2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/devices.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
66 MachineClass *mc = MACHINE_CLASS(oc); \
67 virt_machine_##major##_##minor##_options(mc); \
68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
73 static const TypeInfo machvirt_##major##_##minor##_info = { \
74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75 .parent = TYPE_VIRT_MACHINE, \
76 .instance_init = virt_##major##_##minor##_instance_init, \
77 .class_init = virt_##major##_##minor##_class_init, \
79 static void machvirt_machine_##major##_##minor##_init(void) \
81 type_register_static(&machvirt_##major##_##minor##_info); \
83 type_init(machvirt_machine_##major##_##minor##_init);
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
91 /* Number of external interrupt lines to configure the GIC with */
94 #define PLATFORM_BUS_NUM_IRQS 64
96 static ARMPlatformBusSystemParams platform_bus_params;
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
100 * address space unallocated and free for future use between 256G and 512G.
101 * If we need to provide more RAM to VMs in the future then we need to:
102 * * allocate a second bank of RAM starting at 2TB and working up
103 * * fix the DT and ACPI table generation code in QEMU to correctly
104 * report two split lumps of RAM to the guest
105 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
106 * (We don't want to fill all the way up to 512GB with RAM because
107 * we might want it for non-RAM purposes later. Conversely it seems
108 * reasonable to assume that anybody configuring a VM with a quarter
109 * of a terabyte of RAM will be doing it on a host with more than a
110 * terabyte of physical address space.)
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
115 /* Addresses and sizes of our components.
116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117 * 128MB..256MB is used for miscellaneous device I/O.
118 * 256MB..1GB is reserved for possible future PCI support (ie where the
119 * PCI memory window will go if we add a PCI host controller).
120 * 1GB and up is RAM (which may happily spill over into the
121 * high memory region beyond 4GB).
122 * This represents a compromise between how much RAM can be given to
123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
124 * Note that devices should generally be placed at multiples of 0x10000,
125 * to accommodate guests using 64K pages.
127 static const MemMapEntry a15memmap[] = {
128 /* Space up to 0x8000000 is reserved for a boot ROM */
129 [VIRT_FLASH] = { 0, 0x08000000 },
130 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
131 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
133 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
134 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
135 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
137 /* This redistributor space allows up to 2*64kB*123 CPUs */
138 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
139 [VIRT_UART] = { 0x09000000, 0x00001000 },
140 [VIRT_RTC] = { 0x09010000, 0x00001000 },
141 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
142 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
143 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Second PCIe window, 512GB wide at the 512GB boundary */
153 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
156 static const int a15irqmap[] = {
159 [VIRT_PCIE] = 3, /* ... to 6 */
161 [VIRT_SECURE_UART] = 8,
162 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
167 static const char *valid_cpus[] = {
168 ARM_CPU_TYPE_NAME("cortex-a15"),
169 ARM_CPU_TYPE_NAME("cortex-a53"),
170 ARM_CPU_TYPE_NAME("cortex-a57"),
171 ARM_CPU_TYPE_NAME("host"),
174 static bool cpu_type_valid(const char *cpu)
178 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
179 if (strcmp(cpu, valid_cpus[i]) == 0) {
186 static void create_fdt(VirtMachineState *vms)
188 void *fdt = create_device_tree(&vms->fdt_size);
191 error_report("create_device_tree() failed");
198 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
199 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
200 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
203 * /chosen and /memory nodes must exist for load_dtb
204 * to fill in necessary properties later
206 qemu_fdt_add_subnode(fdt, "/chosen");
207 qemu_fdt_add_subnode(fdt, "/memory");
208 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
210 /* Clock node, for the benefit of the UART. The kernel device tree
211 * binding documentation claims the PL011 node clock properties are
212 * optional but in practice if you omit them the kernel refuses to
213 * probe for the device.
215 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
216 qemu_fdt_add_subnode(fdt, "/apb-pclk");
217 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
218 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
219 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
220 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
222 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224 if (have_numa_distance) {
225 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226 uint32_t *matrix = g_malloc0(size);
229 for (i = 0; i < nb_numa_nodes; i++) {
230 for (j = 0; j < nb_numa_nodes; j++) {
231 idx = (i * nb_numa_nodes + j) * 3;
232 matrix[idx + 0] = cpu_to_be32(i);
233 matrix[idx + 1] = cpu_to_be32(j);
234 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
238 qemu_fdt_add_subnode(fdt, "/distance-map");
239 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
240 "numa-distance-map-v1");
241 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
247 static void fdt_add_timer_nodes(const VirtMachineState *vms)
249 /* On real hardware these interrupts are level-triggered.
250 * On KVM they were edge-triggered before host kernel version 4.4,
251 * and level-triggered afterwards.
252 * On emulated QEMU they are level-triggered.
