruptions) {
2280             res->corruptions_fixed += old_res.corruptions - res->corruptions;
2281         }
2282         if (res->leaks < old_res.leaks) {
2283             res->leaks_fixed += old_res.leaks - res->leaks;
2284         }
2285         res->leaks += fresh_leaks;
2286     } else if (fix) {
2287         if (rebuild) {
2288             fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2289             res->check_errors++;
2290             ret = -EIO;
2291             goto fail;
2292         }
2293
2294         if (res->leaks || res->corruptions) {
2295             *res = pre_compare_res;
2296             compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2297                               refcount_table, nb_clusters);
2298         }
2299     }
2300
2301     /* check OFLAG_COPIED */
2302     ret = check_oflag_copied(bs, res, fix);
2303     if (ret < 0) {
2304         goto fail;
2305     }
2306
2307     res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2308     ret = 0;
2309
2310 fail:
2311     g_free(refcount_table);
2312
2313     return ret;
2314 }
2315
2316 #define overlaps_with(ofs, sz) \
2317     ranges_overlap(offset, size, ofs, sz)
2318
2319 /*
2320  * Checks if the given offset into the image file is actually free to use by
2321  * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2322  * i.e. a sanity check without relying on the refcount tables.
2323  *
2324  * The ign parameter specifies what checks not to perform (being a bitmask of
2325  * QCow2MetadataOverlap values), i.e., what sections to ignore.
2326  *
2327  * Returns:
2328  * - 0 if writing to this offset will not affect the mentioned metadata
2329  * - a positive QCow2MetadataOverlap value indicating one overlapping section
2330  * - a negative value (-errno) indicating an error while performing a check,
2331  *   e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2332  */
2333 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2334                                  int64_t size)
2335 {
2336     BDRVQcow2State *s = bs->opaque;
2337     int chk = s->overlap_check & ~ign;
2338     int i, j;
2339
2340     if (!size) {
2341         return 0;
2342     }
2343
2344     if (chk & QCOW2_OL_MAIN_HEADER) {
2345         if (offset < s->cluster_size) {
2346             return QCOW2_OL_MAIN_HEADER;
2347         }
2348     }
2349
2350     /* align range to test to cluster boundaries */
2351     size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2352     offset = start_of_cluster(s, offset);
2353
2354     if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2355         if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2356             return QCOW2_OL_ACTIVE_L1;
2357         }
2358     }
2359
2360     if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2361         if (overlaps_with(s->refcount_table_offset,
2362             s->refcount_table_size * sizeof(uint64_t))) {
2363             return QCOW2_OL_REFCOUNT_TABLE;
2364         }
2365     }
2366
2367     if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2368         if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2369             return QCOW2_OL_SNAPSHOT_TABLE;
2370         }
2371     }
2372
2373     if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2374         for (i = 0; i < s->nb_snapshots; i++) {
2375             if (s->snapshots[i].l1_size &&
2376                 overlaps_with(s->snapshots[i].l1_table_offset,
2377                 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2378                 return QCOW2_OL_INACTIVE_L1;
2379             }
2380         }
2381     }
2382
2383     if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2384         for (i = 0; i < s->l1_size; i++) {
2385             if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2386                 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2387                 s->cluster_size)) {
2388                 return QCOW2_OL_ACTIVE_L2;
2389             }
2390         }
2391     }
2392
2393     if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2394         for (i = 0; i < s->refcount_table_size; i++) {
2395             if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2396                 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2397                 s->cluster_size)) {
2398                 return QCOW2_OL_REFCOUNT_BLOCK;
2399             }
2400         }
2401     }
2402
2403     if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2404         for (i = 0; i < s->nb_snapshots; i++) {
2405             uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2406             uint32_t l1_sz  = s->snapshots[i].l1_size;
2407             uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2408             uint64_t *l1 = g_try_malloc(l1_sz2);
2409             int ret;
2410
2411             if (l1_sz2 && l1 == NULL) {
2412                 return -ENOMEM;
2413             }
2414
2415             ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2);
2416             if (ret < 0) {
2417                 g_free(l1);
2418                 return ret;
2419             }
2420
2421             for (j = 0; j < l1_sz; j++) {
2422                 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2423                 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2424                     g_free(l1);
2425                     return QCOW2_OL_INACTIVE_L2;
2426                 }
2427             }
2428
2429             g_free(l1);
2430         }
2431     }
2432
2433     return 0;
2434 }
2435
2436 static const char *metadata_ol_names[] = {
2437     [QCOW2_OL_MAIN_HEADER_BITNR]    = "qcow2_header",
2438     [QCOW2_OL_ACTIVE_L1_BITNR]      = "active L1 table",
2439     [QCOW2_OL_ACTIVE_L2_BITNR]      = "active L2 table",
2440     [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2441     [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2442     [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2443     [QCOW2_OL_INACTIVE_L1_BITNR]    = "inactive L1 table",
2444     [QCOW2_OL_INACTIVE_L2_BITNR]    = "inactive L2 table",
2445 };
2446
2447 /*
2448  * First performs a check for metadata overlaps (through
2449  * qcow2_check_metadata_overlap); if that fails with a negative value (error
2450  * while performing a check), that value is returned. If an impending overlap
2451  * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2452  * and -EIO returned.
