2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
35 #include "mmu-hash64.h"
37 #include "hw/boards.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/loader.h"
41 #include "hw/ppc/spapr.h"
42 #include "hw/ppc/spapr_vio.h"
43 #include "hw/pci-host/spapr.h"
44 #include "hw/ppc/xics.h"
45 #include "hw/pci/msi.h"
47 #include "hw/pci/pci.h"
49 #include "exec/address-spaces.h"
51 #include "qemu/config-file.h"
52 #include "qemu/error-report.h"
56 /* SLOF memory layout:
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
64 * We load our kernel at 4M, leaving space for SLOF initial image
66 #define FDT_MAX_SIZE 0x40000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
73 #define MIN_RMA_SLOF 128UL
75 #define TIMEBASE_FREQ 512000000ULL
78 #define XICS_IRQS 1024
80 #define PHANDLE_XICP 0x00001111
82 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
84 sPAPREnvironment *spapr;
86 int spapr_allocate_irq(int hint, bool lsi)
92 if (hint >= spapr->next_irq) {
93 spapr->next_irq = hint + 1;
95 /* FIXME: we should probably check for collisions somehow */
97 irq = spapr->next_irq++;
100 /* Configure irq type */
101 if (!xics_get_qirq(spapr->icp, irq)) {
105 xics_set_irq_type(spapr->icp, irq, lsi);
111 * Allocate block of consequtive IRQs, returns a number of the first.
112 * If msi==true, aligns the first IRQ number to num.
114 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
120 * MSIMesage::data is used for storing VIRQ so
121 * it has to be aligned to num to support multiple
122 * MSI vectors. MSI-X is not affected by this.
123 * The hint is used for the first IRQ, the rest should
124 * be allocated continuously.
127 assert((num == 1) || (num == 2) || (num == 4) ||
128 (num == 8) || (num == 16) || (num == 32));
129 hint = (spapr->next_irq + num - 1) & ~(num - 1);
132 for (i = 0; i < num; ++i) {
135 irq = spapr_allocate_irq(hint, lsi);
145 /* If the above doesn't create a consecutive block then that's
147 assert(irq == (first + i));
153 static XICSState *try_create_xics(const char *type, int nr_servers,
158 dev = qdev_create(NULL, type);
159 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
160 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
161 if (qdev_init(dev) < 0) {
165 return XICS_COMMON(dev);
168 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
170 XICSState *icp = NULL;
173 QemuOpts *machine_opts = qemu_get_machine_opts();
174 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
175 "kernel_irqchip", true);
176 bool irqchip_required = qemu_opt_get_bool(machine_opts,
177 "kernel_irqchip", false);
178 if (irqchip_allowed) {
179 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
182 if (irqchip_required && !icp) {
183 perror("Failed to create in-kernel XICS\n");
189 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
193 perror("Failed to create XICS\n");
200 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
205 int smt = kvmppc_smt_threads();
206 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
209 DeviceClass *dc = DEVICE_GET_CLASS(cpu);
210 uint32_t associativity[] = {cpu_to_be32(0x5),
214 cpu_to_be32(cpu->numa_node),
215 cpu_to_be32(cpu->cpu_index)};
217 if ((cpu->cpu_index % smt) != 0) {
221 snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
224 offset = fdt_path_offset(fdt, cpu_model);
229 if (nb_numa_nodes > 1) {
230 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
231 sizeof(associativity));
237 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
238 pft_size_prop, sizeof(pft_size_prop));
247 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
250 size_t maxcells = maxsize / sizeof(uint32_t);
254 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
255 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
257 if (!sps->page_shift) {
260 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
261 if (sps->enc[count].page_shift == 0) {
265 if ((p - prop) >= (maxcells - 3 - count * 2)) {
268 *(p++) = cpu_to_be32(sps->page_shift);
269 *(p++) = cpu_to_be32(sps->slb_enc);
270 *(p++) = cpu_to_be32(count);
271 for (j = 0; j < count; j++) {
272 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
273 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277 return (p - prop) * sizeof(uint32_t);
284 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
285 #exp, fdt_strerror(ret)); \
291 static void *spapr_create_fdt_skel(hwaddr initrd_base,
295 const char *boot_device,
296 const char *kernel_cmdline,
301 uint32_t start_prop = cpu_to_be32(initrd_base);
302 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
303 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
304 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
305 char qemu_hypertas_prop[] = "hcall-memop1";
306 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
307 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
308 int i, smt = kvmppc_smt_threads();
309 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
311 fdt = g_malloc0(FDT_MAX_SIZE);
312 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
315 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
318 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
320 _FDT((fdt_finish_reservemap(fdt)));
323 _FDT((fdt_begin_node(fdt, "")));
324 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
325 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
326 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
328 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
329 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
332 _FDT((fdt_begin_node(fdt, "chosen")));
