2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 //#define DEBUG_UNALIGNED
26 //#define DEBUG_UNASSIGNED
28 //#define DEBUG_CACHE_CONTROL
31 #define DPRINTF_MMU(fmt, ...) \
32 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
34 #define DPRINTF_MMU(fmt, ...) do {} while (0)
38 #define DPRINTF_MXCC(fmt, ...) \
39 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
41 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
45 #define DPRINTF_ASI(fmt, ...) \
46 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
49 #ifdef DEBUG_CACHE_CONTROL
50 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
51 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
53 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
58 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
60 #define AM_CHECK(env1) (1)
64 #define QT0 (env->qt0)
65 #define QT1 (env->qt1)
67 #if !defined(CONFIG_USER_ONLY)
68 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
69 target_ulong addr, int is_write,
70 int is_user, uintptr_t retaddr);
71 #include "exec/softmmu_exec.h"
72 #define MMUSUFFIX _mmu
76 #include "exec/softmmu_template.h"
79 #include "exec/softmmu_template.h"
82 #include "exec/softmmu_template.h"
85 #include "exec/softmmu_template.h"
88 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
89 /* Calculates TSB pointer value for fault page size 8k or 64k */
90 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
91 uint64_t tag_access_register,
94 uint64_t tsb_base = tsb_register & ~0x1fffULL;
95 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
96 int tsb_size = tsb_register & 0xf;
98 /* discard lower 13 bits which hold tag access context */
99 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
101 /* now reorder bits */
102 uint64_t tsb_base_mask = ~0x1fffULL;
103 uint64_t va = tag_access_va;
105 /* move va bits to correct position */
106 if (page_size == 8*1024) {
108 } else if (page_size == 64*1024) {
113 tsb_base_mask <<= tsb_size;
116 /* calculate tsb_base mask and adjust va if split is in use */
118 if (page_size == 8*1024) {
119 va &= ~(1ULL << (13 + tsb_size));
120 } else if (page_size == 64*1024) {
121 va |= (1ULL << (13 + tsb_size));
126 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
129 /* Calculates tag target register value by reordering bits
130 in tag access register */
131 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
133 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
136 static void replace_tlb_entry(SparcTLBEntry *tlb,
137 uint64_t tlb_tag, uint64_t tlb_tte,
140 target_ulong mask, size, va, offset;
142 /* flush page range if translation is valid */
143 if (TTE_IS_VALID(tlb->tte)) {
145 mask = 0xffffffffffffe000ULL;
146 mask <<= 3 * ((tlb->tte >> 61) & 3);
149 va = tlb->tag & mask;
151 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
152 tlb_flush_page(env1, va + offset);
160 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
161 const char *strmmu, CPUSPARCState *env1)
167 int is_demap_context = (demap_addr >> 6) & 1;
170 switch ((demap_addr >> 4) & 3) {
171 case 0: /* primary */
172 context = env1->dmmu.mmu_primary_context;
174 case 1: /* secondary */
175 context = env1->dmmu.mmu_secondary_context;
177 case 2: /* nucleus */
180 case 3: /* reserved */
185 for (i = 0; i < 64; i++) {
186 if (TTE_IS_VALID(tlb[i].tte)) {
188 if (is_demap_context) {
189 /* will remove non-global entries matching context value */
190 if (TTE_IS_GLOBAL(tlb[i].tte) ||
191 !tlb_compare_context(&tlb[i], context)) {
196 will remove any entry matching VA */
197 mask = 0xffffffffffffe000ULL;
198 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
200 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
204 /* entry should be global or matching context value */
205 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
206 !tlb_compare_context(&tlb[i], context)) {
211 replace_tlb_entry(&tlb[i], 0, 0, env1);
213 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
214 dump_mmu(stdout, fprintf, env1);
220 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
221 uint64_t tlb_tag, uint64_t tlb_tte,
222 const char *strmmu, CPUSPARCState *env1)
224 unsigned int i, replace_used;
226 /* Try replacing invalid entry */
227 for (i = 0; i < 64; i++) {
228 if (!TTE_IS_VALID(tlb[i].tte)) {
229 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
231 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
232 dump_mmu(stdout, fprintf, env1);
238 /* All entries are valid, try replacing unlocked entry */
240 for (replace_used = 0; replace_used < 2; ++replace_used) {
242 /* Used entries are not replaced on first pass */
244 for (i = 0; i < 64; i++) {
245 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
247 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
249 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
250 strmmu, (replace_used ? "used" : "unused"), i);
251 dump_mmu(stdout, fprintf, env1);
257 /* Now reset used bit and search for unused entries again */
259 for (i = 0; i < 64; i++) {
260 TTE_SET_UNUSED(tlb[i].tte);
265 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
272 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
274 #ifdef TARGET_SPARC64
275 if (AM_CHECK(env1)) {
276 addr &= 0xffffffffULL;
282 /* returns true if access using this ASI is to have address translated by MMU
283 otherwise access is to raw physical address */
284 static inline int is_translating_asi(int asi)
286 #ifdef TARGET_SPARC64
287 /* Ultrasparc IIi translating asi
288 - note this list is defined by cpu implementation
304 /* TODO: check sparc32 bits */
309 static inline target_ulong asi_address_mask(CPUSPARCState *env,