2453  *
2454  * Returns 0 if there were neither overlaps nor errors while checking for
2455  * overlaps; or a negative value (-errno) on error.
2456  */
2457 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2458                                   int64_t size)
2459 {
2460     int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2461
2462     if (ret < 0) {
2463         return ret;
2464     } else if (ret > 0) {
2465         int metadata_ol_bitnr = ctz32(ret);
2466         assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2467
2468         qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2469                                 "write on metadata (overlaps with %s)",
2470                                 metadata_ol_names[metadata_ol_bitnr]);
2471         return -EIO;
2472     }
2473
2474     return 0;
2475 }
2476
2477 /* A pointer to a function of this type is given to walk_over_reftable(). That
2478  * function will create refblocks and pass them to a RefblockFinishOp once they
2479  * are completed (@refblock). @refblock_empty is set if the refblock is
2480  * completely empty.
2481  *
2482  * Along with the refblock, a corresponding reftable entry is passed, in the
2483  * reftable @reftable (which may be reallocated) at @reftable_index.
2484  *
2485  * @allocated should be set to true if a new cluster has been allocated.
2486  */
2487 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2488                                uint64_t reftable_index, uint64_t *reftable_size,
2489                                void *refblock, bool refblock_empty,
2490                                bool *allocated, Error **errp);
2491
2492 /**
2493  * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2494  * it is not empty) and inserts its offset into the new reftable. The size of
2495  * this new reftable is increased as required.
2496  */
2497 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2498                           uint64_t reftable_index, uint64_t *reftable_size,
2499                           void *refblock, bool refblock_empty, bool *allocated,
2500                           Error **errp)
2501 {
2502     BDRVQcow2State *s = bs->opaque;
2503     int64_t offset;
2504
2505     if (!refblock_empty && reftable_index >= *reftable_size) {
2506         uint64_t *new_reftable;
2507         uint64_t new_reftable_size;
2508
2509         new_reftable_size = ROUND_UP(reftable_index + 1,
2510                                      s->cluster_size / sizeof(uint64_t));
2511         if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2512             error_setg(errp,
2513                        "This operation would make the refcount table grow "
2514                        "beyond the maximum size supported by QEMU, aborting");
2515             return -ENOTSUP;
2516         }
2517
2518         new_reftable = g_try_realloc(*reftable, new_reftable_size *
2519                                                 sizeof(uint64_t));
2520         if (!new_reftable) {
2521             error_setg(errp, "Failed to increase reftable buffer size");
2522             return -ENOMEM;
2523         }
2524
2525         memset(new_reftable + *reftable_size, 0,
2526                (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2527
2528         *reftable      = new_reftable;
2529         *reftable_size = new_reftable_size;
2530     }
2531
2532     if (!refblock_empty && !(*reftable)[reftable_index]) {
2533         offset = qcow2_alloc_clusters(bs, s->cluster_size);
2534         if (offset < 0) {
2535             error_setg_errno(errp, -offset, "Failed to allocate refblock");
2536             return offset;
2537         }
2538         (*reftable)[reftable_index] = offset;
2539         *allocated = true;
2540     }
2541
2542     return 0;
2543 }
2544
2545 /**
2546  * This "operation" for walk_over_reftable() writes the refblock to disk at the
2547  * offset specified by the new reftable's entry. It does not modify the new
2548  * reftable or change any refcounts.