254 * Getting the DTB info about them wrong is awkward for some
256 * pre-4.8 ignore the DT and leave the interrupt configured
257 * with whatever the GIC reset value (or the bootloader) left it at
258 * 4.8 before rc6 honour the incorrect data by programming it back
259 * into the GIC, causing problems
260 * 4.8rc6 and later ignore the DT and always write "level triggered"
263 * For backwards-compatibility, virt-2.8 and earlier will continue
264 * to say these are edge-triggered, but later machines will report
265 * the correct information.
268 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
269 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
271 if (vmc->claim_edge_triggered_timers) {
272 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
275 if (vms->gic_version == 2) {
276 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
277 GIC_FDT_IRQ_PPI_CPU_WIDTH,
278 (1 << vms->smp_cpus) - 1);
281 qemu_fdt_add_subnode(vms->fdt, "/timer");
283 armcpu = ARM_CPU(qemu_get_cpu(0));
284 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
285 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
286 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
287 compat, sizeof(compat));
289 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
292 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
293 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
294 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
300 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
304 const MachineState *ms = MACHINE(vms);
307 * From Documentation/devicetree/bindings/arm/cpus.txt
308 * On ARM v8 64-bit systems value should be set to 2,
309 * that corresponds to the MPIDR_EL1 register size.
310 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
311 * in the system, #address-cells can be set to 1, since
312 * MPIDR_EL1[63:32] bits are not used for CPUs
315 * Here we actually don't know whether our system is 32- or 64-bit one.
316 * The simplest way to go is to examine affinity IDs of all our CPUs. If
317 * at least one of them has Aff3 populated, we set #address-cells to 2.
319 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
320 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
322 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
328 qemu_fdt_add_subnode(vms->fdt, "/cpus");
329 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
330 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
332 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
333 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
334 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
335 CPUState *cs = CPU(armcpu);
337 qemu_fdt_add_subnode(vms->fdt, nodename);
338 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
339 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
340 armcpu->dtb_compatible);
342 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
343 && vms->smp_cpus > 1) {
344 qemu_fdt_setprop_string(vms->fdt, nodename,
345 "enable-method", "psci");
348 if (addr_cells == 2) {
349 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
350 armcpu->mp_affinity);
352 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
353 armcpu->mp_affinity);
356 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
357 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
358 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
365 static void fdt_add_its_gic_node(VirtMachineState *vms)
367 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
368 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
369 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
371 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
372 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
373 2, vms->memmap[VIRT_GIC_ITS].base,
374 2, vms->memmap[VIRT_GIC_ITS].size);
375 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
378 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
380 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
381 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
382 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
383 "arm,gic-v2m-frame");
384 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
385 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
386 2, vms->memmap[VIRT_GIC_V2M].base,
387 2, vms->memmap[VIRT_GIC_V2M].size);
388 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
391 static void fdt_add_gic_node(VirtMachineState *vms)
393 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
394 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
396 qemu_fdt_add_subnode(vms->fdt, "/intc");
397 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
398 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
399 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
400 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
401 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
402 if (vms->gic_version == 3) {
403 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
405 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
406 2, vms->memmap[VIRT_GIC_DIST].base,
407 2, vms->memmap[VIRT_GIC_DIST].size,
408 2, vms->memmap[VIRT_GIC_REDIST].base,
409 2, vms->memmap[VIRT_GIC_REDIST].size);
411 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
412 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
413 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
416 /* 'cortex-a15-gic' means 'GIC v2' */
417 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
418 "arm,cortex-a15-gic");
419 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
420 2, vms->memmap[VIRT_GIC_DIST].base,
421 2, vms->memmap[VIRT_GIC_DIST].size,
422 2, vms->memmap[VIRT_GIC_CPU].base,
423 2, vms->memmap[VIRT_GIC_CPU].size);
426 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
429 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
433 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
436 armcpu = ARM_CPU(cpu);
437 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
441 if (kvm_irqchip_in_kernel()) {
442 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
444 kvm_arm_pmu_init(cpu);
448 if (vms->gic_version == 2) {
449 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
450 GIC_FDT_IRQ_PPI_CPU_WIDTH,
451 (1 << vms->smp_cpus) - 1);
454 armcpu = ARM_CPU(qemu_get_cpu(0));
455 qemu_fdt_add_subnode(vms->fdt, "/pmu");
456 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
457 const char compat[] = "arm,armv8-pmuv3";
458 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
459 compat, sizeof(compat));
460 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
461 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
465 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
467 const char *itsclass = its_class_name();
471 /* Do nothing if not supported */
475 dev = qdev_create(NULL, itsclass);
477 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
479 qdev_init_nofail(dev);
480 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
482 fdt_add_its_gic_node(vms);
485 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
488 int irq = vms->irqmap[VIRT_GIC_V2M];
491 dev = qdev_create(NULL, "arm-gicv2m");
492 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
493 qdev_prop_set_uint32(dev, "base-spi", irq);
494 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
495 qdev_init_nofail(dev);
497 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
498 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
501 fdt_add_v2m_gic_node(vms);
504 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
506 /* We create a standalone GIC */
508 SysBusDevice *gicbusdev;
510 int type = vms->gic_version, i;
512 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
514 gicdev = qdev_create(NULL, gictype);
515 qdev_prop_set_uint32(gicdev, "revision", type);
516 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
517 /* Note that the num-irq property counts both internal and external
518 * interrupts; there are always 32 of the former (mandated by GIC spec).
