]> Git Repo - qemu.git/blob - cpus.c
virtio-input: fix eventq batching
[qemu.git] / cpus.c
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qemu/config-file.h"
29 #include "cpu.h"
30 #include "monitor/monitor.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qemu/error-report.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/block-backend.h"
35 #include "exec/gdbstub.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/hw_accel.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/hax.h"
40 #include "qmp-commands.h"
41 #include "exec/exec-all.h"
42
43 #include "qemu/thread.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/qtest.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/bitmap.h"
48 #include "qemu/seqlock.h"
49 #include "tcg.h"
50 #include "qapi-event.h"
51 #include "hw/nmi.h"
52 #include "sysemu/replay.h"
53
54 #ifdef CONFIG_LINUX
55
56 #include <sys/prctl.h>
57
58 #ifndef PR_MCE_KILL
59 #define PR_MCE_KILL 33
60 #endif
61
62 #ifndef PR_MCE_KILL_SET
63 #define PR_MCE_KILL_SET 1
64 #endif
65
66 #ifndef PR_MCE_KILL_EARLY
67 #define PR_MCE_KILL_EARLY 1
68 #endif
69
70 #endif /* CONFIG_LINUX */
71
72 int64_t max_delay;
73 int64_t max_advance;
74
75 /* vcpu throttling controls */
76 static QEMUTimer *throttle_timer;
77 static unsigned int throttle_percentage;
78
79 #define CPU_THROTTLE_PCT_MIN 1
80 #define CPU_THROTTLE_PCT_MAX 99
81 #define CPU_THROTTLE_TIMESLICE_NS 10000000
82
83 bool cpu_is_stopped(CPUState *cpu)
84 {
85     return cpu->stopped || !runstate_is_running();
86 }
87
88 static bool cpu_thread_is_idle(CPUState *cpu)
89 {
90     if (cpu->stop || cpu->queued_work_first) {
91         return false;
92     }
93     if (cpu_is_stopped(cpu)) {
94         return true;
95     }
96     if (!cpu->halted || cpu_has_work(cpu) ||
97         kvm_halt_in_kernel()) {
98         return false;
99     }
100     return true;
101 }
102
103 static bool all_cpu_threads_idle(void)
104 {
105     CPUState *cpu;
106
107     CPU_FOREACH(cpu) {
108         if (!cpu_thread_is_idle(cpu)) {
109             return false;
110         }
111     }
112     return true;
113 }
114
115 /***********************************************************/
116 /* guest cycle counter */
117
118 /* Protected by TimersState seqlock */
119
120 static bool icount_sleep = true;
121 static int64_t vm_clock_warp_start = -1;
122 /* Conversion factor from emulated instructions to virtual clock ticks.  */
123 static int icount_time_shift;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
125 #define MAX_ICOUNT_SHIFT 10
126
127 static QEMUTimer *icount_rt_timer;
128 static QEMUTimer *icount_vm_timer;
129 static QEMUTimer *icount_warp_timer;
130
131 typedef struct TimersState {
132     /* Protected by BQL.  */
133     int64_t cpu_ticks_prev;
134     int64_t cpu_ticks_offset;
135
136     /* cpu_clock_offset can be read out of BQL, so protect it with
137      * this lock.
138      */
139     QemuSeqLock vm_clock_seqlock;
140     int64_t cpu_clock_offset;
141     int32_t cpu_ticks_enabled;
142     int64_t dummy;
143
144     /* Compensate for varying guest execution speed.  */
145     int64_t qemu_icount_bias;
146     /* Only written by TCG thread */
147     int64_t qemu_icount;
148 } TimersState;
149
150 static TimersState timers_state;
151 bool mttcg_enabled;
152
153 /*
154  * We default to false if we know other options have been enabled
155  * which are currently incompatible with MTTCG. Otherwise when each
156  * guest (target) has been updated to support:
157  *   - atomic instructions
158  *   - memory ordering primitives (barriers)
159  * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
160  *
161  * Once a guest architecture has been converted to the new primitives
162  * there are two remaining limitations to check.
163  *
164  * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
165  * - The host must have a stronger memory order than the guest
166  *
167  * It may be possible in future to support strong guests on weak hosts
168  * but that will require tagging all load/stores in a guest with their
169  * implicit memory order requirements which would likely slow things
170  * down a lot.
171  */
172
173 static bool check_tcg_memory_orders_compatible(void)
174 {
175 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
176     return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
177 #else
178     return false;
179 #endif
180 }
181
182 static bool default_mttcg_enabled(void)
183 {
184     if (use_icount || TCG_OVERSIZED_GUEST) {
185         return false;
186     } else {
187 #ifdef TARGET_SUPPORTS_MTTCG
188         return check_tcg_memory_orders_compatible();
189 #else
190         return false;
191 #endif
192     }
193 }
194
195 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
196 {
197     const char *t = qemu_opt_get(opts, "thread");
198     if (t) {
199         if (strcmp(t, "multi") == 0) {
200             if (TCG_OVERSIZED_GUEST) {
201                 error_setg(errp, "No MTTCG when guest word size > hosts");
202             } else if (use_icount) {
203                 error_setg(errp, "No MTTCG when icount is enabled");
204             } else {
205 #ifndef TARGET_SUPPORT_MTTCG
206                 error_report("Guest not yet converted to MTTCG - "
207                              "you may get unexpected results");
208 #endif
209                 if (!check_tcg_memory_orders_compatible()) {
210                     error_report("Guest expects a stronger memory ordering "
211                                  "than the host provides");
212                     error_printf("This may cause strange/hard to debug errors");
213                 }
214                 mttcg_enabled = true;
215             }
216         } else if (strcmp(t, "single") == 0) {
217             mttcg_enabled = false;
218         } else {
219             error_setg(errp, "Invalid 'thread' setting %s", t);
220         }
221     } else {
222         mttcg_enabled = default_mttcg_enabled();
223     }
224 }
225
226 int64_t cpu_get_icount_raw(void)
227 {
228     int64_t icount;
229     CPUState *cpu = current_cpu;
230
231     icount = timers_state.qemu_icount;
232     if (cpu) {
233         if (!cpu->can_do_io) {
234             fprintf(stderr, "Bad icount read\n");
235             exit(1);
236         }
237         icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
238     }
239     return icount;
240 }
241
242 /* Return the virtual CPU time, based on the instruction counter.  */
243 static int64_t cpu_get_icount_locked(void)
244 {
245     int64_t icount = cpu_get_icount_raw();
246     return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
247 }
248
249 int64_t cpu_get_icount(void)
250 {
251     int64_t icount;
252     unsigned start;
253
254     do {
255         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
256         icount = cpu_get_icount_locked();
257     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
258
259     return icount;
260 }
261
262 int64_t cpu_icount_to_ns(int64_t icount)
263 {
264     return icount << icount_time_shift;
265 }
266
267 /* return the time elapsed in VM between vm_start and vm_stop.  Unless
268  * icount is active, cpu_get_ticks() uses units of the host CPU cycle
269  * counter.