2549  */
2550 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2551                           uint64_t reftable_index, uint64_t *reftable_size,
2552                           void *refblock, bool refblock_empty, bool *allocated,
2553                           Error **errp)
2554 {
2555     BDRVQcow2State *s = bs->opaque;
2556     int64_t offset;
2557     int ret;
2558
2559     if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2560         offset = (*reftable)[reftable_index];
2561
2562         ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2563         if (ret < 0) {
2564             error_setg_errno(errp, -ret, "Overlap check failed");
2565             return ret;
2566         }
2567
2568         ret = bdrv_pwrite(bs->file->bs, offset, refblock, s->cluster_size);
2569         if (ret < 0) {
2570             error_setg_errno(errp, -ret, "Failed to write refblock");
2571             return ret;
2572         }
2573     } else {
2574         assert(refblock_empty);
2575     }
2576
2577     return 0;
2578 }
2579
2580 /**
2581  * This function walks over the existing reftable and every referenced refblock;
2582  * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2583  * create an equal new entry in the passed @new_refblock. Once that
2584  * @new_refblock is completely filled, @operation will be called.
2585  *
2586  * @status_cb and @cb_opaque are used for the amend operation's status callback.
2587  * @index is the index of the walk_over_reftable() calls and @total is the total
2588  * number of walk_over_reftable() calls per amend operation. Both are used for
2589  * calculating the parameters for the status callback.
2590  *
2591  * @allocated is set to true if a new cluster has been allocated.
2592  */
2593 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2594                               uint64_t *new_reftable_index,
2595                               uint64_t *new_reftable_size,
2596                               void *new_refblock, int new_refblock_size,
2597                               int new_refcount_bits,
2598                               RefblockFinishOp *operation, bool *allocated,
2599                               Qcow2SetRefcountFunc *new_set_refcount,
2600                               BlockDriverAmendStatusCB *status_cb,
2601                               void *cb_opaque, int index, int total,
2602                               Error **errp)
2603 {
2604     BDRVQcow2State *s = bs->opaque;
2605     uint64_t reftable_index;
2606     bool new_refblock_empty = true;
2607     int refblock_index;
2608     int new_refblock_index = 0;
2609     int ret;
2610
2611     for (reftable_index = 0; reftable_index < s->refcount_table_size;
2612          reftable_index++)
2613     {
2614         uint64_t refblock_offset = s->refcount_table[reftable_index]
2615                                  & REFT_OFFSET_MASK;
2616
2617         status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2618                   (uint64_t)total * s->refcount_table_size, cb_opaque);
2619
2620         if (refblock_offset) {
2621             void *refblock;
2622
2623             if (offset_into_cluster(s, refblock_offset)) {
2624                 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2625                                         PRIx64 " unaligned (reftable index: %#"
2626                                         PRIx64 ")", refblock_offset,
2627                                         reftable_index);
2628                 error_setg(errp,
2629                            "Image is corrupt (unaligned refblock offset)");
2630                 return -EIO;
2631             }
2632
2633             ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2634                                   &refblock);
2635             if (ret < 0) {
2636                 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2637                 return ret;
2638             }
2639
2640             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2641                  refblock_index++)
2642             {
2643                 uint64_t refcount;
2644
2645                 if (new_refblock_index >= new_refblock_size) {
2646                     /* new_refblock is now complete */
2647                     ret = operation(bs, new_reftable, *new_reftable_index,
2648                                     new_reftable_size, new_refblock,
2649                                     new_refblock_empty, allocated, errp);
2650                     if (ret < 0) {
2651                         qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2652                         return ret;
2653                     }
2654
2655                     (*new_reftable_index)++;
2656                     new_refblock_index = 0;
2657                     new_refblock_empty = true;
2658                 }
2659
2660                 refcount = s->get_refcount(refblock, refblock_index);
2661                 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2662                     uint64_t offset;
2663
2664                     qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2665
2666                     offset = ((reftable_index << s->refcount_block_bits)
2667                               + refblock_index) << s->cluster_bits;
