2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "sysemu/blockdev.h"
28 #ifndef M25P80_ERR_DEBUG
29 #define M25P80_ERR_DEBUG 0
32 #define DB_PRINT_L(level, ...) do { \
33 if (M25P80_ERR_DEBUG > (level)) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
39 /* Fields for FlashPartInfo->flags */
41 /* erase capabilities */
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
49 typedef struct FlashPartInfo {
50 const char *part_name;
51 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
53 /* extended jedec code */
55 /* there is confusion between manufacturers as to what a sector is. In this
56 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57 * command (opcode 0xd8).
65 /* adapted from linux */
67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68 .part_name = (_part_name),\
70 .ext_jedec = (_ext_jedec),\
71 .sector_size = (_sector_size),\
72 .n_sectors = (_n_sectors),\
76 #define JEDEC_NUMONYX 0x20
77 #define JEDEC_WINBOND 0xEF
78 #define JEDEC_SPANSION 0x01
80 static const FlashPartInfo known_devices[] = {
81 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
83 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
85 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
86 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
87 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
89 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
90 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
91 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
92 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
94 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
97 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
98 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
99 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
100 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
101 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
104 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
105 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
107 /* Intel/Numonyx -- xxxs33b */
108 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
109 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
110 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
111 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
114 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
115 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
116 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
117 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
118 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
119 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
120 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
121 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
122 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
123 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
126 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
127 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
128 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
129 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
130 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
131 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
132 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
133 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
135 /* Spansion -- single (large) sector size only, at least
136 * for the chips listed here (without boot sectors).
138 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
139 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
140 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
141 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
142 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
143 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
144 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
145 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
146 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
147 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
148 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
149 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
150 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
151 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
152 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
153 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
154 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
156 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
157 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
158 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
159 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
160 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
161 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
162 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
163 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
164 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
166 /* ST Microelectronics -- newer production may have feature updates */
167 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
168 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
169 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
170 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
171 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
172 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
173 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
174 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
175 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
176 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
178 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
179 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
180 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
182 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
183 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
184 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
186 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
187 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
188 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
189 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
191 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
192 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
193 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
194 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
195 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
196 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
197 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
198 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
199 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
200 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
201 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
202 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
203 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
204 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
206 /* Numonyx -- n25q128 */
207 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
239 STATE_COLLECTING_DATA,
243 typedef struct Flash {
248 BlockDriverState *bdrv;
258 uint8_t needed_bytes;
259 uint8_t cmd_in_progress;
