4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include "qemu-common.h"
26 #include "qemu/sockets.h"
27 #include "block/coroutine.h"
28 #include "migration/migration.h"
29 #include "migration/qemu-file.h"
32 #define IO_BUF_SIZE 32768
33 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
36 const QEMUFileOps *ops;
42 int64_t pos; /* start of buffer when writing, end of buffer
45 int buf_size; /* 0 when writing */
46 uint8_t buf[IO_BUF_SIZE];
48 struct iovec iov[MAX_IOV_SIZE];
54 typedef struct QEMUFileStdio {
59 typedef struct QEMUFileSocket {
64 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
67 QEMUFileSocket *s = opaque;
69 ssize_t size = iov_size(iov, iovcnt);
71 len = iov_send(s->fd, iov, iovcnt, 0, size);
73 len = -socket_error();
78 static int socket_get_fd(void *opaque)
80 QEMUFileSocket *s = opaque;
85 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
87 QEMUFileSocket *s = opaque;
91 len = qemu_recv(s->fd, buf, size, 0);
95 if (socket_error() == EAGAIN) {
96 yield_until_fd_readable(s->fd);
97 } else if (socket_error() != EINTR) {
103 len = -socket_error();
108 static int socket_close(void *opaque)
110 QEMUFileSocket *s = opaque;
116 static int stdio_get_fd(void *opaque)
118 QEMUFileStdio *s = opaque;
120 return fileno(s->stdio_file);
123 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos,
126 QEMUFileStdio *s = opaque;
129 res = fwrite(buf, 1, size, s->stdio_file);
137 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
139 QEMUFileStdio *s = opaque;
140 FILE *fp = s->stdio_file;
145 bytes = fread(buf, 1, size, fp);
146 if (bytes != 0 || !ferror(fp)) {
149 if (errno == EAGAIN) {
150 yield_until_fd_readable(fileno(fp));
151 } else if (errno != EINTR) {
158 static int stdio_pclose(void *opaque)
160 QEMUFileStdio *s = opaque;
162 ret = pclose(s->stdio_file);
165 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
166 /* close succeeded, but non-zero exit code: */
167 ret = -EIO; /* fake errno value */
173 static int stdio_fclose(void *opaque)
175 QEMUFileStdio *s = opaque;
178 if (qemu_file_is_writable(s->file)) {
179 int fd = fileno(s->stdio_file);
182 ret = fstat(fd, &st);
183 if (ret == 0 && S_ISREG(st.st_mode)) {
185 * If the file handle is a regular file make sure the
186 * data is flushed to disk before signaling success.
195 if (fclose(s->stdio_file) == EOF) {
202 static const QEMUFileOps stdio_pipe_read_ops = {
203 .get_fd = stdio_get_fd,
204 .get_buffer = stdio_get_buffer,
205 .close = stdio_pclose
208 static const QEMUFileOps stdio_pipe_write_ops = {
209 .get_fd = stdio_get_fd,
210 .put_buffer = stdio_put_buffer,
211 .close = stdio_pclose
214 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
219 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
220 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
224 stdio_file = popen(command, mode);
225 if (stdio_file == NULL) {
229 s = g_malloc0(sizeof(QEMUFileStdio));
231 s->stdio_file = stdio_file;
233 if (mode[0] == 'r') {
234 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
236 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
241 static const QEMUFileOps stdio_file_read_ops = {
242 .get_fd = stdio_get_fd,
243 .get_buffer = stdio_get_buffer,
244 .close = stdio_fclose
247 static const QEMUFileOps stdio_file_write_ops = {
248 .get_fd = stdio_get_fd,
249 .put_buffer = stdio_put_buffer,
250 .close = stdio_fclose
253 static ssize_t unix_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
256 QEMUFileSocket *s = opaque;
258 ssize_t size = iov_size(iov, iovcnt);
264 /* Find the next start position; skip all full-sized vector elements */
265 while (offset >= iov[0].iov_len) {
266 offset -= iov[0].iov_len;
270 /* skip `offset' bytes from the (now) first element, undo it on exit */
272 iov[0].iov_base += offset;
273 iov[0].iov_len -= offset;
276 len = writev(s->fd, iov, iovcnt);
277 } while (len == -1 && errno == EINTR);
282 /* Undo the changes above */
283 iov[0].iov_base -= offset;
284 iov[0].iov_len += offset;
286 /* Prepare for the next iteration */
295 static int unix_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
297 QEMUFileSocket *s = opaque;
301 len = read(s->fd, buf, size);
305 if (errno == EAGAIN) {
306 yield_until_fd_readable(s->fd);
307 } else if (errno != EINTR) {
318 static int unix_close(void *opaque)
320 QEMUFileSocket *s = opaque;
326 static const QEMUFileOps unix_read_ops = {
327 .get_fd = socket_get_fd,
328 .get_buffer = unix_get_buffer,
332 static const QEMUFileOps unix_write_ops = {
333 .get_fd = socket_get_fd,
334 .writev_buffer = unix_writev_buffer,
338 QEMUFile *qemu_fdopen(int fd, const char *mode)
343 (mode[0] != 'r' && mode[0] != 'w') ||
344 mode[1] != 'b' || mode[2] != 0) {
345 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
349 s = g_malloc0(sizeof(QEMUFileSocket));