310 int asi, target_ulong addr)
312 if (is_translating_asi(asi)) {
313 return address_mask(env, addr);
319 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
322 #ifdef DEBUG_UNALIGNED
323 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
324 "\n", addr, env->pc);
326 helper_raise_exception(env, TT_UNALIGNED);
330 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
332 static void dump_mxcc(CPUSPARCState *env)
334 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
336 env->mxccdata[0], env->mxccdata[1],
337 env->mxccdata[2], env->mxccdata[3]);
338 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
340 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
342 env->mxccregs[0], env->mxccregs[1],
343 env->mxccregs[2], env->mxccregs[3],
344 env->mxccregs[4], env->mxccregs[5],
345 env->mxccregs[6], env->mxccregs[7]);
349 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
350 && defined(DEBUG_ASI)
351 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
356 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
357 addr, asi, r1 & 0xff);
360 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
361 addr, asi, r1 & 0xffff);
364 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
365 addr, asi, r1 & 0xffffffff);
368 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
375 #ifndef TARGET_SPARC64
376 #ifndef CONFIG_USER_ONLY
379 /* Leon3 cache control */
381 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
382 uint64_t val, int size)
384 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
388 DPRINTF_CACHE_CONTROL("32bits only\n");
393 case 0x00: /* Cache control */
395 /* These values must always be read as zeros */
396 val &= ~CACHE_CTRL_FD;
397 val &= ~CACHE_CTRL_FI;
398 val &= ~CACHE_CTRL_IB;
399 val &= ~CACHE_CTRL_IP;
400 val &= ~CACHE_CTRL_DP;
402 env->cache_control = val;
404 case 0x04: /* Instruction cache configuration */
405 case 0x08: /* Data cache configuration */
409 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
414 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
420 DPRINTF_CACHE_CONTROL("32bits only\n");
425 case 0x00: /* Cache control */
426 ret = env->cache_control;
429 /* Configuration registers are read and only always keep those
432 case 0x04: /* Instruction cache configuration */
435 case 0x08: /* Data cache configuration */
439 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
442 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
447 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
451 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
452 uint32_t last_addr = addr;
455 helper_check_align(env, addr, size - 1);
457 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
459 case 0x00: /* Leon3 Cache Control */
460 case 0x08: /* Leon3 Instruction Cache config */
461 case 0x0C: /* Leon3 Date Cache config */
462 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
463 ret = leon3_cache_control_ld(env, addr, size);
466 case 0x01c00a00: /* MXCC control register */
468 ret = env->mxccregs[3];
470 qemu_log_mask(LOG_UNIMP,
471 "%08x: unimplemented access size: %d\n", addr,
475 case 0x01c00a04: /* MXCC control register */
477 ret = env->mxccregs[3];
479 qemu_log_mask(LOG_UNIMP,
480 "%08x: unimplemented access size: %d\n", addr,
484 case 0x01c00c00: /* Module reset register */
486 ret = env->mxccregs[5];
487 /* should we do something here? */
489 qemu_log_mask(LOG_UNIMP,
490 "%08x: unimplemented access size: %d\n", addr,
494 case 0x01c00f00: /* MBus port address register */
496 ret = env->mxccregs[7];
498 qemu_log_mask(LOG_UNIMP,
499 "%08x: unimplemented access size: %d\n", addr,
504 qemu_log_mask(LOG_UNIMP,
505 "%08x: unimplemented address, size: %d\n", addr,
509 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
510 "addr = %08x -> ret = %" PRIx64 ","
511 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
516 case 3: /* MMU probe */
517 case 0x18: /* LEON3 MMU probe */
521 mmulev = (addr >> 8) & 15;
525 ret = mmu_probe(env, addr, mmulev);
527 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
531 case 4: /* read MMU regs */
532 case 0x19: /* LEON3 read MMU regs */
534 int reg = (addr >> 8) & 0x1f;
536 ret = env->mmuregs[reg];
537 if (reg == 3) { /* Fault status cleared on read */
539 } else if (reg == 0x13) { /* Fault status read */
540 ret = env->mmuregs[3];
541 } else if (reg == 0x14) { /* Fault address read */
542 ret = env->mmuregs[4];
544 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
547 case 5: /* Turbosparc ITLB Diagnostic */
548 case 6: /* Turbosparc DTLB Diagnostic */
549 case 7: /* Turbosparc IOTLB Diagnostic */
551 case 9: /* Supervisor code access */
554 ret = cpu_ldub_code(env, addr);
557 ret = cpu_lduw_code(env, addr);
561 ret = cpu_ldl_code(env, addr);
564 ret = cpu_ldq_code(env, addr);
568 case 0xa: /* User data access */
571 ret = cpu_ldub_user(env, addr);
574 ret = cpu_lduw_user(env, addr);
578 ret = cpu_ldl_user(env, addr);
581 ret = cpu_ldq_user(env, addr);
585 case 0xb: /* Supervisor data access */
588 ret = cpu_ldub_kernel(env, addr);
591 ret = cpu_lduw_kernel(env, addr);
595 ret = cpu_ldl_kernel(env, addr);
598 ret = cpu_ldq_kernel(env, addr);
602 case 0xc: /* I-cache tag */
603 case 0xd: /* I-cache data */
604 case 0xe: /* D-cache tag */
605 case 0xf: /* D-cache data */
607 case 0x20: /* MMU passthrough */
608 case 0x1c: /* LEON MMU passthrough */
611 ret = ldub_phys(addr);
614 ret = lduw_phys(addr);
618 ret = ldl_phys(addr);
621 ret = ldq_phys(addr);
625 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
628 ret = ldub_phys((hwaddr)addr
629 | ((hwaddr)(asi & 0xf) << 32));
632 ret = lduw_phys((hwaddr)addr