520 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
521 if (!kvm_irqchip_in_kernel()) {
522 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
524 qdev_init_nofail(gicdev);
525 gicbusdev = SYS_BUS_DEVICE(gicdev);
526 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
528 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
530 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
533 /* Wire the outputs from each CPU's generic timer and the GICv3
534 * maintenance interrupt signal to the appropriate GIC PPI inputs,
535 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
537 for (i = 0; i < smp_cpus; i++) {
538 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
539 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
541 /* Mapping from the output timer irq lines from the CPU to the
542 * GIC PPI inputs we use for the virt board.
544 const int timer_irq[] = {
545 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
546 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
547 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
548 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
551 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
552 qdev_connect_gpio_out(cpudev, irq,
553 qdev_get_gpio_in(gicdev,
554 ppibase + timer_irq[irq]));
557 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
558 qdev_get_gpio_in(gicdev, ppibase
559 + ARCH_GICV3_MAINT_IRQ));
560 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
561 qdev_get_gpio_in(gicdev, ppibase
564 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
565 sysbus_connect_irq(gicbusdev, i + smp_cpus,
566 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
567 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
568 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
569 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
570 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
573 for (i = 0; i < NUM_IRQS; i++) {
574 pic[i] = qdev_get_gpio_in(gicdev, i);
577 fdt_add_gic_node(vms);
579 if (type == 3 && vms->its) {
580 create_its(vms, gicdev);
581 } else if (type == 2) {
582 create_v2m(vms, pic);
586 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
587 MemoryRegion *mem, Chardev *chr)
590 hwaddr base = vms->memmap[uart].base;
591 hwaddr size = vms->memmap[uart].size;
592 int irq = vms->irqmap[uart];
593 const char compat[] = "arm,pl011\0arm,primecell";
594 const char clocknames[] = "uartclk\0apb_pclk";
595 DeviceState *dev = qdev_create(NULL, "pl011");
596 SysBusDevice *s = SYS_BUS_DEVICE(dev);
598 qdev_prop_set_chr(dev, "chardev", chr);
599 qdev_init_nofail(dev);
600 memory_region_add_subregion(mem, base,
601 sysbus_mmio_get_region(s, 0));
602 sysbus_connect_irq(s, 0, pic[irq]);
604 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
605 qemu_fdt_add_subnode(vms->fdt, nodename);
606 /* Note that we can't use setprop_string because of the embedded NUL */
607 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
608 compat, sizeof(compat));
609 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
611 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
612 GIC_FDT_IRQ_TYPE_SPI, irq,
613 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
614 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
615 vms->clock_phandle, vms->clock_phandle);
616 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
617 clocknames, sizeof(clocknames));
619 if (uart == VIRT_UART) {
620 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
622 /* Mark as not usable by the normal world */
623 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
624 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
630 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
633 hwaddr base = vms->memmap[VIRT_RTC].base;
634 hwaddr size = vms->memmap[VIRT_RTC].size;
635 int irq = vms->irqmap[VIRT_RTC];
636 const char compat[] = "arm,pl031\0arm,primecell";
638 sysbus_create_simple("pl031", base, pic[irq]);
640 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
641 qemu_fdt_add_subnode(vms->fdt, nodename);
642 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
643 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
645 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
646 GIC_FDT_IRQ_TYPE_SPI, irq,
647 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
648 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
649 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
653 static DeviceState *gpio_key_dev;
654 static void virt_powerdown_req(Notifier *n, void *opaque)
656 /* use gpio Pin 3 for power button event */
657 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
660 static Notifier virt_system_powerdown_notifier = {
661 .notify = virt_powerdown_req
664 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
667 DeviceState *pl061_dev;
668 hwaddr base = vms->memmap[VIRT_GPIO].base;
669 hwaddr size = vms->memmap[VIRT_GPIO].size;
670 int irq = vms->irqmap[VIRT_GPIO];
671 const char compat[] = "arm,pl061\0arm,primecell";
673 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
675 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
676 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
677 qemu_fdt_add_subnode(vms->fdt, nodename);
678 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
680 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
681 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
682 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
683 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
684 GIC_FDT_IRQ_TYPE_SPI, irq,
685 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
686 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
687 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
688 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
690 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
691 qdev_get_gpio_in(pl061_dev, 3));
692 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
693 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
694 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
695 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
697 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
698 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
699 "label", "GPIO Key Poweroff");
700 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
702 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
703 "gpios", phandle, 3, 0);
705 /* connect powerdown request */
706 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
711 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
714 hwaddr size = vms->memmap[VIRT_MMIO].size;
716 /* We create the transports in forwards order. Since qbus_realize()
717 * prepends (not appends) new child buses, the incrementing loop below will
718 * create a list of virtio-mmio buses with decreasing base addresses.