334 /* Set Form1_affinity */
335 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
337 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
338 _FDT((fdt_property(fdt, "linux,initrd-start",
339 &start_prop, sizeof(start_prop))));
340 _FDT((fdt_property(fdt, "linux,initrd-end",
341 &end_prop, sizeof(end_prop))));
343 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
344 cpu_to_be64(kernel_size) };
346 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
348 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
352 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
354 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
355 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
356 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
358 _FDT((fdt_end_node(fdt)));
361 _FDT((fdt_begin_node(fdt, "cpus")));
363 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
364 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
367 PowerPCCPU *cpu = POWERPC_CPU(cs);
368 CPUPPCState *env = &cpu->env;
369 DeviceClass *dc = DEVICE_GET_CLASS(cs);
370 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
371 int index = cs->cpu_index;
372 uint32_t servers_prop[smp_threads];
373 uint32_t gservers_prop[smp_threads * 2];
375 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
376 0xffffffff, 0xffffffff};
377 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
378 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
379 uint32_t page_sizes_prop[64];
380 size_t page_sizes_prop_size;
382 if ((index % smt) != 0) {
386 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
388 _FDT((fdt_begin_node(fdt, nodename)));
392 _FDT((fdt_property_cell(fdt, "reg", index)));
393 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
395 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
396 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
397 env->dcache_line_size)));
398 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
399 env->dcache_line_size)));
400 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
401 env->icache_line_size)));
402 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
403 env->icache_line_size)));
405 if (pcc->l1_dcache_size) {
406 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
408 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
410 if (pcc->l1_icache_size) {
411 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
413 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
416 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
417 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
418 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
419 _FDT((fdt_property_string(fdt, "status", "okay")));
420 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
422 /* Build interrupt servers and gservers properties */
423 for (i = 0; i < smp_threads; i++) {
424 servers_prop[i] = cpu_to_be32(index + i);
425 /* Hack, direct the group queues back to cpu 0 */
426 gservers_prop[i*2] = cpu_to_be32(index + i);
427 gservers_prop[i*2 + 1] = 0;
429 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
430 servers_prop, sizeof(servers_prop))));
431 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
432 gservers_prop, sizeof(gservers_prop))));
434 if (env->spr_cb[SPR_PURR].oea_read) {
435 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
438 if (env->mmu_model & POWERPC_MMU_1TSEG) {
439 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
440 segs, sizeof(segs))));
443 /* Advertise VMX/VSX (vector extensions) if available
444 * 0 / no property == no vector extensions
445 * 1 == VMX / Altivec available
446 * 2 == VSX available */
447 if (env->insns_flags & PPC_ALTIVEC) {
448 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
450 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
453 /* Advertise DFP (Decimal Floating Point) if available
454 * 0 / no property == no DFP
455 * 1 == DFP available */
456 if (env->insns_flags2 & PPC2_DFP) {
457 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
460 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
461 sizeof(page_sizes_prop));
462 if (page_sizes_prop_size) {
463 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
464 page_sizes_prop, page_sizes_prop_size)));
467 _FDT((fdt_end_node(fdt)));
470 _FDT((fdt_end_node(fdt)));
473 _FDT((fdt_begin_node(fdt, "rtas")));
475 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
476 sizeof(hypertas_prop))));
477 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
478 sizeof(qemu_hypertas_prop))));
480 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
481 refpoints, sizeof(refpoints))));
483 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
485 _FDT((fdt_end_node(fdt)));
487 /* interrupt controller */
488 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
490 _FDT((fdt_property_string(fdt, "device_type",
491 "PowerPC-External-Interrupt-Presentation")));
492 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
493 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
494 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
495 interrupt_server_ranges_prop,
496 sizeof(interrupt_server_ranges_prop))));
497 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
498 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
499 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
501 _FDT((fdt_end_node(fdt)));
504 _FDT((fdt_begin_node(fdt, "vdevice")));
506 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
507 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
508 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