633 | ((hwaddr)(asi & 0xf) << 32));
637 ret = ldl_phys((hwaddr)addr
638 | ((hwaddr)(asi & 0xf) << 32));
641 ret = ldq_phys((hwaddr)addr
642 | ((hwaddr)(asi & 0xf) << 32));
646 case 0x30: /* Turbosparc secondary cache diagnostic */
647 case 0x31: /* Turbosparc RAM snoop */
648 case 0x32: /* Turbosparc page table descriptor diagnostic */
649 case 0x39: /* data cache diagnostic register */
652 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
654 int reg = (addr >> 8) & 3;
657 case 0: /* Breakpoint Value (Addr) */
658 ret = env->mmubpregs[reg];
660 case 1: /* Breakpoint Mask */
661 ret = env->mmubpregs[reg];
663 case 2: /* Breakpoint Control */
664 ret = env->mmubpregs[reg];
666 case 3: /* Breakpoint Status */
667 ret = env->mmubpregs[reg];
668 env->mmubpregs[reg] = 0ULL;
671 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
675 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
676 ret = env->mmubpctrv;
678 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
679 ret = env->mmubpctrc;
681 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
682 ret = env->mmubpctrs;
684 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
685 ret = env->mmubpaction;
687 case 8: /* User code access, XXX */
689 cpu_unassigned_access(env, addr, 0, 0, asi, size);
709 dump_asi("read ", last_addr, asi, size, ret);
714 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
717 helper_check_align(env, addr, size - 1);
719 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
721 case 0x00: /* Leon3 Cache Control */
722 case 0x08: /* Leon3 Instruction Cache config */
723 case 0x0C: /* Leon3 Date Cache config */
724 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
725 leon3_cache_control_st(env, addr, val, size);
729 case 0x01c00000: /* MXCC stream data register 0 */
731 env->mxccdata[0] = val;
733 qemu_log_mask(LOG_UNIMP,
734 "%08x: unimplemented access size: %d\n", addr,
738 case 0x01c00008: /* MXCC stream data register 1 */
740 env->mxccdata[1] = val;
742 qemu_log_mask(LOG_UNIMP,
743 "%08x: unimplemented access size: %d\n", addr,
747 case 0x01c00010: /* MXCC stream data register 2 */
749 env->mxccdata[2] = val;
751 qemu_log_mask(LOG_UNIMP,
752 "%08x: unimplemented access size: %d\n", addr,
756 case 0x01c00018: /* MXCC stream data register 3 */
758 env->mxccdata[3] = val;
760 qemu_log_mask(LOG_UNIMP,
761 "%08x: unimplemented access size: %d\n", addr,
765 case 0x01c00100: /* MXCC stream source */
767 env->mxccregs[0] = val;
769 qemu_log_mask(LOG_UNIMP,
770 "%08x: unimplemented access size: %d\n", addr,
773 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
775 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
777 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
779 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
782 case 0x01c00200: /* MXCC stream destination */
784 env->mxccregs[1] = val;
786 qemu_log_mask(LOG_UNIMP,
787 "%08x: unimplemented access size: %d\n", addr,
790 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
792 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
794 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
796 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
799 case 0x01c00a00: /* MXCC control register */
801 env->mxccregs[3] = val;
803 qemu_log_mask(LOG_UNIMP,
804 "%08x: unimplemented access size: %d\n", addr,
808 case 0x01c00a04: /* MXCC control register */
810 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
813 qemu_log_mask(LOG_UNIMP,
814 "%08x: unimplemented access size: %d\n", addr,
818 case 0x01c00e00: /* MXCC error register */
819 /* writing a 1 bit clears the error */
821 env->mxccregs[6] &= ~val;
823 qemu_log_mask(LOG_UNIMP,
824 "%08x: unimplemented access size: %d\n", addr,
828 case 0x01c00f00: /* MBus port address register */
830 env->mxccregs[7] = val;
832 qemu_log_mask(LOG_UNIMP,
833 "%08x: unimplemented access size: %d\n", addr,
838 qemu_log_mask(LOG_UNIMP,
839 "%08x: unimplemented address, size: %d\n", addr,
843 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
844 asi, size, addr, val);
849 case 3: /* MMU flush */
850 case 0x18: /* LEON3 MMU flush */
854 mmulev = (addr >> 8) & 15;
855 DPRINTF_MMU("mmu flush level %d\n", mmulev);
857 case 0: /* flush page */
858 tlb_flush_page(env, addr & 0xfffff000);
860 case 1: /* flush segment (256k) */
861 case 2: /* flush region (16M) */
862 case 3: /* flush context (4G) */
863 case 4: /* flush entire */
870 dump_mmu(stdout, fprintf, env);
874 case 4: /* write MMU regs */
875 case 0x19: /* LEON3 write MMU regs */
877 int reg = (addr >> 8) & 0x1f;
880 oldreg = env->mmuregs[reg];
882 case 0: /* Control Register */
883 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
885 /* Mappings generated during no-fault mode or MMU
886 disabled mode are invalid in normal mode */
887 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
888 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
892 case 1: /* Context Table Pointer Register */
893 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
895 case 2: /* Context Register */
896 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
897 if (oldreg != env->mmuregs[reg]) {
898 /* we flush when the MMU context changes because
899 QEMU has no MMU context support */
903 case 3: /* Synchronous Fault Status Register with Clear */
904 case 4: /* Synchronous Fault Address Register */
906 case 0x10: /* TLB Replacement Control Register */
907 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
909 case 0x13: /* Synchronous Fault Status Register with Read
911 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
913 case 0x14: /* Synchronous Fault Address Register */