720 * When a -device option is processed from the command line,
721 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
722 * order. The upshot is that -device options in increasing command line
723 * order are mapped to virtio-mmio buses with decreasing base addresses.
725 * When this code was originally written, that arrangement ensured that the
726 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
727 * the first -device on the command line. (The end-to-end order is a
728 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
729 * guest kernel's name-to-address assignment strategy.)
731 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
732 * the message, if not necessarily the code, of commit 70161ff336.
733 * Therefore the loop now establishes the inverse of the original intent.
735 * Unfortunately, we can't counteract the kernel change by reversing the
736 * loop; it would break existing command lines.
738 * In any case, the kernel makes no guarantee about the stability of
739 * enumeration order of virtio devices (as demonstrated by it changing
740 * between kernel versions). For reliable and stable identification
741 * of disks users must use UUIDs or similar mechanisms.
743 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
744 int irq = vms->irqmap[VIRT_MMIO] + i;
745 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
747 sysbus_create_simple("virtio-mmio", base, pic[irq]);
750 /* We add dtb nodes in reverse order so that they appear in the finished
751 * device tree lowest address first.
753 * Note that this mapping is independent of the loop above. The previous
754 * loop influences virtio device to virtio transport assignment, whereas
755 * this loop controls how virtio transports are laid out in the dtb.
757 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
759 int irq = vms->irqmap[VIRT_MMIO] + i;
760 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
762 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
763 qemu_fdt_add_subnode(vms->fdt, nodename);
764 qemu_fdt_setprop_string(vms->fdt, nodename,
765 "compatible", "virtio,mmio");
766 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
768 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
769 GIC_FDT_IRQ_TYPE_SPI, irq,
770 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
771 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
776 static void create_one_flash(const char *name, hwaddr flashbase,
777 hwaddr flashsize, const char *file,
778 MemoryRegion *sysmem)
780 /* Create and map a single flash device. We use the same
781 * parameters as the flash devices on the Versatile Express board.
783 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
784 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
785 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
786 const uint64_t sectorlength = 256 * 1024;
789 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
793 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
794 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
795 qdev_prop_set_uint8(dev, "width", 4);
796 qdev_prop_set_uint8(dev, "device-width", 2);
797 qdev_prop_set_bit(dev, "big-endian", false);
798 qdev_prop_set_uint16(dev, "id0", 0x89);
799 qdev_prop_set_uint16(dev, "id1", 0x18);
800 qdev_prop_set_uint16(dev, "id2", 0x00);
801 qdev_prop_set_uint16(dev, "id3", 0x00);
802 qdev_prop_set_string(dev, "name", name);
803 qdev_init_nofail(dev);
805 memory_region_add_subregion(sysmem, flashbase,
806 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
812 if (drive_get(IF_PFLASH, 0, 0)) {
813 error_report("The contents of the first flash device may be "
814 "specified with -bios or with -drive if=pflash... "
815 "but you cannot use both options at once");
818 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
820 error_report("Could not find ROM image '%s'", file);
823 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
825 if (image_size < 0) {
826 error_report("Could not load ROM image '%s'", file);
832 static void create_flash(const VirtMachineState *vms,
833 MemoryRegion *sysmem,
834 MemoryRegion *secure_sysmem)
836 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
837 * Any file passed via -bios goes in the first of these.
838 * sysmem is the system memory space. secure_sysmem is the secure view
839 * of the system, and the first flash device should be made visible only
840 * there. The second flash device is visible to both secure and nonsecure.
841 * If sysmem == secure_sysmem this means there is no separate Secure
842 * address space and both flash devices are generally visible.
844 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
845 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
848 create_one_flash("virt.flash0", flashbase, flashsize,
849 bios_name, secure_sysmem);
850 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
853 if (sysmem == secure_sysmem) {
854 /* Report both flash devices as a single node in the DT */
855 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
856 qemu_fdt_add_subnode(vms->fdt, nodename);
857 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
858 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
859 2, flashbase, 2, flashsize,
860 2, flashbase + flashsize, 2, flashsize);
861 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
864 /* Report the devices as separate nodes so we can mark one as
865 * only visible to the secure world.