270  *
271  * Caller must hold the BQL
272  */
273 int64_t cpu_get_ticks(void)
274 {
275     int64_t ticks;
276
277     if (use_icount) {
278         return cpu_get_icount();
279     }
280
281     ticks = timers_state.cpu_ticks_offset;
282     if (timers_state.cpu_ticks_enabled) {
283         ticks += cpu_get_host_ticks();
284     }
285
286     if (timers_state.cpu_ticks_prev > ticks) {
287         /* Note: non increasing ticks may happen if the host uses
288            software suspend */
289         timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
290         ticks = timers_state.cpu_ticks_prev;
291     }
292
293     timers_state.cpu_ticks_prev = ticks;
294     return ticks;
295 }
296
297 static int64_t cpu_get_clock_locked(void)
298 {
299     int64_t time;
300
301     time = timers_state.cpu_clock_offset;
302     if (timers_state.cpu_ticks_enabled) {
303         time += get_clock();
304     }
305
306     return time;
307 }
308
309 /* Return the monotonic time elapsed in VM, i.e.,
310  * the time between vm_start and vm_stop
311  */
312 int64_t cpu_get_clock(void)
313 {
314     int64_t ti;
315     unsigned start;
316
317     do {
318         start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
319         ti = cpu_get_clock_locked();
320     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
321
322     return ti;
323 }
324
325 /* enable cpu_get_ticks()
326  * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
327  */
328 void cpu_enable_ticks(void)
329 {
330     /* Here, the really thing protected by seqlock is cpu_clock_offset. */
331     seqlock_write_begin(&timers_state.vm_clock_seqlock);
332     if (!timers_state.cpu_ticks_enabled) {
333         timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
334         timers_state.cpu_clock_offset -= get_clock();
335         timers_state.cpu_ticks_enabled = 1;
336     }
337     seqlock_write_end(&timers_state.vm_clock_seqlock);
338 }
339
340 /* disable cpu_get_ticks() : the clock is stopped. You must not call
341  * cpu_get_ticks() after that.
342  * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
343  */
344 void cpu_disable_ticks(void)
345 {
346     /* Here, the really thing protected by seqlock is cpu_clock_offset. */
347     seqlock_write_begin(&timers_state.vm_clock_seqlock);
348     if (timers_state.cpu_ticks_enabled) {
349         timers_state.cpu_ticks_offset += cpu_get_host_ticks();
350         timers_state.cpu_clock_offset = cpu_get_clock_locked();
351         timers_state.cpu_ticks_enabled = 0;
352     }
353     seqlock_write_end(&timers_state.vm_clock_seqlock);
354 }
355
356 /* Correlation between real and virtual time is always going to be
357    fairly approximate, so ignore small variation.
358    When the guest is idle real and virtual time will be aligned in
359    the IO wait loop.  */
360 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
361
362 static void icount_adjust(void)
363 {
364     int64_t cur_time;
365     int64_t cur_icount;
366     int64_t delta;
367
368     /* Protected by TimersState mutex.  */
369     static int64_t last_delta;
370
371     /* If the VM is not running, then do nothing.  */
372     if (!runstate_is_running()) {
373         return;
374     }
375
376     seqlock_write_begin(&timers_state.vm_clock_seqlock);
377     cur_time = cpu_get_clock_locked();
378     cur_icount = cpu_get_icount_locked();
379
380     delta = cur_icount - cur_time;
381     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
382     if (delta > 0
383         && last_delta + ICOUNT_WOBBLE < delta * 2
384         && icount_time_shift > 0) {
385         /* The guest is getting too far ahead.  Slow time down.  */
386         icount_time_shift--;
387     }
388     if (delta < 0
389         && last_delta - ICOUNT_WOBBLE > delta * 2
390         && icount_time_shift < MAX_ICOUNT_SHIFT) {
391         /* The guest is getting too far behind.  Speed time up.  */
392         icount_time_shift++;
393     }
394     last_delta = delta;
395     timers_state.qemu_icount_bias = cur_icount
396                               - (timers_state.qemu_icount << icount_time_shift);
397     seqlock_write_end(&timers_state.vm_clock_seqlock);
398 }
399
400 static void icount_adjust_rt(void *opaque)
401 {
402     timer_mod(icount_rt_timer,
403               qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
404     icount_adjust();
405 }
406
407 static void icount_adjust_vm(void *opaque)
408 {
409     timer_mod(icount_vm_timer,
410                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
411                    NANOSECONDS_PER_SECOND / 10);
412     icount_adjust();
413 }
414
415 static int64_t qemu_icount_round(int64_t count)
416 {
417     return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
418 }
419
420 static void icount_warp_rt(void)
421 {
422     unsigned seq;
423     int64_t warp_start;
424
425     /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
426      * changes from -1 to another value, so the race here is okay.
427      */
428     do {
429         seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
430         warp_start = vm_clock_warp_start;
431     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
432
433     if (warp_start == -1) {
434         return;
435     }
436
437     seqlock_write_begin(&timers_state.vm_clock_seqlock);
438     if (runstate_is_running()) {
439         int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
440                                      cpu_get_clock_locked());
441         int64_t warp_delta;
442
443         warp_delta = clock - vm_clock_warp_start;
444         if (use_icount == 2) {
445             /*
446              * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
447              * far ahead of real time.
448              */
449             int64_t cur_icount = cpu_get_icount_locked();
450             int64_t delta = clock - cur_icount;
451             warp_delta = MIN(warp_delta, delta);
452         }
453         timers_state.qemu_icount_bias += warp_delta;
454     }
455     vm_clock_warp_start = -1;
456     seqlock_write_end(&timers_state.vm_clock_seqlock);
457
458     if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
459         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
460     }
461 }
462
463 static void icount_timer_cb(void *opaque)
464 {
465     /* No need for a checkpoint because the timer already synchronizes
466      * with CHECKPOINT_CLOCK_VIRTUAL_RT.
467      */
468     icount_warp_rt();
469 }
470
471 void qtest_clock_warp(int64_t dest)
472 {
473     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
474     AioContext *aio_context;
475     assert(qtest_enabled());
476     aio_context = qemu_get_aio_context();
477     while (clock < dest) {
478         int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
479         int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
480
481         seqlock_write_begin(&timers_state.vm_clock_seqlock);
482         timers_state.qemu_icount_bias += warp;
483         seqlock_write_end(&timers_state.vm_clock_seqlock);
484
485         qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
486         timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
487         clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
488     }
489     qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
490 }
491
492 void qemu_start_warp_timer(void)
493 {
494     int64_t clock;
495     int64_t deadline;
496
497     if (!use_icount) {
498         return;
499     }
500
501     /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
502      * do not fire, so computing the deadline does not make sense.
503      */
504     if (!runstate_is_running()) {
505         return;
506     }
507
508     /* warp clock deterministically in record/replay mode */
509     if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
510         return;
511     }
512
513     if (!all_cpu_threads_idle()) {
514         return;
515     }
516
517     if (qtest_enabled()) {
518         /* When testing, qtest commands advance icount.  */
519         return;
520     }
521
522     /* We want to use the earliest deadline from ALL vm_clocks */
523     clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
524     deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
525     if (deadline < 0) {
526         static bool notified;
527         if (!icount_sleep && !notified) {
528             error_report("WARNING: icount sleep disabled and no active timers");
529             notified = true;
530         }
531         return;
532     }
533
534     if (deadline > 0) {
535         /*
536          * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
537          * sleep.  Otherwise, the CPU might be waiting for a future timer
538          * interrupt to wake it up, but the interrupt never comes because
539          * the vCPU isn't running any insns and thus doesn't advance the
540          * QEMU_CLOCK_VIRTUAL.