914 env->mmuregs[4] = val;
917 env->mmuregs[reg] = val;
920 if (oldreg != env->mmuregs[reg]) {
921 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
922 reg, oldreg, env->mmuregs[reg]);
925 dump_mmu(stdout, fprintf, env);
929 case 5: /* Turbosparc ITLB Diagnostic */
930 case 6: /* Turbosparc DTLB Diagnostic */
931 case 7: /* Turbosparc IOTLB Diagnostic */
933 case 0xa: /* User data access */
936 cpu_stb_user(env, addr, val);
939 cpu_stw_user(env, addr, val);
943 cpu_stl_user(env, addr, val);
946 cpu_stq_user(env, addr, val);
950 case 0xb: /* Supervisor data access */
953 cpu_stb_kernel(env, addr, val);
956 cpu_stw_kernel(env, addr, val);
960 cpu_stl_kernel(env, addr, val);
963 cpu_stq_kernel(env, addr, val);
967 case 0xc: /* I-cache tag */
968 case 0xd: /* I-cache data */
969 case 0xe: /* D-cache tag */
970 case 0xf: /* D-cache data */
971 case 0x10: /* I/D-cache flush page */
972 case 0x11: /* I/D-cache flush segment */
973 case 0x12: /* I/D-cache flush region */
974 case 0x13: /* I/D-cache flush context */
975 case 0x14: /* I/D-cache flush user */
977 case 0x17: /* Block copy, sta access */
983 uint32_t src = val & ~3, dst = addr & ~3, temp;
985 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
986 temp = cpu_ldl_kernel(env, src);
987 cpu_stl_kernel(env, dst, temp);
991 case 0x1f: /* Block fill, stda access */
994 fill 32 bytes with val */
996 uint32_t dst = addr & 7;
998 for (i = 0; i < 32; i += 8, dst += 8) {
999 cpu_stq_kernel(env, dst, val);
1003 case 0x20: /* MMU passthrough */
1004 case 0x1c: /* LEON MMU passthrough */
1008 stb_phys(addr, val);
1011 stw_phys(addr, val);
1015 stl_phys(addr, val);
1018 stq_phys(addr, val);
1023 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1027 stb_phys((hwaddr)addr
1028 | ((hwaddr)(asi & 0xf) << 32), val);
1031 stw_phys((hwaddr)addr
1032 | ((hwaddr)(asi & 0xf) << 32), val);
1036 stl_phys((hwaddr)addr
1037 | ((hwaddr)(asi & 0xf) << 32), val);
1040 stq_phys((hwaddr)addr
1041 | ((hwaddr)(asi & 0xf) << 32), val);
1046 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1047 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1048 Turbosparc snoop RAM */
1049 case 0x32: /* store buffer control or Turbosparc page table
1050 descriptor diagnostic */
1051 case 0x36: /* I-cache flash clear */
1052 case 0x37: /* D-cache flash clear */
1054 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1056 int reg = (addr >> 8) & 3;
1059 case 0: /* Breakpoint Value (Addr) */
1060 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1062 case 1: /* Breakpoint Mask */
1063 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1065 case 2: /* Breakpoint Control */
1066 env->mmubpregs[reg] = (val & 0x7fULL);
1068 case 3: /* Breakpoint Status */
1069 env->mmubpregs[reg] = (val & 0xfULL);
1072 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1076 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1077 env->mmubpctrv = val & 0xffffffff;
1079 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1080 env->mmubpctrc = val & 0x3;
1082 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1083 env->mmubpctrs = val & 0x3;
1085 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1086 env->mmubpaction = val & 0x1fff;
1088 case 8: /* User code access, XXX */
1089 case 9: /* Supervisor code access, XXX */
1091 cpu_unassigned_access(env, addr, 1, 0, asi, size);
1095 dump_asi("write", addr, asi, size, val);
1099 #endif /* CONFIG_USER_ONLY */
1100 #else /* TARGET_SPARC64 */
1102 #ifdef CONFIG_USER_ONLY
1103 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1107 #if defined(DEBUG_ASI)
1108 target_ulong last_addr = addr;
1112 helper_raise_exception(env, TT_PRIV_ACT);
1115 helper_check_align(env, addr, size - 1);
1116 addr = asi_address_mask(env, asi, addr);
1119 case 0x82: /* Primary no-fault */
1120 case 0x8a: /* Primary no-fault LE */
1121 if (page_check_range(addr, size, PAGE_READ) == -1) {
1123 dump_asi("read ", last_addr, asi, size, ret);
1128 case 0x80: /* Primary */
1129 case 0x88: /* Primary LE */
1133 ret = ldub_raw(addr);
1136 ret = lduw_raw(addr);
1139 ret = ldl_raw(addr);
1143 ret = ldq_raw(addr);
1148 case 0x83: /* Secondary no-fault */
1149 case 0x8b: /* Secondary no-fault LE */
1150 if (page_check_range(addr, size, PAGE_READ) == -1) {
1152 dump_asi("read ", last_addr, asi, size, ret);
1157 case 0x81: /* Secondary */
1158 case 0x89: /* Secondary LE */
1165 /* Convert from little endian */
1167 case 0x88: /* Primary LE */
1168 case 0x89: /* Secondary LE */
1169 case 0x8a: /* Primary no-fault LE */
1170 case 0x8b: /* Secondary no-fault LE */
1188 /* Convert to signed number */
1195 ret = (int16_t) ret;
1198 ret = (int32_t) ret;
1205 dump_asi("read ", last_addr, asi, size, ret);
1210 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1214 dump_asi("write", addr, asi, size, val);
1217 helper_raise_exception(env, TT_PRIV_ACT);
1220 helper_check_align(env, addr, size - 1);
1221 addr = asi_address_mask(env, asi, addr);
1223 /* Convert to little endian */
1225 case 0x88: /* Primary LE */
1226 case 0x89: /* Secondary LE */
1245 case 0x80: /* Primary */
1246 case 0x88: /* Primary LE */
1265 case 0x81: /* Secondary */
1266 case 0x89: /* Secondary LE */
1270 case 0x82: /* Primary no-fault, RO */
1271 case 0x83: /* Secondary no-fault, RO */
1272 case 0x8a: /* Primary no-fault LE, RO */
1273 case 0x8b: /* Secondary no-fault LE, RO */
1275 helper_raise_exception(env, TT_DATA_ACCESS);
1280 #else /* CONFIG_USER_ONLY */
1282 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1286 #if defined(DEBUG_ASI)
1287 target_ulong last_addr = addr;