2668
2669                     error_setg(errp, "Cannot decrease refcount entry width to "
2670                                "%i bits: Cluster at offset %#" PRIx64 " has a "
2671                                "refcount of %" PRIu64, new_refcount_bits,
2672                                offset, refcount);
2673                     return -EINVAL;
2674                 }
2675
2676                 if (new_set_refcount) {
2677                     new_set_refcount(new_refblock, new_refblock_index++,
2678                                      refcount);
2679                 } else {
2680                     new_refblock_index++;
2681                 }
2682                 new_refblock_empty = new_refblock_empty && refcount == 0;
2683             }
2684
2685             qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2686         } else {
2687             /* No refblock means every refcount is 0 */
2688             for (refblock_index = 0; refblock_index < s->refcount_block_size;
2689                  refblock_index++)
2690             {
2691                 if (new_refblock_index >= new_refblock_size) {
2692                     /* new_refblock is now complete */
2693                     ret = operation(bs, new_reftable, *new_reftable_index,
2694                                     new_reftable_size, new_refblock,
2695                                     new_refblock_empty, allocated, errp);
2696                     if (ret < 0) {
2697                         return ret;
2698                     }
2699
2700                     (*new_reftable_index)++;
2701                     new_refblock_index = 0;
2702                     new_refblock_empty = true;
2703                 }
2704
2705                 if (new_set_refcount) {
2706                     new_set_refcount(new_refblock, new_refblock_index++, 0);
2707                 } else {
2708                     new_refblock_index++;
2709                 }
2710             }
2711         }
2712     }
2713
2714     if (new_refblock_index > 0) {
2715         /* Complete the potentially existing partially filled final refblock */
2716         if (new_set_refcount) {
2717             for (; new_refblock_index < new_refblock_size;
2718                  new_refblock_index++)
2719             {
2720                 new_set_refcount(new_refblock, new_refblock_index, 0);
2721             }
2722         }
2723
2724         ret = operation(bs, new_reftable, *new_reftable_index,
2725                         new_reftable_size, new_refblock, new_refblock_empty,
2726                         allocated, errp);
2727         if (ret < 0) {
2728             return ret;
2729         }
2730
2731         (*new_reftable_index)++;
2732     }
2733
2734     status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2735               (uint64_t)total * s->refcount_table_size, cb_opaque);
2736
2737     return 0;
2738 }
2739
2740 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2741                                 BlockDriverAmendStatusCB *status_cb,
2742                                 void *cb_opaque, Error **errp)
2743 {
2744     BDRVQcow2State *s = bs->opaque;
2745     Qcow2GetRefcountFunc *new_get_refcount;
2746     Qcow2SetRefcountFunc *new_set_refcount;
2747     void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2748     uint64_t *new_reftable = NULL, new_reftable_size = 0;
2749     uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2750     uint64_t new_reftable_index = 0;
2751     uint64_t i;
2752     int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2753     int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2754     int old_refcount_order;
2755     int walk_index = 0;
2756     int ret;
2757     bool new_allocation;
2758
2759     assert(s->qcow_version >= 3);
2760     assert(refcount_order >= 0 && refcount_order <= 6);
2761
2762     /* see qcow2_open() */
2763     new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2764
2765     new_get_refcount = get_refcount_funcs[refcount_order];
2766     new_set_refcount = set_refcount_funcs[refcount_order];
2767
2768
2769     do {
2770         int total_walks;
2771
2772         new_allocation = false;
2773
2774         /* At least we have to do this walk and the one which writes the
2775          * refblocks; also, at least we have to do this loop here at least
2776          * twice (normally), first to do the allocations, and second to
2777          * determine that everything is correctly allocated, this then makes
2778          * three walks in total */
2779         total_walks = MAX(walk_index + 2, 3);
2780
2781         /* First, allocate the structures so they are present in the refcount
2782          * structures */
2783         ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2784                                  &new_reftable_size, NULL, new_refblock_size,
2785                                  new_refcount_bits, &alloc_refblock,
2786                                  &new_allocation, NULL, status_cb, cb_opaque,
2787                                  walk_index++, total_walks, errp);
2788         if (ret < 0) {
2789             goto done;
2790         }
2791
2792         new_reftable_index = 0;
2793
2794         if (new_allocation) {
2795             if (new_reftable_offset) {