541          */
542         if (!icount_sleep) {
543             /*
544              * We never let VCPUs sleep in no sleep icount mode.
545              * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
546              * to the next QEMU_CLOCK_VIRTUAL event and notify it.
547              * It is useful when we want a deterministic execution time,
548              * isolated from host latencies.
549              */
550             seqlock_write_begin(&timers_state.vm_clock_seqlock);
551             timers_state.qemu_icount_bias += deadline;
552             seqlock_write_end(&timers_state.vm_clock_seqlock);
553             qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
554         } else {
555             /*
556              * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
557              * "real" time, (related to the time left until the next event) has
558              * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
559              * This avoids that the warps are visible externally; for example,
560              * you will not be sending network packets continuously instead of
561              * every 100ms.
562              */
563             seqlock_write_begin(&timers_state.vm_clock_seqlock);
564             if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
565                 vm_clock_warp_start = clock;
566             }
567             seqlock_write_end(&timers_state.vm_clock_seqlock);
568             timer_mod_anticipate(icount_warp_timer, clock + deadline);
569         }
570     } else if (deadline == 0) {
571         qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
572     }
573 }
574
575 static void qemu_account_warp_timer(void)
576 {
577     if (!use_icount || !icount_sleep) {
578         return;
579     }
580
581     /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
582      * do not fire, so computing the deadline does not make sense.
583      */
584     if (!runstate_is_running()) {
585         return;
586     }
587
588     /* warp clock deterministically in record/replay mode */
589     if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
590         return;
591     }
592
593     timer_del(icount_warp_timer);
594     icount_warp_rt();
595 }
596
597 static bool icount_state_needed(void *opaque)
598 {
599     return use_icount;
600 }
601
602 /*
603  * This is a subsection for icount migration.
604  */
605 static const VMStateDescription icount_vmstate_timers = {
606     .name = "timer/icount",
607     .version_id = 1,
608     .minimum_version_id = 1,
609     .needed = icount_state_needed,
610     .fields = (VMStateField[]) {
611         VMSTATE_INT64(qemu_icount_bias, TimersState),
612         VMSTATE_INT64(qemu_icount, TimersState),
613         VMSTATE_END_OF_LIST()
614     }
615 };
616
617 static const VMStateDescription vmstate_timers = {
618     .name = "timer",
619     .version_id = 2,
620     .minimum_version_id = 1,
621     .fields = (VMStateField[]) {
622         VMSTATE_INT64(cpu_ticks_offset, TimersState),
623         VMSTATE_INT64(dummy, TimersState),
624         VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
625         VMSTATE_END_OF_LIST()
626     },
627     .subsections = (const VMStateDescription*[]) {
628         &icount_vmstate_timers,
629         NULL
630     }
631 };
632
633 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
634 {
635     double pct;
636     double throttle_ratio;
637     long sleeptime_ns;
638
639     if (!cpu_throttle_get_percentage()) {
640         return;
641     }
642
643     pct = (double)cpu_throttle_get_percentage()/100;
644     throttle_ratio = pct / (1 - pct);
645     sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
646
647     qemu_mutex_unlock_iothread();
648     atomic_set(&cpu->throttle_thread_scheduled, 0);
649     g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
650     qemu_mutex_lock_iothread();
651 }
652
653 static void cpu_throttle_timer_tick(void *opaque)
654 {
655     CPUState *cpu;
656     double pct;
657
658     /* Stop the timer if needed */
659     if (!cpu_throttle_get_percentage()) {
660         return;
661     }
662     CPU_FOREACH(cpu) {
663         if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
664             async_run_on_cpu(cpu, cpu_throttle_thread,
665                              RUN_ON_CPU_NULL);
666         }
667     }
668
669     pct = (double)cpu_throttle_get_percentage()/100;
670     timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
671                                    CPU_THROTTLE_TIMESLICE_NS / (1-pct));
672 }
673
674 void cpu_throttle_set(int new_throttle_pct)
675 {
676     /* Ensure throttle percentage is within valid range */
677     new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
678     new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
679
680     atomic_set(&throttle_percentage, new_throttle_pct);
681
682     timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
683                                        CPU_THROTTLE_TIMESLICE_NS);
684 }
685
686 void cpu_throttle_stop(void)
687 {
688     atomic_set(&throttle_percentage, 0);
689 }
690
691 bool cpu_throttle_active(void)
692 {
693     return (cpu_throttle_get_percentage() != 0);
694 }
695
696 int cpu_throttle_get_percentage(void)
697 {
698     return atomic_read(&throttle_percentage);
699 }
700
701 void cpu_ticks_init(void)
702 {
703     seqlock_init(&timers_state.vm_clock_seqlock);
704     vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
705     throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
706                                            cpu_throttle_timer_tick, NULL);
707 }
708
709 void configure_icount(QemuOpts *opts, Error **errp)
710 {
711     const char *option;
712     char *rem_str = NULL;
713
714     option = qemu_opt_get(opts, "shift");
715     if (!option) {
716         if (qemu_opt_get(opts, "align") != NULL) {
717             error_setg(errp, "Please specify shift option when using align");
718         }
719         return;
720     }
721
722     icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
723     if (icount_sleep) {
724         icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
725                                          icount_timer_cb, NULL);
726     }
727
728     icount_align_option = qemu_opt_get_bool(opts, "align", false);
729
730     if (icount_align_option && !icount_sleep) {
731         error_setg(errp, "align=on and sleep=off are incompatible");
732     }
733     if (strcmp(option, "auto") != 0) {
734         errno = 0;
735         icount_time_shift = strtol(option, &rem_str, 0);
736         if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
737             error_setg(errp, "icount: Invalid shift value");
738         }
739         use_icount = 1;
740         return;
741     } else if (icount_align_option) {
742         error_setg(errp, "shift=auto and align=on are incompatible");
743     } else if (!icount_sleep) {
744         error_setg(errp, "shift=auto and sleep=off are incompatible");
745     }
746
747     use_icount = 2;
748
749     /* 125MIPS seems a reasonable initial guess at the guest speed.
750        It will be corrected fairly quickly anyway.  */
751     icount_time_shift = 3;
752
753     /* Have both realtime and virtual time triggers for speed adjustment.
754        The realtime trigger catches emulated time passing too slowly,
755        the virtual time trigger catches emulated time passing too fast.
756        Realtime triggers occur even when idle, so use them less frequently
757        than VM triggers.  */
758     icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
759                                    icount_adjust_rt, NULL);
760     timer_mod(icount_rt_timer,
761                    qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
762     icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
763                                         icount_adjust_vm, NULL);
764     timer_mod(icount_vm_timer,
765                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
766                    NANOSECONDS_PER_SECOND / 10);
767 }
768
769 /***********************************************************/
770 /* TCG vCPU kick timer
771  *
772  * The kick timer is responsible for moving single threaded vCPU
773  * emulation on to the next vCPU. If more than one vCPU is running a
774  * timer event with force a cpu->exit so the next vCPU can get
775  * scheduled.