1292 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1293 || (cpu_has_hypervisor(env)
1294 && asi >= 0x30 && asi < 0x80
1295 && !(env->hpstate & HS_PRIV))) {
1296 helper_raise_exception(env, TT_PRIV_ACT);
1299 helper_check_align(env, addr, size - 1);
1300 addr = asi_address_mask(env, asi, addr);
1302 /* process nonfaulting loads first */
1303 if ((asi & 0xf6) == 0x82) {
1306 /* secondary space access has lowest asi bit equal to 1 */
1307 if (env->pstate & PS_PRIV) {
1308 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1310 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1313 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1315 dump_asi("read ", last_addr, asi, size, ret);
1317 /* env->exception_index is set in get_physical_address_data(). */
1318 helper_raise_exception(env, env->exception_index);
1321 /* convert nonfaulting load ASIs to normal load ASIs */
1326 case 0x10: /* As if user primary */
1327 case 0x11: /* As if user secondary */
1328 case 0x18: /* As if user primary LE */
1329 case 0x19: /* As if user secondary LE */
1330 case 0x80: /* Primary */
1331 case 0x81: /* Secondary */
1332 case 0x88: /* Primary LE */
1333 case 0x89: /* Secondary LE */
1334 case 0xe2: /* UA2007 Primary block init */
1335 case 0xe3: /* UA2007 Secondary block init */
1336 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1337 if (cpu_hypervisor_mode(env)) {
1340 ret = cpu_ldub_hypv(env, addr);
1343 ret = cpu_lduw_hypv(env, addr);
1346 ret = cpu_ldl_hypv(env, addr);
1350 ret = cpu_ldq_hypv(env, addr);
1354 /* secondary space access has lowest asi bit equal to 1 */
1358 ret = cpu_ldub_kernel_secondary(env, addr);
1361 ret = cpu_lduw_kernel_secondary(env, addr);
1364 ret = cpu_ldl_kernel_secondary(env, addr);
1368 ret = cpu_ldq_kernel_secondary(env, addr);
1374 ret = cpu_ldub_kernel(env, addr);
1377 ret = cpu_lduw_kernel(env, addr);
1380 ret = cpu_ldl_kernel(env, addr);
1384 ret = cpu_ldq_kernel(env, addr);
1390 /* secondary space access has lowest asi bit equal to 1 */
1394 ret = cpu_ldub_user_secondary(env, addr);
1397 ret = cpu_lduw_user_secondary(env, addr);
1400 ret = cpu_ldl_user_secondary(env, addr);
1404 ret = cpu_ldq_user_secondary(env, addr);
1410 ret = cpu_ldub_user(env, addr);
1413 ret = cpu_lduw_user(env, addr);
1416 ret = cpu_ldl_user(env, addr);
1420 ret = cpu_ldq_user(env, addr);
1426 case 0x14: /* Bypass */
1427 case 0x15: /* Bypass, non-cacheable */
1428 case 0x1c: /* Bypass LE */
1429 case 0x1d: /* Bypass, non-cacheable LE */
1433 ret = ldub_phys(addr);
1436 ret = lduw_phys(addr);
1439 ret = ldl_phys(addr);
1443 ret = ldq_phys(addr);
1448 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1449 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1450 Only ldda allowed */
1451 helper_raise_exception(env, TT_ILL_INSN);
1453 case 0x04: /* Nucleus */
1454 case 0x0c: /* Nucleus Little Endian (LE) */
1458 ret = cpu_ldub_nucleus(env, addr);
1461 ret = cpu_lduw_nucleus(env, addr);
1464 ret = cpu_ldl_nucleus(env, addr);
1468 ret = cpu_ldq_nucleus(env, addr);
1473 case 0x4a: /* UPA config */
1476 case 0x45: /* LSU */
1479 case 0x50: /* I-MMU regs */
1481 int reg = (addr >> 3) & 0xf;
1484 /* I-TSB Tag Target register */
1485 ret = ultrasparc_tag_target(env->immu.tag_access);
1487 ret = env->immuregs[reg];
1492 case 0x51: /* I-MMU 8k TSB pointer */
1494 /* env->immuregs[5] holds I-MMU TSB register value
1495 env->immuregs[6] holds I-MMU Tag Access register value */
1496 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1500 case 0x52: /* I-MMU 64k TSB pointer */
1502 /* env->immuregs[5] holds I-MMU TSB register value
1503 env->immuregs[6] holds I-MMU Tag Access register value */
1504 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1508 case 0x55: /* I-MMU data access */
1510 int reg = (addr >> 3) & 0x3f;
1512 ret = env->itlb[reg].tte;
1515 case 0x56: /* I-MMU tag read */
1517 int reg = (addr >> 3) & 0x3f;
1519 ret = env->itlb[reg].tag;
1522 case 0x58: /* D-MMU regs */
1524 int reg = (addr >> 3) & 0xf;
1527 /* D-TSB Tag Target register */
1528 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1530 ret = env->dmmuregs[reg];
1534 case 0x59: /* D-MMU 8k TSB pointer */
1536 /* env->dmmuregs[5] holds D-MMU TSB register value
1537 env->dmmuregs[6] holds D-MMU Tag Access register value */
1538 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1542 case 0x5a: /* D-MMU 64k TSB pointer */
1544 /* env->dmmuregs[5] holds D-MMU TSB register value
1545 env->dmmuregs[6] holds D-MMU Tag Access register value */
1546 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1550 case 0x5d: /* D-MMU data access */
1552 int reg = (addr >> 3) & 0x3f;
1554 ret = env->dtlb[reg].tte;
1557 case 0x5e: /* D-MMU tag read */
1559 int reg = (addr >> 3) & 0x3f;
1561 ret = env->dtlb[reg].tag;
1564 case 0x48: /* Interrupt dispatch, RO */
1566 case 0x49: /* Interrupt data receive */
1567 ret = env->ivec_status;
1569 case 0x7f: /* Incoming interrupt vector, RO */
1571 int reg = (addr >> 4) & 0x3;
1573 ret = env->ivec_data[reg];
1577 case 0x46: /* D-cache data */
1578 case 0x47: /* D-cache tag access */
1579 case 0x4b: /* E-cache error enable */
1580 case 0x4c: /* E-cache asynchronous fault status */
1581 case 0x4d: /* E-cache asynchronous fault address */
1582 case 0x4e: /* E-cache tag data */
1583 case 0x66: /* I-cache instruction access */
1584 case 0x67: /* I-cache tag access */
1585 case 0x6e: /* I-cache predecode */
1586 case 0x6f: /* I-cache LRU etc. */
1587 case 0x76: /* E-cache tag */
1588 case 0x7e: /* E-cache tag */
1590 case 0x5b: /* D-MMU data pointer */
1591 case 0x54: /* I-MMU data in, WO */
1592 case 0x57: /* I-MMU demap, WO */