265 const FlashPartInfo *pi;
269 typedef struct M25P80Class {
270 SSISlaveClass parent_class;
274 #define TYPE_M25P80 "m25p80-generic"
275 #define M25P80(obj) \
276 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
277 #define M25P80_CLASS(klass) \
278 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
279 #define M25P80_GET_CLASS(obj) \
280 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
282 static void bdrv_sync_complete(void *opaque, int ret)
284 /* do nothing. Masters do not directly interact with the backing store,
285 * only the working copy so no mutexing required.
289 static void flash_sync_page(Flash *s, int page)
292 int bdrv_sector, nb_sectors;
295 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
296 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
297 qemu_iovec_init(&iov, 1);
298 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
299 nb_sectors * BDRV_SECTOR_SIZE);
300 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
301 bdrv_sync_complete, NULL);
305 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
307 int64_t start, end, nb_sectors;
314 assert(!(len % BDRV_SECTOR_SIZE));
315 start = off / BDRV_SECTOR_SIZE;
316 end = (off + len) / BDRV_SECTOR_SIZE;
317 nb_sectors = end - start;
318 qemu_iovec_init(&iov, 1);
319 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
320 nb_sectors * BDRV_SECTOR_SIZE);
321 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
324 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
327 uint8_t capa_to_assert = 0;
332 capa_to_assert = ER_4K;
336 capa_to_assert = ER_32K;
339 len = s->pi->sector_size;
348 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
349 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
350 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
354 if (!s->write_enable) {
355 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
358 memset(s->storage + offset, 0xff, len);
359 flash_sync_area(s, offset, len);
362 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
364 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
365 flash_sync_page(s, s->dirty_page);
366 s->dirty_page = newpage;
371 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
373 int64_t page = addr / s->pi->page_size;
374 uint8_t prev = s->storage[s->cur_addr];
376 if (!s->write_enable) {
377 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
380 if ((prev ^ data) & data) {
381 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
382 " -> %" PRIx8 "\n", addr, prev, data);
385 if (s->pi->flags & WR_1) {
386 s->storage[s->cur_addr] = data;
388 s->storage[s->cur_addr] &= data;
391 flash_sync_dirty(s, page);
392 s->dirty_page = page;
395 static void complete_collecting_data(Flash *s)
397 s->cur_addr = s->data[0] << 16;
398 s->cur_addr |= s->data[1] << 8;
399 s->cur_addr |= s->data[2];
401 s->state = STATE_IDLE;
403 switch (s->cmd_in_progress) {
407 s->state = STATE_PAGE_PROGRAM;
415 s->state = STATE_READ;
420 flash_erase(s, s->cur_addr, s->cmd_in_progress);
423 if (s->write_enable) {
424 s->write_enable = false;
432 static void decode_new_cmd(Flash *s, uint32_t value)
434 s->cmd_in_progress = value;
435 DB_PRINT_L(0, "decoded new command:%x\n", value);
449 s->state = STATE_COLLECTING_DATA;
458 s->state = STATE_COLLECTING_DATA;
462 switch ((s->pi->jedec >> 16) & 0xFF) {
473 s->state = STATE_COLLECTING_DATA;
477 switch ((s->pi->jedec >> 16) & 0xFF) {
488 s->state = STATE_COLLECTING_DATA;
492 if (s->write_enable) {
496 s->state = STATE_COLLECTING_DATA;
501 s->write_enable = false;
504 s->write_enable = true;
508 s->data[0] = (!!s->write_enable) << 1;
511 s->state = STATE_READING_DATA;
515 DB_PRINT_L(0, "populated jedec code\n");
516 s->data[0] = (s->pi->jedec >> 16) & 0xff;
517 s->data[1] = (s->pi->jedec >> 8) & 0xff;
518 s->data[2] = s->pi->jedec & 0xff;
519 if (s->pi->ext_jedec) {
520 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
521 s->data[4] = s->pi->ext_jedec & 0xff;
527 s->state = STATE_READING_DATA;
531 if (s->write_enable) {
532 DB_PRINT_L(0, "chip erase\n");
533 flash_erase(s, 0, BULK_ERASE);
535 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
542 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
547 static int m25p80_cs(SSISlave *ss, bool select)
549 Flash *s = M25P80(ss);
554 s->state = STATE_IDLE;
555 flash_sync_dirty(s, -1);
558 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
563 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
565 Flash *s = M25P80(ss);
570 case STATE_PAGE_PROGRAM:
571 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
572 s->cur_addr, (uint8_t)tx);
573 flash_write8(s, s->cur_addr, (uint8_t)tx);
578 r = s->storage[s->cur_addr];
579 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
581 s->cur_addr = (s->cur_addr + 1) % s->size;
584 case STATE_COLLECTING_DATA:
585 s->data[s->len] = (uint8_t)tx;
588 if (s->len == s->needed_bytes) {
589 complete_collecting_data(s);
593 case STATE_READING_DATA:
596 if (s->pos == s->len) {
598 s->state = STATE_IDLE;
604 decode_new_cmd(s, (uint8_t)tx);
611 static int m25p80_init(SSISlave *ss)
614 Flash *s = M25P80(ss);
615 M25P80Class *mc = M25P80_GET_CLASS(s);
619 s->size = s->pi->sector_size * s->pi->n_sectors;
621 s->storage = qemu_blockalign(s->bdrv, s->size);
623 dinfo = drive_get_next(IF_MTD);
625 if (dinfo && dinfo->bdrv) {
626 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
627 s->bdrv = dinfo->bdrv;
628 if (bdrv_is_read_only(s->bdrv)) {
629 fprintf(stderr, "Can't use a read-only drive");
633 /* FIXME: Move to late init */
634 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
635 BDRV_SECTOR_SIZE))) {
636 fprintf(stderr, "Failed to initialize SPI flash!\n");
640 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
641 memset(s->storage, 0xFF, s->size);
647 static void m25p80_pre_save(void *opaque)
649 flash_sync_dirty((Flash *)opaque, -1);
652 static const VMStateDescription vmstate_m25p80 = {
653 .name = "xilinx_spi",
655 .minimum_version_id = 1,
656 .minimum_version_id_old = 1,
657 .pre_save = m25p80_pre_save,
658 .fields = (VMStateField[]) {
659 VMSTATE_UINT8(state, Flash),
660 VMSTATE_UINT8_ARRAY(data, Flash, 16),
661 VMSTATE_UINT32(len, Flash),
662 VMSTATE_UINT32(pos, Flash),
663 VMSTATE_UINT8(needed_bytes, Flash),
664 VMSTATE_UINT8(cmd_in_progress, Flash),
665 VMSTATE_UINT64(cur_addr, Flash),
666 VMSTATE_BOOL(write_enable, Flash),
667 VMSTATE_END_OF_LIST()
671 static void m25p80_class_init(ObjectClass *klass, void *data)
673 DeviceClass *dc = DEVICE_CLASS(klass);
674 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
675 M25P80Class *mc = M25P80_CLASS(klass);
677 k->init = m25p80_init;
678 k->transfer = m25p80_transfer8;
679 k->set_cs = m25p80_cs;
680 k->cs_polarity = SSI_CS_LOW;
681 dc->vmsd = &vmstate_m25p80;
685 static const TypeInfo m25p80_info = {
687 .parent = TYPE_SSI_SLAVE,
688 .instance_size = sizeof(Flash),
689 .class_size = sizeof(M25P80Class),
693 static void m25p80_register_types(void)
697 type_register_static(&m25p80_info);
698 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
700 .name = known_devices[i].part_name,
701 .parent = TYPE_M25P80,
702 .class_init = m25p80_class_init,
703 .class_data = (void *)&known_devices[i],
709 type_init(m25p80_register_types)