867 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
868 qemu_fdt_add_subnode(vms->fdt, nodename);
869 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
870 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
871 2, flashbase, 2, flashsize);
872 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
873 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
874 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
877 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
878 qemu_fdt_add_subnode(vms->fdt, nodename);
879 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
880 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
881 2, flashbase + flashsize, 2, flashsize);
882 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
887 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
889 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
890 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
894 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
895 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
897 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
898 qemu_fdt_add_subnode(vms->fdt, nodename);
899 qemu_fdt_setprop_string(vms->fdt, nodename,
900 "compatible", "qemu,fw-cfg-mmio");
901 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
903 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
908 static void create_pcie_irq_map(const VirtMachineState *vms,
909 uint32_t gic_phandle,
910 int first_irq, const char *nodename)
913 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
914 uint32_t *irq_map = full_irq_map;
916 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
917 for (pin = 0; pin < 4; pin++) {
918 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
919 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
920 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
924 devfn << 8, 0, 0, /* devfn */
925 pin + 1, /* PCI pin */
926 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
928 /* Convert map to big endian */
929 for (i = 0; i < 10; i++) {
930 irq_map[i] = cpu_to_be32(map[i]);
936 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
937 full_irq_map, sizeof(full_irq_map));
939 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
940 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
944 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
946 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
947 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
948 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
949 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
950 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
951 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
952 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
953 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
954 hwaddr base = base_mmio;
955 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
956 int irq = vms->irqmap[VIRT_PCIE];
957 MemoryRegion *mmio_alias;
958 MemoryRegion *mmio_reg;
959 MemoryRegion *ecam_alias;
960 MemoryRegion *ecam_reg;
966 dev = qdev_create(NULL, TYPE_GPEX_HOST);
967 qdev_init_nofail(dev);
969 /* Map only the first size_ecam bytes of ECAM space */
970 ecam_alias = g_new0(MemoryRegion, 1);
971 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
972 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
973 ecam_reg, 0, size_ecam);
974 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
976 /* Map the MMIO window into system address space so as to expose
977 * the section of PCI MMIO space which starts at the same base address
978 * (ie 1:1 mapping for that part of PCI MMIO space visible through
981 mmio_alias = g_new0(MemoryRegion, 1);
982 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
983 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
984 mmio_reg, base_mmio, size_mmio);
985 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
988 /* Map high MMIO space */
989 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
991 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
992 mmio_reg, base_mmio_high, size_mmio_high);
993 memory_region_add_subregion(get_system_memory(), base_mmio_high,
997 /* Map IO port space */
998 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1000 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1001 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1002 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1005 pci = PCI_HOST_BRIDGE(dev);
1007 for (i = 0; i < nb_nics; i++) {
1008 NICInfo *nd = &nd_table[i];
1011 nd->model = g_strdup("virtio");
1014 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1018 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1019 qemu_fdt_add_subnode(vms->fdt, nodename);
1020 qemu_fdt_setprop_string(vms->fdt, nodename,
1021 "compatible", "pci-host-ecam-generic");
1022 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1023 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1024 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1025 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1027 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1029 if (vms->msi_phandle) {
1030 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1034 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1035 2, base_ecam, 2, size_ecam);
1038 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1039 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1040 2, base_pio, 2, size_pio,
1041 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1042 2, base_mmio, 2, size_mmio,
1043 1, FDT_PCI_RANGE_MMIO_64BIT,
1045 2, base_mmio_high, 2, size_mmio_high);
1047 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1048 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1049 2, base_pio, 2, size_pio,
1050 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1051 2, base_mmio, 2, size_mmio);
1054 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1055 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1060 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1065 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1066 MemoryRegion *sysmem = get_system_memory();
1068 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1069 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1070 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1071 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1073 fdt_params->system_params = &platform_bus_params;
1074 fdt_params->binfo = &vms->bootinfo;
1075 fdt_params->intc = "/intc";
1077 * register a machine init done notifier that creates the device tree
1078 * nodes of the platform bus and its children dynamic sysbus devices
1080 arm_register_platform_bus_fdt_creator(fdt_params);
1082 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1083 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1084 qdev_prop_set_uint32(dev, "num_irqs",
1085 platform_bus_params.platform_bus_num_irqs);
1086 qdev_prop_set_uint32(dev, "mmio_size",
1087 platform_bus_params.platform_bus_size);
1088 qdev_init_nofail(dev);
1089 s = SYS_BUS_DEVICE(dev);
1091 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1092 int irqn = platform_bus_params.platform_bus_first_irq + i;
1093 sysbus_connect_irq(s, i, pic[irqn]);
1096 memory_region_add_subregion(sysmem,
1097 platform_bus_params.platform_bus_base,
1098 sysbus_mmio_get_region(s, 0));
1101 static void create_secure_ram(VirtMachineState *vms,
1102 MemoryRegion *secure_sysmem)
1104 MemoryRegion *secram = g_new(MemoryRegion, 1);
1106 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1107 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1109 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1111 memory_region_add_subregion(secure_sysmem, base, secram);
1113 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1114 qemu_fdt_add_subnode(vms->fdt, nodename);
1115 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1116 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1117 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1118 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1123 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1125 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1128 *fdt_size = board->fdt_size;
1132 static void virt_build_smbios(VirtMachineState *vms)
1134 uint8_t *smbios_tables, *smbios_anchor;
1135 size_t smbios_tables_len, smbios_anchor_len;
1136 const char *product = "QEMU Virtual Machine";
1142 if (kvm_enabled()) {
1143 product = "KVM Virtual Machine";
1146 smbios_set_defaults("QEMU", product,
1147 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1149 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1150 &smbios_anchor, &smbios_anchor_len);
1152 if (smbios_anchor) {
1153 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1154 smbios_tables, smbios_tables_len);
1155 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1156 smbios_anchor, smbios_anchor_len);
1161 void virt_machine_done(Notifier *notifier, void *data)
1163 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1166 virt_acpi_setup(vms);
1167 virt_build_smbios(vms);
1170 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1172 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1173 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1175 if (!vmc->disallow_affinity_adjustment) {
1176 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1177 * GIC's target-list limitations. 32-bit KVM hosts currently
1178 * always create clusters of 4 CPUs, but that is expected to
1179 * change when they gain support for gicv3. When KVM is enabled
1180 * it will override the changes we make here, therefore our
1181 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1182 * and to improve SGI efficiency.