1593 case 0x5c: /* D-MMU data in, WO */
1594 case 0x5f: /* D-MMU demap, WO */
1595 case 0x77: /* Interrupt vector, WO */
1597 cpu_unassigned_access(env, addr, 0, 0, 1, size);
1602 /* Convert from little endian */
1604 case 0x0c: /* Nucleus Little Endian (LE) */
1605 case 0x18: /* As if user primary LE */
1606 case 0x19: /* As if user secondary LE */
1607 case 0x1c: /* Bypass LE */
1608 case 0x1d: /* Bypass, non-cacheable LE */
1609 case 0x88: /* Primary LE */
1610 case 0x89: /* Secondary LE */
1628 /* Convert to signed number */
1635 ret = (int16_t) ret;
1638 ret = (int32_t) ret;
1645 dump_asi("read ", last_addr, asi, size, ret);
1650 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1654 dump_asi("write", addr, asi, size, val);
1659 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1660 || (cpu_has_hypervisor(env)
1661 && asi >= 0x30 && asi < 0x80
1662 && !(env->hpstate & HS_PRIV))) {
1663 helper_raise_exception(env, TT_PRIV_ACT);
1666 helper_check_align(env, addr, size - 1);
1667 addr = asi_address_mask(env, asi, addr);
1669 /* Convert to little endian */
1671 case 0x0c: /* Nucleus Little Endian (LE) */
1672 case 0x18: /* As if user primary LE */
1673 case 0x19: /* As if user secondary LE */
1674 case 0x1c: /* Bypass LE */
1675 case 0x1d: /* Bypass, non-cacheable LE */
1676 case 0x88: /* Primary LE */
1677 case 0x89: /* Secondary LE */
1696 case 0x10: /* As if user primary */
1697 case 0x11: /* As if user secondary */
1698 case 0x18: /* As if user primary LE */
1699 case 0x19: /* As if user secondary LE */
1700 case 0x80: /* Primary */
1701 case 0x81: /* Secondary */
1702 case 0x88: /* Primary LE */
1703 case 0x89: /* Secondary LE */
1704 case 0xe2: /* UA2007 Primary block init */
1705 case 0xe3: /* UA2007 Secondary block init */
1706 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1707 if (cpu_hypervisor_mode(env)) {
1710 cpu_stb_hypv(env, addr, val);
1713 cpu_stw_hypv(env, addr, val);
1716 cpu_stl_hypv(env, addr, val);
1720 cpu_stq_hypv(env, addr, val);
1724 /* secondary space access has lowest asi bit equal to 1 */
1728 cpu_stb_kernel_secondary(env, addr, val);
1731 cpu_stw_kernel_secondary(env, addr, val);
1734 cpu_stl_kernel_secondary(env, addr, val);
1738 cpu_stq_kernel_secondary(env, addr, val);
1744 cpu_stb_kernel(env, addr, val);
1747 cpu_stw_kernel(env, addr, val);
1750 cpu_stl_kernel(env, addr, val);
1754 cpu_stq_kernel(env, addr, val);
1760 /* secondary space access has lowest asi bit equal to 1 */
1764 cpu_stb_user_secondary(env, addr, val);
1767 cpu_stw_user_secondary(env, addr, val);
1770 cpu_stl_user_secondary(env, addr, val);
1774 cpu_stq_user_secondary(env, addr, val);
1780 cpu_stb_user(env, addr, val);
1783 cpu_stw_user(env, addr, val);
1786 cpu_stl_user(env, addr, val);
1790 cpu_stq_user(env, addr, val);
1796 case 0x14: /* Bypass */
1797 case 0x15: /* Bypass, non-cacheable */
1798 case 0x1c: /* Bypass LE */
1799 case 0x1d: /* Bypass, non-cacheable LE */
1803 stb_phys(addr, val);
1806 stw_phys(addr, val);
1809 stl_phys(addr, val);
1813 stq_phys(addr, val);
1818 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1819 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1820 Only ldda allowed */
1821 helper_raise_exception(env, TT_ILL_INSN);
1823 case 0x04: /* Nucleus */
1824 case 0x0c: /* Nucleus Little Endian (LE) */
1828 cpu_stb_nucleus(env, addr, val);
1831 cpu_stw_nucleus(env, addr, val);
1834 cpu_stl_nucleus(env, addr, val);
1838 cpu_stq_nucleus(env, addr, val);
1844 case 0x4a: /* UPA config */
1847 case 0x45: /* LSU */
1852 env->lsu = val & (DMMU_E | IMMU_E);
1853 /* Mappings generated during D/I MMU disabled mode are
1854 invalid in normal mode */
1855 if (oldreg != env->lsu) {
1856 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1859 dump_mmu(stdout, fprintf, env);
1865 case 0x50: /* I-MMU regs */
1867 int reg = (addr >> 3) & 0xf;
1870 oldreg = env->immuregs[reg];
1874 case 1: /* Not in I-MMU */
1878 if ((val & 1) == 0) {
1879 val = 0; /* Clear SFSR */
1881 env->immu.sfsr = val;
1885 case 5: /* TSB access */
1886 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1887 PRIx64 "\n", env->immu.tsb, val);
1888 env->immu.tsb = val;
1890 case 6: /* Tag access */
1891 env->immu.tag_access = val;
1900 if (oldreg != env->immuregs[reg]) {
1901 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1902 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1905 dump_mmu(stdout, fprintf, env);
1909 case 0x54: /* I-MMU data in */
1910 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1912 case 0x55: /* I-MMU data access */
1914 /* TODO: auto demap */
1916 unsigned int i = (addr >> 3) & 0x3f;
1918 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1921 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1922 dump_mmu(stdout, fprintf, env);
1926 case 0x57: /* I-MMU demap */
1927 demap_tlb(env->itlb, addr, "immu", env);
1929 case 0x58: /* D-MMU regs */
1931 int reg = (addr >> 3) & 0xf;
1934 oldreg = env->dmmuregs[reg];
1940 if ((val & 1) == 0) {
1941 val = 0; /* Clear SFSR, Fault address */
1944 env->dmmu.sfsr = val;
1946 case 1: /* Primary context */
1947 env->dmmu.mmu_primary_context = val;
1948 /* can be optimized to only flush MMU_USER_IDX
1949 and MMU_KERNEL_IDX entries */
1952 case 2: /* Secondary context */
1953 env->dmmu.mmu_secondary_context = val;
1954 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1955 and MMU_KERNEL_SECONDARY_IDX entries */
1958 case 5: /* TSB access */
1959 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1960 PRIx64 "\n", env->dmmu.tsb, val);
1961 env->dmmu.tsb = val;
1963 case 6: /* Tag access */
1964 env->dmmu.tag_access = val;