776  *
777  * The timer is removed if all vCPUs are idle and restarted again once
778  * idleness is complete.
779  */
780
781 static QEMUTimer *tcg_kick_vcpu_timer;
782 static CPUState *tcg_current_rr_cpu;
783
784 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
785
786 static inline int64_t qemu_tcg_next_kick(void)
787 {
788     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
789 }
790
791 /* Kick the currently round-robin scheduled vCPU */
792 static void qemu_cpu_kick_rr_cpu(void)
793 {
794     CPUState *cpu;
795     do {
796         cpu = atomic_mb_read(&tcg_current_rr_cpu);
797         if (cpu) {
798             cpu_exit(cpu);
799         }
800     } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
801 }
802
803 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
804 {
805 }
806
807 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
808 {
809     if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
810         qemu_notify_event();
811         return;
812     }
813
814     if (!qemu_in_vcpu_thread() && first_cpu) {
815         /* qemu_cpu_kick is not enough to kick a halted CPU out of
816          * qemu_tcg_wait_io_event.  async_run_on_cpu, instead,
817          * causes cpu_thread_is_idle to return false.  This way,
818          * handle_icount_deadline can run.
819          */
820         async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
821     }
822 }
823
824 static void kick_tcg_thread(void *opaque)
825 {
826     timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
827     qemu_cpu_kick_rr_cpu();
828 }
829
830 static void start_tcg_kick_timer(void)
831 {
832     if (!mttcg_enabled && !tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
833         tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
834                                            kick_tcg_thread, NULL);
835         timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
836     }
837 }
838
839 static void stop_tcg_kick_timer(void)
840 {
841     if (tcg_kick_vcpu_timer) {
842         timer_del(tcg_kick_vcpu_timer);
843         tcg_kick_vcpu_timer = NULL;
844     }
845 }
846
847 /***********************************************************/
848 void hw_error(const char *fmt, ...)
849 {
850     va_list ap;
851     CPUState *cpu;
852
853     va_start(ap, fmt);
854     fprintf(stderr, "qemu: hardware error: ");
855     vfprintf(stderr, fmt, ap);
856     fprintf(stderr, "\n");
857     CPU_FOREACH(cpu) {
858         fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
859         cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
860     }
861     va_end(ap);
862     abort();
863 }
864
865 void cpu_synchronize_all_states(void)
866 {
867     CPUState *cpu;
868
869     CPU_FOREACH(cpu) {
870         cpu_synchronize_state(cpu);
871     }
872 }
873
874 void cpu_synchronize_all_post_reset(void)
875 {
876     CPUState *cpu;
877
878     CPU_FOREACH(cpu) {
879         cpu_synchronize_post_reset(cpu);
880     }
881 }
882
883 void cpu_synchronize_all_post_init(void)
884 {
885     CPUState *cpu;
886
887     CPU_FOREACH(cpu) {
888         cpu_synchronize_post_init(cpu);
889     }
890 }
891
892 static int do_vm_stop(RunState state)
893 {
894     int ret = 0;
895
896     if (runstate_is_running()) {
897         cpu_disable_ticks();
898         pause_all_vcpus();
899         runstate_set(state);
900         vm_state_notify(0, state);
901         qapi_event_send_stop(&error_abort);
902     }
903
904     bdrv_drain_all();
905     replay_disable_events();
906     ret = bdrv_flush_all();
907
908     return ret;
909 }
910
911 static bool cpu_can_run(CPUState *cpu)
912 {
913     if (cpu->stop) {
914         return false;
915     }
916     if (cpu_is_stopped(cpu)) {
917         return false;
918     }
919     return true;
920 }
921
922 static void cpu_handle_guest_debug(CPUState *cpu)
923 {
924     gdb_set_stop_cpu(cpu);
925     qemu_system_debug_request();
926     cpu->stopped = true;
927 }
928
929 #ifdef CONFIG_LINUX
930 static void sigbus_reraise(void)
931 {
932     sigset_t set;
933     struct sigaction action;
934
935     memset(&action, 0, sizeof(action));
936     action.sa_handler = SIG_DFL;
937     if (!sigaction(SIGBUS, &action, NULL)) {
938         raise(SIGBUS);
939         sigemptyset(&set);
940         sigaddset(&set, SIGBUS);
941         pthread_sigmask(SIG_UNBLOCK, &set, NULL);
942     }
943     perror("Failed to re-raise SIGBUS!\n");
944     abort();
945 }
946
947 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
948 {
949     if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
950         sigbus_reraise();
951     }
952
953     if (current_cpu) {
954         /* Called asynchronously in VCPU thread.  */
955         if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
956             sigbus_reraise();
957         }
958     } else {
959         /* Called synchronously (via signalfd) in main thread.  */
960         if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
961             sigbus_reraise();
962         }
963     }
964 }
965
966 static void qemu_init_sigbus(void)
967 {
968     struct sigaction action;
969
970     memset(&action, 0, sizeof(action));
971     action.sa_flags = SA_SIGINFO;
972     action.sa_sigaction = sigbus_handler;
973     sigaction(SIGBUS, &action, NULL);
974
975     prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
976 }
977 #else /* !CONFIG_LINUX */
978 static void qemu_init_sigbus(void)
979 {
980 }
981 #endif /* !CONFIG_LINUX */
982
983 static QemuMutex qemu_global_mutex;
984
985 static QemuThread io_thread;
986
987 /* cpu creation */
988 static QemuCond qemu_cpu_cond;
989 /* system init */
990 static QemuCond qemu_pause_cond;
991
992 void qemu_init_cpu_loop(void)
993 {
994     qemu_init_sigbus();
995     qemu_cond_init(&qemu_cpu_cond);
996     qemu_cond_init(&qemu_pause_cond);
997     qemu_mutex_init(&qemu_global_mutex);
998
999     qemu_thread_get_self(&io_thread);
1000 }
1001
1002 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1003 {
1004     do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1005 }
1006
1007 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1008 {
1009     if (kvm_destroy_vcpu(cpu) < 0) {
1010         error_report("kvm_destroy_vcpu failed");
1011         exit(EXIT_FAILURE);
1012     }
1013 }
1014
1015 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1016 {
1017 }
1018
1019 static void qemu_wait_io_event_common(CPUState *cpu)
1020 {
1021     atomic_mb_set(&cpu->thread_kicked, false);
1022     if (cpu->stop) {
1023         cpu->stop = false;
1024         cpu->stopped = true;
1025         qemu_cond_broadcast(&qemu_pause_cond);
1026     }
1027     process_queued_cpu_work(cpu);
1028 }
1029
1030 static bool qemu_tcg_should_sleep(CPUState *cpu)
1031 {
1032     if (mttcg_enabled) {
1033         return cpu_thread_is_idle(cpu);
1034     } else {
1035         return all_cpu_threads_idle();
1036     }
1037 }
1038
1039 static void qemu_tcg_wait_io_event(CPUState *cpu)
1040 {
1041     while (qemu_tcg_should_sleep(cpu)) {
1042         stop_tcg_kick_timer();
1043         qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1044     }
1045
1046     start_tcg_kick_timer();
1047
1048     qemu_wait_io_event_common(cpu);
1049 }
1050