509 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
510 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
511 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
513 _FDT((fdt_end_node(fdt)));
516 spapr_events_fdt_skel(fdt, epow_irq);
518 _FDT((fdt_end_node(fdt))); /* close root node */
519 _FDT((fdt_finish(fdt)));
524 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
526 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
527 cpu_to_be32(0x0), cpu_to_be32(0x0),
530 hwaddr node0_size, mem_start, node_size;
531 uint64_t mem_reg_property[2];
535 if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
536 node0_size = node_mem[0];
538 node0_size = ram_size;
542 mem_reg_property[0] = 0;
543 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
544 off = fdt_add_subnode(fdt, 0, "memory@0");
546 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
547 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
548 sizeof(mem_reg_property))));
549 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
550 sizeof(associativity))));
553 if (node0_size > spapr->rma_size) {
554 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
555 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
557 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
558 off = fdt_add_subnode(fdt, 0, mem_name);
560 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
561 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
562 sizeof(mem_reg_property))));
563 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
564 sizeof(associativity))));
567 /* RAM: Node 1 and beyond */
568 mem_start = node0_size;
569 for (i = 1; i < nb_numa_nodes; i++) {
570 mem_reg_property[0] = cpu_to_be64(mem_start);
571 if (mem_start >= ram_size) {
574 node_size = node_mem[i];
575 if (node_size > ram_size - mem_start) {
576 node_size = ram_size - mem_start;
579 mem_reg_property[1] = cpu_to_be64(node_size);
580 associativity[3] = associativity[4] = cpu_to_be32(i);
581 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
582 off = fdt_add_subnode(fdt, 0, mem_name);
584 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
585 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
586 sizeof(mem_reg_property))));
587 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
588 sizeof(associativity))));
589 mem_start += node_size;
595 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
604 fdt = g_malloc(FDT_MAX_SIZE);
606 /* open out the base tree into a temp buffer for the final tweaks */
607 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
609 ret = spapr_populate_memory(spapr, fdt);
611 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
615 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
617 fprintf(stderr, "couldn't setup vio devices in fdt\n");
621 QLIST_FOREACH(phb, &spapr->phbs, list) {
622 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
626 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
631 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
633 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
636 /* Advertise NUMA via ibm,associativity */
637 ret = spapr_fixup_cpu_dt(fdt, spapr);
639 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
642 if (!spapr->has_graphics) {
643 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
646 _FDT((fdt_pack(fdt)));
648 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
649 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
650 fdt_totalsize(fdt), FDT_MAX_SIZE);
654 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
659 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
661 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
664 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
666 CPUPPCState *env = &cpu->env;
669 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
670 env->gpr[3] = H_PRIVILEGE;
672 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
676 static void spapr_reset_htab(sPAPREnvironment *spapr)
680 /* allocate hash page table. For now we always make this 16mb,
681 * later we should probably make it scale to the size of guest
684 shift = kvmppc_reset_htab(spapr->htab_shift);
687 /* Kernel handles htab, we don't need to allocate one */
688 spapr->htab_shift = shift;
691 /* Allocate an htab if we don't yet have one */
692 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
696 memset(spapr->htab, 0, HTAB_SIZE(spapr));
699 /* Update the RMA size if necessary */
700 if (spapr->vrma_adjust) {
701 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
702 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
706 static void ppc_spapr_reset(void)
708 PowerPCCPU *first_ppc_cpu;
710 /* Reset the hash table & recalc the RMA */
711 spapr_reset_htab(spapr);
713 qemu_devices_reset();
716 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
719 /* Set up the entry state */
720 first_ppc_cpu = POWERPC_CPU(first_cpu);
721 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
722 first_ppc_cpu->env.gpr[5] = 0;
723 first_cpu->halted = 0;
724 first_ppc_cpu->env.nip = spapr->entry_point;
728 static void spapr_cpu_reset(void *opaque)
730 PowerPCCPU *cpu = opaque;
731 CPUState *cs = CPU(cpu);
732 CPUPPCState *env = &cpu->env;
736 /* All CPUs start halted. CPU0 is unhalted from the machine level
737 * reset code and the rest are explicitly started up by the guest
738 * using an RTAS call */
741 env->spr[SPR_HIOR] = 0;
743 env->external_htab = (uint8_t *)spapr->htab;
744 if (kvm_enabled() && !env->external_htab) {
746 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
747 * functions do the right thing.