1184 if (vms->gic_version == 3) {
1185 clustersz = GICV3_TARGETLIST_BITS;
1187 clustersz = GIC_TARGETLIST_BITS;
1190 return arm_cpu_mp_affinity(idx, clustersz);
1193 static void machvirt_init(MachineState *machine)
1195 VirtMachineState *vms = VIRT_MACHINE(machine);
1196 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1197 MachineClass *mc = MACHINE_GET_CLASS(machine);
1198 const CPUArchIdList *possible_cpus;
1199 qemu_irq pic[NUM_IRQS];
1200 MemoryRegion *sysmem = get_system_memory();
1201 MemoryRegion *secure_sysmem = NULL;
1202 int n, virt_max_cpus;
1203 MemoryRegion *ram = g_new(MemoryRegion, 1);
1204 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1206 /* We can probe only here because during property set
1207 * KVM is not available yet
1209 if (!vms->gic_version) {
1210 if (!kvm_enabled()) {
1211 error_report("gic-version=host requires KVM");
1215 vms->gic_version = kvm_arm_vgic_probe();
1216 if (!vms->gic_version) {
1217 error_report("Unable to determine GIC version supported by host");
1222 if (!cpu_type_valid(machine->cpu_type)) {
1223 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1227 /* If we have an EL3 boot ROM then the assumption is that it will
1228 * implement PSCI itself, so disable QEMU's internal implementation
1229 * so it doesn't get in the way. Instead of starting secondary
1230 * CPUs in PSCI powerdown state we will start them all running and
1231 * let the boot ROM sort them out.
1232 * The usual case is that we do use QEMU's PSCI implementation;
1233 * if the guest has EL2 then we will use SMC as the conduit,
1234 * and otherwise we will use HVC (for backwards compatibility and
1235 * because if we're using KVM then we must use HVC).
1237 if (vms->secure && firmware_loaded) {
1238 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1239 } else if (vms->virt) {
1240 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1242 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1245 /* The maximum number of CPUs depends on the GIC version, or on how
1246 * many redistributors we can fit into the memory map.
1248 if (vms->gic_version == 3) {
1249 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1251 virt_max_cpus = GIC_NCPU;
1254 if (max_cpus > virt_max_cpus) {
1255 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1256 "supported by machine 'mach-virt' (%d)",
1257 max_cpus, virt_max_cpus);
1261 vms->smp_cpus = smp_cpus;
1263 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1264 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1268 if (vms->virt && kvm_enabled()) {
1269 error_report("mach-virt: KVM does not support providing "
1270 "Virtualization extensions to the guest CPU");
1275 if (kvm_enabled()) {
1276 error_report("mach-virt: KVM does not support Security extensions");
1280 /* The Secure view of the world is the same as the NonSecure,
1281 * but with a few extra devices. Create it as a container region
1282 * containing the system memory at low priority; any secure-only
1283 * devices go in at higher priority and take precedence.
1285 secure_sysmem = g_new(MemoryRegion, 1);
1286 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1288 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1293 possible_cpus = mc->possible_cpu_arch_ids(machine);
1294 for (n = 0; n < possible_cpus->len; n++) {
1298 if (n >= smp_cpus) {
1302 cpuobj = object_new(possible_cpus->cpus[n].type);
1303 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1304 "mp-affinity", NULL);
1309 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1313 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1316 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1317 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1320 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1321 object_property_set_int(cpuobj, vms->psci_conduit,
1322 "psci-conduit", NULL);
1324 /* Secondary CPUs start in PSCI powered-down state */
1326 object_property_set_bool(cpuobj, true,
1327 "start-powered-off", NULL);
1331 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1332 object_property_set_bool(cpuobj, false, "pmu", NULL);
1335 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1336 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1337 "reset-cbar", &error_abort);
1340 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1343 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1344 "secure-memory", &error_abort);
1347 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1348 object_unref(cpuobj);
1350 fdt_add_timer_nodes(vms);
1351 fdt_add_cpu_nodes(vms);
1353 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1355 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1357 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1359 create_gic(vms, pic);
1361 fdt_add_pmu_nodes(vms);
1363 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1366 create_secure_ram(vms, secure_sysmem);
1367 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1370 create_rtc(vms, pic);
1372 create_pcie(vms, pic);
1374 create_gpio(vms, pic);
1376 /* Create mmio transports, so the user can create virtio backends
1377 * (which will be automatically plugged in to the transports). If
1378 * no backend is created the transport will just sit harmlessly idle.