1051 static void qemu_kvm_wait_io_event(CPUState *cpu)
1052 {
1053     while (cpu_thread_is_idle(cpu)) {
1054         qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1055     }
1056
1057     qemu_wait_io_event_common(cpu);
1058 }
1059
1060 static void *qemu_kvm_cpu_thread_fn(void *arg)
1061 {
1062     CPUState *cpu = arg;
1063     int r;
1064
1065     rcu_register_thread();
1066
1067     qemu_mutex_lock_iothread();
1068     qemu_thread_get_self(cpu->thread);
1069     cpu->thread_id = qemu_get_thread_id();
1070     cpu->can_do_io = 1;
1071     current_cpu = cpu;
1072
1073     r = kvm_init_vcpu(cpu);
1074     if (r < 0) {
1075         fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1076         exit(1);
1077     }
1078
1079     kvm_init_cpu_signals(cpu);
1080
1081     /* signal CPU creation */
1082     cpu->created = true;
1083     qemu_cond_signal(&qemu_cpu_cond);
1084
1085     do {
1086         if (cpu_can_run(cpu)) {
1087             r = kvm_cpu_exec(cpu);
1088             if (r == EXCP_DEBUG) {
1089                 cpu_handle_guest_debug(cpu);
1090             }
1091         }
1092         qemu_kvm_wait_io_event(cpu);
1093     } while (!cpu->unplug || cpu_can_run(cpu));
1094
1095     qemu_kvm_destroy_vcpu(cpu);
1096     cpu->created = false;
1097     qemu_cond_signal(&qemu_cpu_cond);
1098     qemu_mutex_unlock_iothread();
1099     return NULL;
1100 }
1101
1102 static void *qemu_dummy_cpu_thread_fn(void *arg)
1103 {
1104 #ifdef _WIN32
1105     fprintf(stderr, "qtest is not supported under Windows\n");
1106     exit(1);
1107 #else
1108     CPUState *cpu = arg;
1109     sigset_t waitset;
1110     int r;
1111
1112     rcu_register_thread();
1113
1114     qemu_mutex_lock_iothread();
1115     qemu_thread_get_self(cpu->thread);
1116     cpu->thread_id = qemu_get_thread_id();
1117     cpu->can_do_io = 1;
1118     current_cpu = cpu;
1119
1120     sigemptyset(&waitset);
1121     sigaddset(&waitset, SIG_IPI);
1122
1123     /* signal CPU creation */
1124     cpu->created = true;
1125     qemu_cond_signal(&qemu_cpu_cond);
1126
1127     while (1) {
1128         qemu_mutex_unlock_iothread();
1129         do {
1130             int sig;
1131             r = sigwait(&waitset, &sig);
1132         } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1133         if (r == -1) {
1134             perror("sigwait");
1135             exit(1);
1136         }
1137         qemu_mutex_lock_iothread();
1138         qemu_wait_io_event_common(cpu);
1139     }
1140
1141     return NULL;
1142 #endif
1143 }
1144
1145 static int64_t tcg_get_icount_limit(void)
1146 {
1147     int64_t deadline;
1148
1149     if (replay_mode != REPLAY_MODE_PLAY) {
1150         deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1151
1152         /* Maintain prior (possibly buggy) behaviour where if no deadline
1153          * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1154          * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1155          * nanoseconds.
1156          */
1157         if ((deadline < 0) || (deadline > INT32_MAX)) {
1158             deadline = INT32_MAX;
1159         }
1160
1161         return qemu_icount_round(deadline);
1162     } else {
1163         return replay_get_instructions();
1164     }
1165 }
1166
1167 static void handle_icount_deadline(void)
1168 {
1169     assert(qemu_in_vcpu_thread());
1170     if (use_icount) {
1171         int64_t deadline =
1172             qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1173
1174         if (deadline == 0) {
1175             /* Wake up other AioContexts.  */
1176             qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1177             qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1178         }
1179     }
1180 }
1181
1182 static int tcg_cpu_exec(CPUState *cpu)
1183 {
1184     int ret;
1185 #ifdef CONFIG_PROFILER
1186     int64_t ti;
1187 #endif
1188
1189 #ifdef CONFIG_PROFILER
1190     ti = profile_getclock();
1191 #endif
1192     if (use_icount) {
1193         int64_t count;
1194         int decr;
1195         timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1196                                     + cpu->icount_extra);
1197         cpu->icount_decr.u16.low = 0;
1198         cpu->icount_extra = 0;
1199         count = tcg_get_icount_limit();
1200         timers_state.qemu_icount += count;
1201         decr = (count > 0xffff) ? 0xffff : count;
1202         count -= decr;
1203         cpu->icount_decr.u16.low = decr;
1204         cpu->icount_extra = count;
1205     }
1206     qemu_mutex_unlock_iothread();
1207     cpu_exec_start(cpu);
1208     ret = cpu_exec(cpu);
1209     cpu_exec_end(cpu);
1210     qemu_mutex_lock_iothread();
1211 #ifdef CONFIG_PROFILER
1212     tcg_time += profile_getclock() - ti;
1213 #endif
1214     if (use_icount) {
1215         /* Fold pending instructions back into the
1216            instruction counter, and clear the interrupt flag.  */
1217         timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1218                         + cpu->icount_extra);
1219         cpu->icount_decr.u32 = 0;
1220         cpu->icount_extra = 0;
1221         replay_account_executed_instructions();
1222     }
1223     return ret;
1224 }
1225
1226 /* Destroy any remaining vCPUs which have been unplugged and have
1227  * finished running
1228  */
1229 static void deal_with_unplugged_cpus(void)
1230 {
1231     CPUState *cpu;
1232
1233     CPU_FOREACH(cpu) {
1234         if (cpu->unplug && !cpu_can_run(cpu)) {
1235             qemu_tcg_destroy_vcpu(cpu);
1236             cpu->created = false;
1237             qemu_cond_signal(&qemu_cpu_cond);
1238             break;
1239         }
1240     }
1241 }
1242
1243 /* Single-threaded TCG
1244  *
1245  * In the single-threaded case each vCPU is simulated in turn. If
1246  * there is more than a single vCPU we create a simple timer to kick
1247  * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1248  * This is done explicitly rather than relying on side-effects
1249  * elsewhere.
1250  */
1251
1252 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1253 {
1254     CPUState *cpu = arg;
1255
1256     rcu_register_thread();
1257
1258     qemu_mutex_lock_iothread();
1259     qemu_thread_get_self(cpu->thread);
1260
1261     CPU_FOREACH(cpu) {
1262         cpu->thread_id = qemu_get_thread_id();
1263         cpu->created = true;
1264         cpu->can_do_io = 1;
1265     }
1266     qemu_cond_signal(&qemu_cpu_cond);
1267
1268     /* wait for initial kick-off after machine start */
1269     while (first_cpu->stopped) {
1270         qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1271
1272         /* process any pending work */
1273         CPU_FOREACH(cpu) {
1274             current_cpu = cpu;
1275             qemu_wait_io_event_common(cpu);
1276         }
1277     }
1278
1279     start_tcg_kick_timer();
1280
1281     cpu = first_cpu;
1282
1283     /* process any pending work */
1284     cpu->exit_request = 1;
1285
1286     while (1) {
1287         /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */
1288         qemu_account_warp_timer();
1289
1290         /* Run the timers here.  This is much more efficient than
1291          * waking up the I/O thread and waiting for completion.