749 env->external_htab = (void *)1;
752 env->htab_mask = HTAB_SIZE(spapr) - 1;
753 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
754 (spapr->htab_shift - 18);
757 static void spapr_create_nvram(sPAPREnvironment *spapr)
759 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
760 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
763 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
766 qdev_init_nofail(dev);
768 spapr->nvram = (struct sPAPRNVRAM *)dev;
771 /* Returns whether we want to use VGA or not */
772 static int spapr_vga_init(PCIBus *pci_bus)
774 switch (vga_interface_type) {
777 return pci_vga_init(pci_bus) != NULL;
779 fprintf(stderr, "This vga model is not supported,"
780 "currently it only supports -vga std\n");
786 static const VMStateDescription vmstate_spapr = {
789 .minimum_version_id = 1,
790 .minimum_version_id_old = 1,
791 .fields = (VMStateField []) {
792 VMSTATE_UINT32(next_irq, sPAPREnvironment),
795 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
797 VMSTATE_END_OF_LIST()
801 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
802 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
803 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
804 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
806 static int htab_save_setup(QEMUFile *f, void *opaque)
808 sPAPREnvironment *spapr = opaque;
810 /* "Iteration" header */
811 qemu_put_be32(f, spapr->htab_shift);
814 spapr->htab_save_index = 0;
815 spapr->htab_first_pass = true;
817 assert(kvm_enabled());
819 spapr->htab_fd = kvmppc_get_htab_fd(false);
820 if (spapr->htab_fd < 0) {
821 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
831 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
834 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
835 int index = spapr->htab_save_index;
836 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
838 assert(spapr->htab_first_pass);
843 /* Consume invalid HPTEs */
844 while ((index < htabslots)
845 && !HPTE_VALID(HPTE(spapr->htab, index))) {
847 CLEAN_HPTE(HPTE(spapr->htab, index));
850 /* Consume valid HPTEs */
852 while ((index < htabslots)
853 && HPTE_VALID(HPTE(spapr->htab, index))) {
855 CLEAN_HPTE(HPTE(spapr->htab, index));
858 if (index > chunkstart) {
859 int n_valid = index - chunkstart;
861 qemu_put_be32(f, chunkstart);
862 qemu_put_be16(f, n_valid);
864 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
865 HASH_PTE_SIZE_64 * n_valid);
867 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
871 } while ((index < htabslots) && !qemu_file_rate_limit(f));
873 if (index >= htabslots) {
874 assert(index == htabslots);
876 spapr->htab_first_pass = false;
878 spapr->htab_save_index = index;
881 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
884 bool final = max_ns < 0;
885 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
886 int examined = 0, sent = 0;
887 int index = spapr->htab_save_index;
888 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
890 assert(!spapr->htab_first_pass);
893 int chunkstart, invalidstart;
895 /* Consume non-dirty HPTEs */
896 while ((index < htabslots)
897 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
903 /* Consume valid dirty HPTEs */
904 while ((index < htabslots)
905 && HPTE_DIRTY(HPTE(spapr->htab, index))
906 && HPTE_VALID(HPTE(spapr->htab, index))) {
907 CLEAN_HPTE(HPTE(spapr->htab, index));
912 invalidstart = index;
913 /* Consume invalid dirty HPTEs */
914 while ((index < htabslots)
915 && HPTE_DIRTY(HPTE(spapr->htab, index))
916 && !HPTE_VALID(HPTE(spapr->htab, index))) {
917 CLEAN_HPTE(HPTE(spapr->htab, index));
922 if (index > chunkstart) {
923 int n_valid = invalidstart - chunkstart;
924 int n_invalid = index - invalidstart;
926 qemu_put_be32(f, chunkstart);
927 qemu_put_be16(f, n_valid);
928 qemu_put_be16(f, n_invalid);
929 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
930 HASH_PTE_SIZE_64 * n_valid);
931 sent += index - chunkstart;
933 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
938 if (examined >= htabslots) {
942 if (index >= htabslots) {
943 assert(index == htabslots);
946 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
948 if (index >= htabslots) {
949 assert(index == htabslots);
953 spapr->htab_save_index = index;
955 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
958 #define MAX_ITERATION_NS 5000000 /* 5 ms */
959 #define MAX_KVM_BUF_SIZE 2048
961 static int htab_save_iterate(QEMUFile *f, void *opaque)
963 sPAPREnvironment *spapr = opaque;
966 /* Iteration header */
970 assert(kvm_enabled());
972 rc = kvmppc_save_htab(f, spapr->htab_fd,
973 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
977 } else if (spapr->htab_first_pass) {
978 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
980 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
991 static int htab_save_complete(QEMUFile *f, void *opaque)
993 sPAPREnvironment *spapr = opaque;