1380 create_virtio_devices(vms, pic);
1382 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1383 rom_set_fw(vms->fw_cfg);
1385 vms->machine_done.notify = virt_machine_done;
1386 qemu_add_machine_init_done_notifier(&vms->machine_done);
1388 vms->bootinfo.ram_size = machine->ram_size;
1389 vms->bootinfo.kernel_filename = machine->kernel_filename;
1390 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1391 vms->bootinfo.initrd_filename = machine->initrd_filename;
1392 vms->bootinfo.nb_cpus = smp_cpus;
1393 vms->bootinfo.board_id = -1;
1394 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1395 vms->bootinfo.get_dtb = machvirt_dtb;
1396 vms->bootinfo.firmware_loaded = firmware_loaded;
1397 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1400 * arm_load_kernel machine init done notifier registration must
1401 * happen before the platform_bus_create call. In this latter,
1402 * another notifier is registered which adds platform bus nodes.
1403 * Notifiers are executed in registration reverse order.
1405 create_platform_bus(vms, pic);
1408 static bool virt_get_secure(Object *obj, Error **errp)
1410 VirtMachineState *vms = VIRT_MACHINE(obj);
1415 static void virt_set_secure(Object *obj, bool value, Error **errp)
1417 VirtMachineState *vms = VIRT_MACHINE(obj);
1419 vms->secure = value;
1422 static bool virt_get_virt(Object *obj, Error **errp)
1424 VirtMachineState *vms = VIRT_MACHINE(obj);
1429 static void virt_set_virt(Object *obj, bool value, Error **errp)
1431 VirtMachineState *vms = VIRT_MACHINE(obj);
1436 static bool virt_get_highmem(Object *obj, Error **errp)
1438 VirtMachineState *vms = VIRT_MACHINE(obj);
1440 return vms->highmem;
1443 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1445 VirtMachineState *vms = VIRT_MACHINE(obj);
1447 vms->highmem = value;
1450 static bool virt_get_its(Object *obj, Error **errp)
1452 VirtMachineState *vms = VIRT_MACHINE(obj);
1457 static void virt_set_its(Object *obj, bool value, Error **errp)
1459 VirtMachineState *vms = VIRT_MACHINE(obj);
1464 static char *virt_get_gic_version(Object *obj, Error **errp)
1466 VirtMachineState *vms = VIRT_MACHINE(obj);
1467 const char *val = vms->gic_version == 3 ? "3" : "2";
1469 return g_strdup(val);
1472 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1474 VirtMachineState *vms = VIRT_MACHINE(obj);
1476 if (!strcmp(value, "3")) {
1477 vms->gic_version = 3;
1478 } else if (!strcmp(value, "2")) {
1479 vms->gic_version = 2;
1480 } else if (!strcmp(value, "host")) {
1481 vms->gic_version = 0; /* Will probe later */
1483 error_setg(errp, "Invalid gic-version value");
1484 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1488 static CpuInstanceProperties
1489 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1491 MachineClass *mc = MACHINE_GET_CLASS(ms);
1492 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1494 assert(cpu_index < possible_cpus->len);
1495 return possible_cpus->cpus[cpu_index].props;
1498 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1500 return idx % nb_numa_nodes;
1503 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1506 VirtMachineState *vms = VIRT_MACHINE(ms);
1508 if (ms->possible_cpus) {
1509 assert(ms->possible_cpus->len == max_cpus);
1510 return ms->possible_cpus;
1513 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1514 sizeof(CPUArchId) * max_cpus);
1515 ms->possible_cpus->len = max_cpus;
1516 for (n = 0; n < ms->possible_cpus->len; n++) {
1517 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1518 ms->possible_cpus->cpus[n].arch_id =
1519 virt_cpu_mp_affinity(vms, n);
1520 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1521 ms->possible_cpus->cpus[n].props.thread_id = n;
1523 return ms->possible_cpus;
1526 static void virt_machine_class_init(ObjectClass *oc, void *data)
1528 MachineClass *mc = MACHINE_CLASS(oc);
1530 mc->init = machvirt_init;
1531 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1532 * it later in machvirt_init, where we have more information about the
1533 * configuration of the particular instance.