1292          */
1293         handle_icount_deadline();
1294
1295         if (!cpu) {
1296             cpu = first_cpu;
1297         }
1298
1299         while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1300
1301             atomic_mb_set(&tcg_current_rr_cpu, cpu);
1302             current_cpu = cpu;
1303
1304             qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1305                               (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1306
1307             if (cpu_can_run(cpu)) {
1308                 int r;
1309                 r = tcg_cpu_exec(cpu);
1310                 if (r == EXCP_DEBUG) {
1311                     cpu_handle_guest_debug(cpu);
1312                     break;
1313                 } else if (r == EXCP_ATOMIC) {
1314                     qemu_mutex_unlock_iothread();
1315                     cpu_exec_step_atomic(cpu);
1316                     qemu_mutex_lock_iothread();
1317                     break;
1318                 }
1319             } else if (cpu->stop) {
1320                 if (cpu->unplug) {
1321                     cpu = CPU_NEXT(cpu);
1322                 }
1323                 break;
1324             }
1325
1326             cpu = CPU_NEXT(cpu);
1327         } /* while (cpu && !cpu->exit_request).. */
1328
1329         /* Does not need atomic_mb_set because a spurious wakeup is okay.  */
1330         atomic_set(&tcg_current_rr_cpu, NULL);
1331
1332         if (cpu && cpu->exit_request) {
1333             atomic_mb_set(&cpu->exit_request, 0);
1334         }
1335
1336         qemu_tcg_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus));
1337         deal_with_unplugged_cpus();
1338     }
1339
1340     return NULL;
1341 }
1342
1343 static void *qemu_hax_cpu_thread_fn(void *arg)
1344 {
1345     CPUState *cpu = arg;
1346     int r;
1347
1348     qemu_mutex_lock_iothread();
1349     qemu_thread_get_self(cpu->thread);
1350
1351     cpu->thread_id = qemu_get_thread_id();
1352     cpu->created = true;
1353     cpu->halted = 0;
1354     current_cpu = cpu;
1355
1356     hax_init_vcpu(cpu);
1357     qemu_cond_signal(&qemu_cpu_cond);
1358
1359     while (1) {
1360         if (cpu_can_run(cpu)) {
1361             r = hax_smp_cpu_exec(cpu);
1362             if (r == EXCP_DEBUG) {
1363                 cpu_handle_guest_debug(cpu);
1364             }
1365         }
1366
1367         while (cpu_thread_is_idle(cpu)) {
1368             qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1369         }
1370 #ifdef _WIN32
1371         SleepEx(0, TRUE);
1372 #endif
1373         qemu_wait_io_event_common(cpu);
1374     }
1375     return NULL;
1376 }
1377
1378 #ifdef _WIN32
1379 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1380 {
1381 }
1382 #endif
1383
1384 /* Multi-threaded TCG
1385  *
1386  * In the multi-threaded case each vCPU has its own thread. The TLS
1387  * variable current_cpu can be used deep in the code to find the
1388  * current CPUState for a given thread.
1389  */
1390
1391 static void *qemu_tcg_cpu_thread_fn(void *arg)
1392 {
1393     CPUState *cpu = arg;
1394
1395     rcu_register_thread();
1396
1397     qemu_mutex_lock_iothread();
1398     qemu_thread_get_self(cpu->thread);
1399
1400     cpu->thread_id = qemu_get_thread_id();
1401     cpu->created = true;
1402     cpu->can_do_io = 1;
1403     current_cpu = cpu;
1404     qemu_cond_signal(&qemu_cpu_cond);
1405
1406     /* process any pending work */
1407     cpu->exit_request = 1;
1408
1409     while (1) {
1410         if (cpu_can_run(cpu)) {
1411             int r;
1412             r = tcg_cpu_exec(cpu);
1413             switch (r) {
1414             case EXCP_DEBUG:
1415                 cpu_handle_guest_debug(cpu);
1416                 break;
1417             case EXCP_HALTED:
1418                 /* during start-up the vCPU is reset and the thread is
1419                  * kicked several times. If we don't ensure we go back
1420                  * to sleep in the halted state we won't cleanly
1421                  * start-up when the vCPU is enabled.
1422                  *
1423                  * cpu->halted should ensure we sleep in wait_io_event
1424                  */
1425                 g_assert(cpu->halted);
1426                 break;
1427             case EXCP_ATOMIC:
1428                 qemu_mutex_unlock_iothread();
1429                 cpu_exec_step_atomic(cpu);
1430                 qemu_mutex_lock_iothread();
1431             default:
1432                 /* Ignore everything else? */
1433                 break;
1434             }
1435         }
1436
1437         handle_icount_deadline();
1438
1439         atomic_mb_set(&cpu->exit_request, 0);
1440         qemu_tcg_wait_io_event(cpu);
1441     }
1442
1443     return NULL;
1444 }
1445
1446 static void qemu_cpu_kick_thread(CPUState *cpu)
1447 {
1448 #ifndef _WIN32
1449     int err;
1450
1451     if (cpu->thread_kicked) {
1452         return;
1453     }
1454     cpu->thread_kicked = true;
1455     err = pthread_kill(cpu->thread->thread, SIG_IPI);
1456     if (err) {
1457         fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1458         exit(1);
1459     }
1460 #else /* _WIN32 */
1461     if (!qemu_cpu_is_self(cpu)) {
1462         if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1463             fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1464                     __func__, GetLastError());
1465             exit(1);
1466         }
1467     }
1468 #endif
1469 }
1470
1471 void qemu_cpu_kick(CPUState *cpu)
1472 {
1473     qemu_cond_broadcast(cpu->halt_cond);
1474     if (tcg_enabled()) {
1475         cpu_exit(cpu);
1476         /* NOP unless doing single-thread RR */
1477         qemu_cpu_kick_rr_cpu();
1478     } else {
1479         if (hax_enabled()) {
1480             /*
1481              * FIXME: race condition with the exit_request check in
1482              * hax_vcpu_hax_exec
1483              */
1484             cpu->exit_request = 1;
1485         }
1486         qemu_cpu_kick_thread(cpu);
1487     }
1488 }
1489
1490 void qemu_cpu_kick_self(void)
1491 {
1492     assert(current_cpu);
1493     qemu_cpu_kick_thread(current_cpu);
1494 }
1495
1496 bool qemu_cpu_is_self(CPUState *cpu)
1497 {
1498     return qemu_thread_is_self(cpu->thread);
1499 }
1500
1501 bool qemu_in_vcpu_thread(void)
1502 {
1503     return current_cpu && qemu_cpu_is_self(current_cpu);
1504 }
1505
1506 static __thread bool iothread_locked = false;
1507
1508 bool qemu_mutex_iothread_locked(void)
1509 {
1510     return iothread_locked;
1511 }
1512
1513 void qemu_mutex_lock_iothread(void)
1514 {
1515     g_assert(!qemu_mutex_iothread_locked());
1516     qemu_mutex_lock(&qemu_global_mutex);
1517     iothread_locked = true;
1518 }
1519
1520 void qemu_mutex_unlock_iothread(void)
1521 {
1522     g_assert(qemu_mutex_iothread_locked());
1523     iothread_locked = false;
1524     qemu_mutex_unlock(&qemu_global_mutex);
1525 }
1526
1527 static bool all_vcpus_paused(void)