1966 case 7: /* Virtual Watchpoint */
1967 case 8: /* Physical Watchpoint */
1969 env->dmmuregs[reg] = val;
1973 if (oldreg != env->dmmuregs[reg]) {
1974 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1975 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1978 dump_mmu(stdout, fprintf, env);
1982 case 0x5c: /* D-MMU data in */
1983 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1985 case 0x5d: /* D-MMU data access */
1987 unsigned int i = (addr >> 3) & 0x3f;
1989 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1992 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1993 dump_mmu(stdout, fprintf, env);
1997 case 0x5f: /* D-MMU demap */
1998 demap_tlb(env->dtlb, addr, "dmmu", env);
2000 case 0x49: /* Interrupt data receive */
2001 env->ivec_status = val & 0x20;
2003 case 0x46: /* D-cache data */
2004 case 0x47: /* D-cache tag access */
2005 case 0x4b: /* E-cache error enable */
2006 case 0x4c: /* E-cache asynchronous fault status */
2007 case 0x4d: /* E-cache asynchronous fault address */
2008 case 0x4e: /* E-cache tag data */
2009 case 0x66: /* I-cache instruction access */
2010 case 0x67: /* I-cache tag access */
2011 case 0x6e: /* I-cache predecode */
2012 case 0x6f: /* I-cache LRU etc. */
2013 case 0x76: /* E-cache tag */
2014 case 0x7e: /* E-cache tag */
2016 case 0x51: /* I-MMU 8k TSB pointer, RO */
2017 case 0x52: /* I-MMU 64k TSB pointer, RO */
2018 case 0x56: /* I-MMU tag read, RO */
2019 case 0x59: /* D-MMU 8k TSB pointer, RO */
2020 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2021 case 0x5b: /* D-MMU data pointer, RO */
2022 case 0x5e: /* D-MMU tag read, RO */
2023 case 0x48: /* Interrupt dispatch, RO */
2024 case 0x7f: /* Incoming interrupt vector, RO */
2025 case 0x82: /* Primary no-fault, RO */
2026 case 0x83: /* Secondary no-fault, RO */
2027 case 0x8a: /* Primary no-fault LE, RO */
2028 case 0x8b: /* Secondary no-fault LE, RO */
2030 cpu_unassigned_access(env, addr, 1, 0, 1, size);
2034 #endif /* CONFIG_USER_ONLY */
2036 void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2038 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2039 || (cpu_has_hypervisor(env)
2040 && asi >= 0x30 && asi < 0x80
2041 && !(env->hpstate & HS_PRIV))) {
2042 helper_raise_exception(env, TT_PRIV_ACT);
2045 addr = asi_address_mask(env, asi, addr);
2048 #if !defined(CONFIG_USER_ONLY)
2049 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2050 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2051 helper_check_align(env, addr, 0xf);
2053 env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2055 bswap64s(&env->gregs[1]);
2057 } else if (rd < 8) {
2058 env->gregs[rd] = cpu_ldq_nucleus(env, addr);
2059 env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2061 bswap64s(&env->gregs[rd]);
2062 bswap64s(&env->gregs[rd + 1]);
2065 env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
2066 env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2068 bswap64s(&env->regwptr[rd]);
2069 bswap64s(&env->regwptr[rd + 1]);
2075 helper_check_align(env, addr, 0x3);
2077 env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2078 } else if (rd < 8) {
2079 env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2080 env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2082 env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2083 env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2089 void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2095 helper_check_align(env, addr, 3);
2096 addr = asi_address_mask(env, asi, addr);
2099 case 0xf0: /* UA2007/JPS1 Block load primary */
2100 case 0xf1: /* UA2007/JPS1 Block load secondary */
2101 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2102 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2104 helper_raise_exception(env, TT_ILL_INSN);
2107 helper_check_align(env, addr, 0x3f);
2108 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2109 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2113 case 0x16: /* UA2007 Block load primary, user privilege */
2114 case 0x17: /* UA2007 Block load secondary, user privilege */
2115 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2116 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2117 case 0x70: /* JPS1 Block load primary, user privilege */
2118 case 0x71: /* JPS1 Block load secondary, user privilege */
2119 case 0x78: /* JPS1 Block load primary LE, user privilege */
2120 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2122 helper_raise_exception(env, TT_ILL_INSN);
2125 helper_check_align(env, addr, 0x3f);
2126 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2127 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2138 val = helper_ld_asi(env, addr, asi, size, 0);
2140 env->fpr[rd / 2].l.lower = val;
2142 env->fpr[rd / 2].l.upper = val;
2146 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2149 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
2150 env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2155 void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2161 helper_check_align(env, addr, 3);
2162 addr = asi_address_mask(env, asi, addr);
2165 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2166 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2167 case 0xf0: /* UA2007/JPS1 Block store primary */
2168 case 0xf1: /* UA2007/JPS1 Block store secondary */
2169 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2170 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2172 helper_raise_exception(env, TT_ILL_INSN);
2175 helper_check_align(env, addr, 0x3f);
2176 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2177 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2181 case 0x16: /* UA2007 Block load primary, user privilege */