1536 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1537 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1538 mc->block_default_type = IF_VIRTIO;
1540 mc->pci_allow_0_address = true;
1541 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1542 mc->minimum_page_bits = 12;
1543 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1544 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1545 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1546 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1549 static const TypeInfo virt_machine_info = {
1550 .name = TYPE_VIRT_MACHINE,
1551 .parent = TYPE_MACHINE,
1553 .instance_size = sizeof(VirtMachineState),
1554 .class_size = sizeof(VirtMachineClass),
1555 .class_init = virt_machine_class_init,
1558 static void machvirt_machine_init(void)
1560 type_register_static(&virt_machine_info);
1562 type_init(machvirt_machine_init);
1564 static void virt_2_12_instance_init(Object *obj)
1566 VirtMachineState *vms = VIRT_MACHINE(obj);
1567 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1569 /* EL3 is disabled by default on virt: this makes us consistent
1570 * between KVM and TCG for this board, and it also allows us to
1571 * boot UEFI blobs which assume no TrustZone support.
1573 vms->secure = false;
1574 object_property_add_bool(obj, "secure", virt_get_secure,
1575 virt_set_secure, NULL);
1576 object_property_set_description(obj, "secure",
1577 "Set on/off to enable/disable the ARM "
1578 "Security Extensions (TrustZone)",
1581 /* EL2 is also disabled by default, for similar reasons */
1583 object_property_add_bool(obj, "virtualization", virt_get_virt,
1584 virt_set_virt, NULL);
1585 object_property_set_description(obj, "virtualization",
1586 "Set on/off to enable/disable emulating a "
1587 "guest CPU which implements the ARM "
1588 "Virtualization Extensions",
1591 /* High memory is enabled by default */
1592 vms->highmem = true;
1593 object_property_add_bool(obj, "highmem", virt_get_highmem,
1594 virt_set_highmem, NULL);
1595 object_property_set_description(obj, "highmem",
1596 "Set on/off to enable/disable using "
1597 "physical address space above 32 bits",
1599 /* Default GIC type is v2 */
1600 vms->gic_version = 2;
1601 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1602 virt_set_gic_version, NULL);
1603 object_property_set_description(obj, "gic-version",
1605 "Valid values are 2, 3 and host", NULL);
1610 /* Default allows ITS instantiation */
1612 object_property_add_bool(obj, "its", virt_get_its,
1613 virt_set_its, NULL);
1614 object_property_set_description(obj, "its",
1615 "Set on/off to enable/disable "
1616 "ITS instantiation",
1620 vms->memmap = a15memmap;
1621 vms->irqmap = a15irqmap;
1624 static void virt_machine_2_12_options(MachineClass *mc)
1627 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1629 #define VIRT_COMPAT_2_11 \
1632 static void virt_2_11_instance_init(Object *obj)
1634 virt_2_12_instance_init(obj);
1637 static void virt_machine_2_11_options(MachineClass *mc)
1639 virt_machine_2_12_options(mc);
1640 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1642 DEFINE_VIRT_MACHINE(2, 11)
1644 #define VIRT_COMPAT_2_10 \
1647 static void virt_2_10_instance_init(Object *obj)
1649 virt_2_11_instance_init(obj);
1652 static void virt_machine_2_10_options(MachineClass *mc)
1654 virt_machine_2_11_options(mc);
1655 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1657 DEFINE_VIRT_MACHINE(2, 10)
1659 #define VIRT_COMPAT_2_9 \
1662 static void virt_2_9_instance_init(Object *obj)
1664 virt_2_10_instance_init(obj);
1667 static void virt_machine_2_9_options(MachineClass *mc)
1669 virt_machine_2_10_options(mc);
1670 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1672 DEFINE_VIRT_MACHINE(2, 9)
1674 #define VIRT_COMPAT_2_8 \
1677 static void virt_2_8_instance_init(Object *obj)
1679 virt_2_9_instance_init(obj);
1682 static void virt_machine_2_8_options(MachineClass *mc)
1684 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1686 virt_machine_2_9_options(mc);
1687 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1688 /* For 2.8 and earlier we falsely claimed in the DT that
1689 * our timers were edge-triggered, not level-triggered.
1691 vmc->claim_edge_triggered_timers = true;
1693 DEFINE_VIRT_MACHINE(2, 8)
1695 #define VIRT_COMPAT_2_7 \
1698 static void virt_2_7_instance_init(Object *obj)
1700 virt_2_8_instance_init(obj);
1703 static void virt_machine_2_7_options(MachineClass *mc)
1705 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1707 virt_machine_2_8_options(mc);
1708 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1709 /* ITS was introduced with 2.8 */
1711 /* Stick with 1K pages for migration compatibility */
1712 mc->minimum_page_bits = 0;
1714 DEFINE_VIRT_MACHINE(2, 7)
1716 #define VIRT_COMPAT_2_6 \
1719 static void virt_2_6_instance_init(Object *obj)
1721 virt_2_7_instance_init(obj);
1724 static void virt_machine_2_6_options(MachineClass *mc)
1726 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1728 virt_machine_2_7_options(mc);
1729 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1730 vmc->disallow_affinity_adjustment = true;
1731 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1734 DEFINE_VIRT_MACHINE(2, 6)