1528 {
1529     CPUState *cpu;
1530
1531     CPU_FOREACH(cpu) {
1532         if (!cpu->stopped) {
1533             return false;
1534         }
1535     }
1536
1537     return true;
1538 }
1539
1540 void pause_all_vcpus(void)
1541 {
1542     CPUState *cpu;
1543
1544     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1545     CPU_FOREACH(cpu) {
1546         cpu->stop = true;
1547         qemu_cpu_kick(cpu);
1548     }
1549
1550     if (qemu_in_vcpu_thread()) {
1551         cpu_stop_current();
1552     }
1553
1554     while (!all_vcpus_paused()) {
1555         qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1556         CPU_FOREACH(cpu) {
1557             qemu_cpu_kick(cpu);
1558         }
1559     }
1560 }
1561
1562 void cpu_resume(CPUState *cpu)
1563 {
1564     cpu->stop = false;
1565     cpu->stopped = false;
1566     qemu_cpu_kick(cpu);
1567 }
1568
1569 void resume_all_vcpus(void)
1570 {
1571     CPUState *cpu;
1572
1573     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1574     CPU_FOREACH(cpu) {
1575         cpu_resume(cpu);
1576     }
1577 }
1578
1579 void cpu_remove(CPUState *cpu)
1580 {
1581     cpu->stop = true;
1582     cpu->unplug = true;
1583     qemu_cpu_kick(cpu);
1584 }
1585
1586 void cpu_remove_sync(CPUState *cpu)
1587 {
1588     cpu_remove(cpu);
1589     while (cpu->created) {
1590         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1591     }
1592 }
1593
1594 /* For temporary buffers for forming a name */
1595 #define VCPU_THREAD_NAME_SIZE 16
1596
1597 static void qemu_tcg_init_vcpu(CPUState *cpu)
1598 {
1599     char thread_name[VCPU_THREAD_NAME_SIZE];
1600     static QemuCond *single_tcg_halt_cond;
1601     static QemuThread *single_tcg_cpu_thread;
1602
1603     if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1604         cpu->thread = g_malloc0(sizeof(QemuThread));
1605         cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1606         qemu_cond_init(cpu->halt_cond);
1607
1608         if (qemu_tcg_mttcg_enabled()) {
1609             /* create a thread per vCPU with TCG (MTTCG) */
1610             parallel_cpus = true;
1611             snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1612                  cpu->cpu_index);
1613
1614             qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1615                                cpu, QEMU_THREAD_JOINABLE);
1616
1617         } else {
1618             /* share a single thread for all cpus with TCG */
1619             snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1620             qemu_thread_create(cpu->thread, thread_name,
1621                                qemu_tcg_rr_cpu_thread_fn,
1622                                cpu, QEMU_THREAD_JOINABLE);
1623
1624             single_tcg_halt_cond = cpu->halt_cond;
1625             single_tcg_cpu_thread = cpu->thread;
1626         }
1627 #ifdef _WIN32
1628         cpu->hThread = qemu_thread_get_handle(cpu->thread);
1629 #endif
1630         while (!cpu->created) {
1631             qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1632         }
1633     } else {
1634         /* For non-MTTCG cases we share the thread */
1635         cpu->thread = single_tcg_cpu_thread;
1636         cpu->halt_cond = single_tcg_halt_cond;
1637     }
1638 }
1639
1640 static void qemu_hax_start_vcpu(CPUState *cpu)
1641 {
1642     char thread_name[VCPU_THREAD_NAME_SIZE];
1643
1644     cpu->thread = g_malloc0(sizeof(QemuThread));
1645     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1646     qemu_cond_init(cpu->halt_cond);
1647
1648     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1649              cpu->cpu_index);
1650     qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1651                        cpu, QEMU_THREAD_JOINABLE);
1652 #ifdef _WIN32
1653     cpu->hThread = qemu_thread_get_handle(cpu->thread);
1654 #endif
1655     while (!cpu->created) {
1656         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1657     }
1658 }
1659
1660 static void qemu_kvm_start_vcpu(CPUState *cpu)
1661 {
1662     char thread_name[VCPU_THREAD_NAME_SIZE];
1663
1664     cpu->thread = g_malloc0(sizeof(QemuThread));
1665     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1666     qemu_cond_init(cpu->halt_cond);
1667     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1668              cpu->cpu_index);
1669     qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1670                        cpu, QEMU_THREAD_JOINABLE);
1671     while (!cpu->created) {
1672         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1673     }
1674 }
1675
1676 static void qemu_dummy_start_vcpu(CPUState *cpu)
1677 {
1678     char thread_name[VCPU_THREAD_NAME_SIZE];
1679
1680     cpu->thread = g_malloc0(sizeof(QemuThread));
1681     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1682     qemu_cond_init(cpu->halt_cond);
1683     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1684              cpu->cpu_index);
1685     qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1686                        QEMU_THREAD_JOINABLE);
1687     while (!cpu->created) {
1688         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1689     }
1690 }
1691
1692 void qemu_init_vcpu(CPUState *cpu)
1693 {
1694     cpu->nr_cores = smp_cores;
1695     cpu->nr_threads = smp_threads;
1696     cpu->stopped = true;
1697
1698     if (!cpu->as) {
1699         /* If the target cpu hasn't set up any address spaces itself,
1700          * give it the default one.
1701          */
1702         AddressSpace *as = address_space_init_shareable(cpu->memory,
1703                                                         "cpu-memory");
1704         cpu->num_ases = 1;
1705         cpu_address_space_init(cpu, as, 0);
1706     }
1707
1708     if (kvm_enabled()) {
1709         qemu_kvm_start_vcpu(cpu);
1710     } else if (hax_enabled()) {
1711         qemu_hax_start_vcpu(cpu);
1712     } else if (tcg_enabled()) {
1713         qemu_tcg_init_vcpu(cpu);
1714     } else {
1715         qemu_dummy_start_vcpu(cpu);
1716     }
1717 }
1718
1719 void cpu_stop_current(void)
1720 {
1721     if (current_cpu) {
1722         current_cpu->stop = false;
1723         current_cpu->stopped = true;
1724         cpu_exit(current_cpu);
1725         qemu_cond_broadcast(&qemu_pause_cond);
1726     }
1727 }
1728
1729 int vm_stop(RunState state)
1730 {
1731     if (qemu_in_vcpu_thread()) {
1732         qemu_system_vmstop_request_prepare();
1733         qemu_system_vmstop_request(state);
1734         /*
1735          * FIXME: should not return to device code in case
1736          * vm_stop() has been requested.
1737          */
1738         cpu_stop_current();
1739         return 0;
1740     }
1741
1742     return do_vm_stop(state);
1743 }
1744
1745 /**
1746  * Prepare for (re)starting the VM.
1747  * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
1748  * running or in case of an error condition), 0 otherwise.