995 /* Iteration header */
1001 assert(kvm_enabled());
1003 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1007 close(spapr->htab_fd);
1008 spapr->htab_fd = -1;
1010 htab_save_later_pass(f, spapr, -1);
1014 qemu_put_be32(f, 0);
1015 qemu_put_be16(f, 0);
1016 qemu_put_be16(f, 0);
1021 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1023 sPAPREnvironment *spapr = opaque;
1024 uint32_t section_hdr;
1027 if (version_id < 1 || version_id > 1) {
1028 fprintf(stderr, "htab_load() bad version\n");
1032 section_hdr = qemu_get_be32(f);
1035 /* First section, just the hash shift */
1036 if (spapr->htab_shift != section_hdr) {
1043 assert(kvm_enabled());
1045 fd = kvmppc_get_htab_fd(true);
1047 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1054 uint16_t n_valid, n_invalid;
1056 index = qemu_get_be32(f);
1057 n_valid = qemu_get_be16(f);
1058 n_invalid = qemu_get_be16(f);
1060 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1065 if ((index + n_valid + n_invalid) >
1066 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1067 /* Bad index in stream */
1068 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1069 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1076 qemu_get_buffer(f, HPTE(spapr->htab, index),
1077 HASH_PTE_SIZE_64 * n_valid);
1080 memset(HPTE(spapr->htab, index + n_valid), 0,
1081 HASH_PTE_SIZE_64 * n_invalid);
1088 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1103 static SaveVMHandlers savevm_htab_handlers = {
1104 .save_live_setup = htab_save_setup,
1105 .save_live_iterate = htab_save_iterate,
1106 .save_live_complete = htab_save_complete,
1107 .load_state = htab_load,
1110 /* pSeries LPAR / sPAPR hardware init */
1111 static void ppc_spapr_init(QEMUMachineInitArgs *args)
1113 ram_addr_t ram_size = args->ram_size;
1114 const char *cpu_model = args->cpu_model;
1115 const char *kernel_filename = args->kernel_filename;
1116 const char *kernel_cmdline = args->kernel_cmdline;
1117 const char *initrd_filename = args->initrd_filename;
1118 const char *boot_device = args->boot_order;
1123 MemoryRegion *sysmem = get_system_memory();
1124 MemoryRegion *ram = g_new(MemoryRegion, 1);
1125 hwaddr rma_alloc_size;
1126 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1127 uint32_t initrd_base = 0;
1128 long kernel_size = 0, initrd_size = 0;
1129 long load_limit, rtas_limit, fw_size;
1130 bool kernel_le = false;
1133 msi_supported = true;
1135 spapr = g_malloc0(sizeof(*spapr));
1136 QLIST_INIT(&spapr->phbs);
1138 cpu_ppc_hypercall = emulate_spapr_hypercall;
1140 /* Allocate RMA if necessary */
1141 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1143 if (rma_alloc_size == -1) {
1144 hw_error("qemu: Unable to create RMA\n");
1148 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1149 spapr->rma_size = rma_alloc_size;
1151 spapr->rma_size = node0_size;
1153 /* With KVM, we don't actually know whether KVM supports an
1154 * unbounded RMA (PR KVM) or is limited by the hash table size
1155 * (HV KVM using VRMA), so we always assume the latter
1157 * In that case, we also limit the initial allocations for RTAS
1158 * etc... to 256M since we have no way to know what the VRMA size
1159 * is going to be as it depends on the size of the hash table
1160 * isn't determined yet.
1162 if (kvm_enabled()) {
1163 spapr->vrma_adjust = 1;
1164 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1168 if (spapr->rma_size > node0_size) {
1169 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1174 /* We place the device tree and RTAS just below either the top of the RMA,
1175 * or just below 2GB, whichever is lowere, so that it can be
1176 * processed with 32-bit real mode code if necessary */
1177 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1178 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1179 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1180 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1182 /* We aim for a hash table of size 1/128 the size of RAM. The
1183 * normal rule of thumb is 1/64 the size of RAM, but that's much
1184 * more than needed for the Linux guests we support. */
1185 spapr->htab_shift = 18; /* Minimum architected size */
1186 while (spapr->htab_shift <= 46) {
1187 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1190 spapr->htab_shift++;
1193 /* Set up Interrupt Controller before we create the VCPUs */
1194 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1196 spapr->next_irq = XICS_IRQ_BASE;
1199 if (cpu_model == NULL) {
1200 cpu_model = kvm_enabled() ? "host" : "POWER7";
1202 for (i = 0; i < smp_cpus; i++) {
1203 cpu = cpu_ppc_init(cpu_model);
1205 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1210 /* Set time-base frequency to 512 MHz */
1211 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1213 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1214 * MSR[IP] should never be set.