2796                 qcow2_free_clusters(bs, new_reftable_offset,
2797                                     allocated_reftable_size * sizeof(uint64_t),
2798                                     QCOW2_DISCARD_NEVER);
2799             }
2800
2801             new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2802                                                            sizeof(uint64_t));
2803             if (new_reftable_offset < 0) {
2804                 error_setg_errno(errp, -new_reftable_offset,
2805                                  "Failed to allocate the new reftable");
2806                 ret = new_reftable_offset;
2807                 goto done;
2808             }
2809             allocated_reftable_size = new_reftable_size;
2810         }
2811     } while (new_allocation);
2812
2813     /* Second, write the new refblocks */
2814     ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2815                              &new_reftable_size, new_refblock,
2816                              new_refblock_size, new_refcount_bits,
2817                              &flush_refblock, &new_allocation, new_set_refcount,
2818                              status_cb, cb_opaque, walk_index, walk_index + 1,
2819                              errp);
2820     if (ret < 0) {
2821         goto done;
2822     }
2823     assert(!new_allocation);
2824
2825
2826     /* Write the new reftable */
2827     ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2828                                         new_reftable_size * sizeof(uint64_t));
2829     if (ret < 0) {
2830         error_setg_errno(errp, -ret, "Overlap check failed");
2831         goto done;
2832     }
2833
2834     for (i = 0; i < new_reftable_size; i++) {
2835         cpu_to_be64s(&new_reftable[i]);
2836     }
2837
2838     ret = bdrv_pwrite(bs->file->bs, new_reftable_offset, new_reftable,
2839                       new_reftable_size * sizeof(uint64_t));
2840
2841     for (i = 0; i < new_reftable_size; i++) {
2842         be64_to_cpus(&new_reftable[i]);
2843     }
2844
2845     if (ret < 0) {
2846         error_setg_errno(errp, -ret, "Failed to write the new reftable");
2847         goto done;
2848     }
2849
2850
2851     /* Empty the refcount cache */
2852     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2853     if (ret < 0) {
2854         error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2855         goto done;
2856     }
2857
2858     /* Update the image header to point to the new reftable; this only updates
2859      * the fields which are relevant to qcow2_update_header(); other fields
2860      * such as s->refcount_table or s->refcount_bits stay stale for now
2861      * (because we have to restore everything if qcow2_update_header() fails) */
2862     old_refcount_order  = s->refcount_order;
2863     old_reftable_size   = s->refcount_table_size;
2864     old_reftable_offset = s->refcount_table_offset;
2865
2866     s->refcount_order        = refcount_order;
2867     s->refcount_table_size   = new_reftable_size;
2868     s->refcount_table_offset = new_reftable_offset;
2869
2870     ret = qcow2_update_header(bs);
2871     if (ret < 0) {
2872         s->refcount_order        = old_refcount_order;
2873         s->refcount_table_size   = old_reftable_size;
2874         s->refcount_table_offset = old_reftable_offset;
2875         error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2876         goto done;
2877     }
2878
2879     /* Now update the rest of the in-memory information */
2880     old_reftable = s->refcount_table;
2881     s->refcount_table = new_reftable;
2882
2883     s->refcount_bits = 1 << refcount_order;
2884     s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2885     s->refcount_max += s->refcount_max - 1;
2886
2887     s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2888     s->refcount_block_size = 1 << s->refcount_block_bits;
2889
2890     s->get_refcount = new_get_refcount;
2891     s->set_refcount = new_set_refcount;
2892
2893     /* For cleaning up all old refblocks and the old reftable below the "done"
2894      * label */
2895     new_reftable        = old_reftable;
2896     new_reftable_size   = old_reftable_size;
2897     new_reftable_offset = old_reftable_offset;
2898
2899 done:
2900     if (new_reftable) {
2901         /* On success, new_reftable actually points to the old reftable (and
2902          * new_reftable_size is the old reftable's size); but that is just
2903          * fine */
2904         for (i = 0; i < new_reftable_size; i++) {
2905             uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2906             if (offset) {
2907                 qcow2_free_clusters(bs, offset, s->cluster_size,
2908                                     QCOW2_DISCARD_OTHER);
2909             }
2910         }
2911         g_free(new_reftable);
2912
2913         if (new_reftable_offset > 0) {
2914             qcow2_free_clusters(bs, new_reftable_offset,
2915                                 new_reftable_size * sizeof(uint64_t),
2916                                 QCOW2_DISCARD_OTHER);
2917         }
2918     }
2919
2920     qemu_vfree(new_refblock);
2921     return ret;
2922 }
This page took 0.186502 seconds and 4 git commands to generate.