1749  */
1750 int vm_prepare_start(void)
1751 {
1752     RunState requested;
1753     int res = 0;
1754
1755     qemu_vmstop_requested(&requested);
1756     if (runstate_is_running() && requested == RUN_STATE__MAX) {
1757         return -1;
1758     }
1759
1760     /* Ensure that a STOP/RESUME pair of events is emitted if a
1761      * vmstop request was pending.  The BLOCK_IO_ERROR event, for
1762      * example, according to documentation is always followed by
1763      * the STOP event.
1764      */
1765     if (runstate_is_running()) {
1766         qapi_event_send_stop(&error_abort);
1767         res = -1;
1768     } else {
1769         replay_enable_events();
1770         cpu_enable_ticks();
1771         runstate_set(RUN_STATE_RUNNING);
1772         vm_state_notify(1, RUN_STATE_RUNNING);
1773     }
1774
1775     /* We are sending this now, but the CPUs will be resumed shortly later */
1776     qapi_event_send_resume(&error_abort);
1777     return res;
1778 }
1779
1780 void vm_start(void)
1781 {
1782     if (!vm_prepare_start()) {
1783         resume_all_vcpus();
1784     }
1785 }
1786
1787 /* does a state transition even if the VM is already stopped,
1788    current state is forgotten forever */
1789 int vm_stop_force_state(RunState state)
1790 {
1791     if (runstate_is_running()) {
1792         return vm_stop(state);
1793     } else {
1794         runstate_set(state);
1795
1796         bdrv_drain_all();
1797         /* Make sure to return an error if the flush in a previous vm_stop()
1798          * failed. */
1799         return bdrv_flush_all();
1800     }
1801 }
1802
1803 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1804 {
1805     /* XXX: implement xxx_cpu_list for targets that still miss it */
1806 #if defined(cpu_list)
1807     cpu_list(f, cpu_fprintf);
1808 #endif
1809 }
1810
1811 CpuInfoList *qmp_query_cpus(Error **errp)
1812 {
1813     CpuInfoList *head = NULL, *cur_item = NULL;
1814     CPUState *cpu;
1815
1816     CPU_FOREACH(cpu) {
1817         CpuInfoList *info;
1818 #if defined(TARGET_I386)
1819         X86CPU *x86_cpu = X86_CPU(cpu);
1820         CPUX86State *env = &x86_cpu->env;
1821 #elif defined(TARGET_PPC)
1822         PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1823         CPUPPCState *env = &ppc_cpu->env;
1824 #elif defined(TARGET_SPARC)
1825         SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1826         CPUSPARCState *env = &sparc_cpu->env;
1827 #elif defined(TARGET_MIPS)
1828         MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1829         CPUMIPSState *env = &mips_cpu->env;
1830 #elif defined(TARGET_TRICORE)
1831         TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1832         CPUTriCoreState *env = &tricore_cpu->env;
1833 #endif
1834
1835         cpu_synchronize_state(cpu);
1836
1837         info = g_malloc0(sizeof(*info));
1838         info->value = g_malloc0(sizeof(*info->value));
1839         info->value->CPU = cpu->cpu_index;
1840         info->value->current = (cpu == first_cpu);
1841         info->value->halted = cpu->halted;
1842         info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1843         info->value->thread_id = cpu->thread_id;
1844 #if defined(TARGET_I386)
1845         info->value->arch = CPU_INFO_ARCH_X86;
1846         info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1847 #elif defined(TARGET_PPC)
1848         info->value->arch = CPU_INFO_ARCH_PPC;
1849         info->value->u.ppc.nip = env->nip;
1850 #elif defined(TARGET_SPARC)
1851         info->value->arch = CPU_INFO_ARCH_SPARC;
1852         info->value->u.q_sparc.pc = env->pc;
1853         info->value->u.q_sparc.npc = env->npc;
1854 #elif defined(TARGET_MIPS)
1855         info->value->arch = CPU_INFO_ARCH_MIPS;
1856         info->value->u.q_mips.PC = env->active_tc.PC;
1857 #elif defined(TARGET_TRICORE)
1858         info->value->arch = CPU_INFO_ARCH_TRICORE;
1859         info->value->u.tricore.PC = env->PC;
1860 #else
1861         info->value->arch = CPU_INFO_ARCH_OTHER;
1862 #endif
1863
1864         /* XXX: waiting for the qapi to support GSList */
1865         if (!cur_item) {
1866             head = cur_item = info;
1867         } else {
1868             cur_item->next = info;
1869             cur_item = info;
1870         }
1871     }
1872
1873     return head;
1874 }
1875
1876 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1877                  bool has_cpu, int64_t cpu_index, Error **errp)
1878 {
1879     FILE *f;
1880     uint32_t l;
1881     CPUState *cpu;
1882     uint8_t buf[1024];
1883     int64_t orig_addr = addr, orig_size = size;
1884
1885     if (!has_cpu) {
1886         cpu_index = 0;
1887     }
1888
1889     cpu = qemu_get_cpu(cpu_index);
1890     if (cpu == NULL) {
1891         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1892                    "a CPU number");
1893         return;
1894     }
1895
1896     f = fopen(filename, "wb");
1897     if (!f) {
1898         error_setg_file_open(errp, errno, filename);
1899         return;
1900     }
1901
1902     while (size != 0) {
1903         l = sizeof(buf);
1904         if (l > size)
1905             l = size;
1906         if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1907             error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1908                              " specified", orig_addr, orig_size);
1909             goto exit;
1910         }
1911         if (fwrite(buf, 1, l, f) != l) {
1912             error_setg(errp, QERR_IO_ERROR);
1913             goto exit;
1914         }
1915         addr += l;
1916         size -= l;
1917     }
1918
1919 exit:
1920     fclose(f);
1921 }
1922
1923 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1924                   Error **errp)
1925 {
1926     FILE *f;
1927     uint32_t l;
1928     uint8_t buf[1024];
1929
1930     f = fopen(filename, "wb");
1931     if (!f) {
1932         error_setg_file_open(errp, errno, filename);
1933         return;
1934     }
1935
1936     while (size != 0) {
1937         l = sizeof(buf);
1938         if (l > size)
1939             l = size;
1940         cpu_physical_memory_read(addr, buf, l);
1941         if (fwrite(buf, 1, l, f) != l) {
1942             error_setg(errp, QERR_IO_ERROR);
1943             goto exit;
1944         }
1945         addr += l;
1946         size -= l;
1947     }
1948
1949 exit:
1950     fclose(f);
1951 }
1952
1953 void qmp_inject_nmi(Error **errp)
1954 {
1955     nmi_monitor_handle(monitor_get_cpu_index(), errp);
1956 }
1957
1958 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1959 {
1960     if (!use_icount) {
1961         return;
1962     }
1963
1964     cpu_fprintf(f, "Host - Guest clock  %"PRIi64" ms\n",
1965                 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1966     if (icount_align_option) {
1967         cpu_fprintf(f, "Max guest delay     %"PRIi64" ms\n", -max_delay/SCALE_MS);
1968         cpu_fprintf(f, "Max guest advance   %"PRIi64" ms\n", max_advance/SCALE_MS);
1969     } else {
1970         cpu_fprintf(f, "Max guest delay     NA\n");
1971         cpu_fprintf(f, "Max guest advance   NA\n");
1972     }
1973 }
This page took 0.129556 seconds and 4 git commands to generate.