1216 env->msr_mask &= ~(1 << 6);
1218 /* Tell KVM that we're in PAPR mode */
1219 if (kvm_enabled()) {
1220 kvmppc_set_papr(cpu);
1223 xics_cpu_setup(spapr->icp, cpu);
1225 qemu_register_reset(spapr_cpu_reset, cpu);
1229 spapr->ram_limit = ram_size;
1230 if (spapr->ram_limit > rma_alloc_size) {
1231 ram_addr_t nonrma_base = rma_alloc_size;
1232 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1234 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1235 vmstate_register_ram_global(ram);
1236 memory_region_add_subregion(sysmem, nonrma_base, ram);
1239 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1240 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1241 rtas_limit - spapr->rtas_addr);
1242 if (spapr->rtas_size < 0) {
1243 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1246 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1247 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1248 spapr->rtas_size, RTAS_MAX_SIZE);
1253 /* Set up EPOW events infrastructure */
1254 spapr_events_init(spapr);
1256 /* Set up VIO bus */
1257 spapr->vio_bus = spapr_vio_bus_init();
1259 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1260 if (serial_hds[i]) {
1261 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1265 /* We always have at least the nvram device on VIO */
1266 spapr_create_nvram(spapr);
1269 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1270 spapr_pci_rtas_init();
1272 phb = spapr_create_phb(spapr, 0);
1274 for (i = 0; i < nb_nics; i++) {
1275 NICInfo *nd = &nd_table[i];
1278 nd->model = g_strdup("ibmveth");
1281 if (strcmp(nd->model, "ibmveth") == 0) {
1282 spapr_vlan_create(spapr->vio_bus, nd);
1284 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1288 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1289 spapr_vscsi_create(spapr->vio_bus);
1293 if (spapr_vga_init(phb->bus)) {
1294 spapr->has_graphics = true;
1297 if (usb_enabled(spapr->has_graphics)) {
1298 pci_create_simple(phb->bus, -1, "pci-ohci");
1299 if (spapr->has_graphics) {
1300 usbdevice_create("keyboard");
1301 usbdevice_create("mouse");
1305 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1306 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1307 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1311 if (kernel_filename) {
1312 uint64_t lowaddr = 0;
1314 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1315 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1316 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1317 kernel_size = load_elf(kernel_filename,
1318 translate_kernel_address, NULL,
1319 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1320 kernel_le = kernel_size > 0;
1322 if (kernel_size < 0) {
1323 fprintf(stderr, "qemu: error loading %s: %s\n",
1324 kernel_filename, load_elf_strerror(kernel_size));
1329 if (initrd_filename) {
1330 /* Try to locate the initrd in the gap between the kernel
1331 * and the firmware. Add a bit of space just in case
1333 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1334 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1335 load_limit - initrd_base);
1336 if (initrd_size < 0) {
1337 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1347 if (bios_name == NULL) {
1348 bios_name = FW_FILE_NAME;
1350 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1351 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1353 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1358 spapr->entry_point = 0x100;
1360 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1361 register_savevm_live(NULL, "spapr/htab", -1, 1,
1362 &savevm_htab_handlers, spapr);
1364 /* Prepare the device tree */
1365 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1366 kernel_size, kernel_le,
1367 boot_device, kernel_cmdline,
1369 assert(spapr->fdt_skel != NULL);
1372 static int spapr_kvm_type(const char *vm_type)
1378 if (!strcmp(vm_type, "HV")) {
1382 if (!strcmp(vm_type, "PR")) {
1386 error_report("Unknown kvm-type specified '%s'", vm_type);
1390 static QEMUMachine spapr_machine = {
1392 .desc = "pSeries Logical Partition (PAPR compliant)",
1394 .init = ppc_spapr_init,
1395 .reset = ppc_spapr_reset,
1396 .block_default_type = IF_SCSI,
1397 .max_cpus = MAX_CPUS,
1399 .default_boot_order = NULL,
1400 .kvm_type = spapr_kvm_type,
1403 static void spapr_machine_init(void)
1405 qemu_register_machine(&spapr_machine);
1408 machine_init(spapr_machine_init);