2182 case 0x17: /* UA2007 Block load secondary, user privilege */
2183 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2184 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2185 case 0x70: /* JPS1 Block store primary, user privilege */
2186 case 0x71: /* JPS1 Block store secondary, user privilege */
2187 case 0x78: /* JPS1 Block load primary LE, user privilege */
2188 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2190 helper_raise_exception(env, TT_ILL_INSN);
2193 helper_check_align(env, addr, 0x3f);
2194 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2195 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2207 val = env->fpr[rd / 2].l.lower;
2209 val = env->fpr[rd / 2].l.upper;
2211 helper_st_asi(env, addr, val, asi, size);
2214 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2217 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
2218 helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2223 target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
2224 target_ulong val1, target_ulong val2, uint32_t asi)
2228 val2 &= 0xffffffffUL;
2229 ret = helper_ld_asi(env, addr, asi, 4, 0);
2230 ret &= 0xffffffffUL;
2232 helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2237 target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
2238 target_ulong val1, target_ulong val2,
2243 ret = helper_ld_asi(env, addr, asi, 8, 0);
2245 helper_st_asi(env, addr, val1, asi, 8);
2249 #endif /* TARGET_SPARC64 */
2251 void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2253 /* XXX add 128 bit load */
2256 helper_check_align(env, addr, 7);
2257 #if !defined(CONFIG_USER_ONLY)
2260 u.ll.upper = cpu_ldq_user(env, addr);
2261 u.ll.lower = cpu_ldq_user(env, addr + 8);
2264 case MMU_KERNEL_IDX:
2265 u.ll.upper = cpu_ldq_kernel(env, addr);
2266 u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2269 #ifdef TARGET_SPARC64
2271 u.ll.upper = cpu_ldq_hypv(env, addr);
2272 u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2277 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2281 u.ll.upper = ldq_raw(address_mask(env, addr));
2282 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
2287 void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2289 /* XXX add 128 bit store */
2292 helper_check_align(env, addr, 7);
2293 #if !defined(CONFIG_USER_ONLY)
2297 cpu_stq_user(env, addr, u.ll.upper);
2298 cpu_stq_user(env, addr + 8, u.ll.lower);
2300 case MMU_KERNEL_IDX:
2302 cpu_stq_kernel(env, addr, u.ll.upper);
2303 cpu_stq_kernel(env, addr + 8, u.ll.lower);
2305 #ifdef TARGET_SPARC64
2308 cpu_stq_hypv(env, addr, u.ll.upper);
2309 cpu_stq_hypv(env, addr + 8, u.ll.lower);
2313 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2318 stq_raw(address_mask(env, addr), u.ll.upper);
2319 stq_raw(address_mask(env, addr + 8), u.ll.lower);
2323 #if !defined(CONFIG_USER_ONLY)
2324 #ifndef TARGET_SPARC64
2325 void cpu_unassigned_access(CPUSPARCState *env, hwaddr addr,
2326 int is_write, int is_exec, int is_asi, int size)
2330 #ifdef DEBUG_UNASSIGNED
2332 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2333 " asi 0x%02x from " TARGET_FMT_lx "\n",
2334 is_exec ? "exec" : is_write ? "write" : "read", size,
2335 size == 1 ? "" : "s", addr, is_asi, env->pc);
2337 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2338 " from " TARGET_FMT_lx "\n",
2339 is_exec ? "exec" : is_write ? "write" : "read", size,
2340 size == 1 ? "" : "s", addr, env->pc);
2343 /* Don't overwrite translation and access faults */
2344 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2345 if ((fault_type > 4) || (fault_type == 0)) {
2346 env->mmuregs[3] = 0; /* Fault status register */
2348 env->mmuregs[3] |= 1 << 16;
2351 env->mmuregs[3] |= 1 << 5;
2354 env->mmuregs[3] |= 1 << 6;
2357 env->mmuregs[3] |= 1 << 7;
2359 env->mmuregs[3] |= (5 << 2) | 2;
2360 /* SuperSPARC will never place instruction fault addresses in the FAR */
2362 env->mmuregs[4] = addr; /* Fault address register */
2365 /* overflow (same type fault was not read before another fault) */
2366 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2367 env->mmuregs[3] |= 1;
2370 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2372 helper_raise_exception(env, TT_CODE_ACCESS);
2374 helper_raise_exception(env, TT_DATA_ACCESS);
2378 /* flush neverland mappings created during no-fault mode,
2379 so the sequential MMU faults report proper fault types */
2380 if (env->mmuregs[0] & MMU_NF) {
2385 void cpu_unassigned_access(CPUSPARCState *env, hwaddr addr,
2386 int is_write, int is_exec, int is_asi, int size)
2388 #ifdef DEBUG_UNASSIGNED
2389 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2390 "\n", addr, env->pc);
2394 helper_raise_exception(env, TT_CODE_ACCESS);
2396 helper_raise_exception(env, TT_DATA_ACCESS);
2402 #if !defined(CONFIG_USER_ONLY)
2403 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
2404 target_ulong addr, int is_write,
2405 int is_user, uintptr_t retaddr)
2407 #ifdef DEBUG_UNALIGNED
2408 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2409 "\n", addr, env->pc);
2412 cpu_restore_state(env, retaddr);
2414 helper_raise_exception(env, TT_UNALIGNED);
2417 /* try to fill the TLB and return an exception if error. If retaddr is
2418 NULL, it means that the function was called in C code (i.e. not
2419 from generated code or from helper.c) */
2420 /* XXX: fix it to restore all registers */
2421 void tlb_fill(CPUSPARCState *env, target_ulong addr, int is_write, int mmu_idx,
2426 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
2429 cpu_restore_state(env, retaddr);