352 if (mode[0] == 'r') {
353 s->file = qemu_fopen_ops(s, &unix_read_ops);
355 s->file = qemu_fopen_ops(s, &unix_write_ops);
360 static const QEMUFileOps socket_read_ops = {
361 .get_fd = socket_get_fd,
362 .get_buffer = socket_get_buffer,
363 .close = socket_close
366 static const QEMUFileOps socket_write_ops = {
367 .get_fd = socket_get_fd,
368 .writev_buffer = socket_writev_buffer,
369 .close = socket_close
372 bool qemu_file_mode_is_not_valid(const char *mode)
375 (mode[0] != 'r' && mode[0] != 'w') ||
376 mode[1] != 'b' || mode[2] != 0) {
377 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
384 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
388 if (qemu_file_mode_is_not_valid(mode)) {
392 s = g_malloc0(sizeof(QEMUFileSocket));
394 if (mode[0] == 'w') {
395 qemu_set_block(s->fd);
396 s->file = qemu_fopen_ops(s, &socket_write_ops);
398 s->file = qemu_fopen_ops(s, &socket_read_ops);
403 QEMUFile *qemu_fopen(const char *filename, const char *mode)
407 if (qemu_file_mode_is_not_valid(mode)) {
411 s = g_malloc0(sizeof(QEMUFileStdio));
413 s->stdio_file = fopen(filename, mode);
414 if (!s->stdio_file) {
418 if (mode[0] == 'w') {
419 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
421 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
429 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
433 f = g_malloc0(sizeof(QEMUFile));
441 * Get last error for stream f
443 * Return negative error value if there has been an error on previous
444 * operations, return 0 if no error happened.
447 int qemu_file_get_error(QEMUFile *f)
449 return f->last_error;
452 void qemu_file_set_error(QEMUFile *f, int ret)
454 if (f->last_error == 0) {
459 bool qemu_file_is_writable(QEMUFile *f)
461 return f->ops->writev_buffer || f->ops->put_buffer;
465 * Flushes QEMUFile buffer
467 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
470 void qemu_fflush(QEMUFile *f)
474 if (!qemu_file_is_writable(f)) {
478 if (f->ops->writev_buffer) {
480 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
483 if (f->buf_index > 0) {
484 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
493 qemu_file_set_error(f, ret);
497 void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
501 if (f->ops->before_ram_iterate) {
502 ret = f->ops->before_ram_iterate(f, f->opaque, flags);
504 qemu_file_set_error(f, ret);
509 void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
513 if (f->ops->after_ram_iterate) {
514 ret = f->ops->after_ram_iterate(f, f->opaque, flags);
516 qemu_file_set_error(f, ret);
521 void ram_control_load_hook(QEMUFile *f, uint64_t flags)
525 if (f->ops->hook_ram_load) {
526 ret = f->ops->hook_ram_load(f, f->opaque, flags);
528 qemu_file_set_error(f, ret);
531 qemu_file_set_error(f, ret);
535 size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
536 ram_addr_t offset, size_t size, int *bytes_sent)
538 if (f->ops->save_page) {
539 int ret = f->ops->save_page(f, f->opaque, block_offset,
540 offset, size, bytes_sent);
542 if (ret != RAM_SAVE_CONTROL_DELAYED) {
543 if (bytes_sent && *bytes_sent > 0) {
544 qemu_update_position(f, *bytes_sent);
545 } else if (ret < 0) {
546 qemu_file_set_error(f, ret);
553 return RAM_SAVE_CONTROL_NOT_SUPP;
557 * Attempt to fill the buffer from the underlying file
558 * Returns the number of bytes read, or negative value for an error.
560 * Note that it can return a partially full buffer even in a not error/not EOF
561 * case if the underlying file descriptor gives a short read, and that can
562 * happen even on a blocking fd.
564 static ssize_t qemu_fill_buffer(QEMUFile *f)
569 assert(!qemu_file_is_writable(f));
571 pending = f->buf_size - f->buf_index;
573 memmove(f->buf, f->buf + f->buf_index, pending);
576 f->buf_size = pending;
578 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
579 IO_BUF_SIZE - pending);
583 } else if (len == 0) {
584 qemu_file_set_error(f, -EIO);
585 } else if (len != -EAGAIN) {
586 qemu_file_set_error(f, len);
592 int qemu_get_fd(QEMUFile *f)
594 if (f->ops->get_fd) {
595 return f->ops->get_fd(f->opaque);
600 void qemu_update_position(QEMUFile *f, size_t size)
607 * Returns negative error value if any error happened on previous operations or
608 * while closing the file. Returns 0 or positive number on success.
610 * The meaning of return value on success depends on the specific backend
613 int qemu_fclose(QEMUFile *f)
617 ret = qemu_file_get_error(f);
620 int ret2 = f->ops->close(f->opaque);
625 /* If any error was spotted before closing, we should report it
626 * instead of the close() return value.
632 trace_qemu_file_fclose();
636 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
638 /* check for adjacent buffer and coalesce them */
639 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
640 f->iov[f->iovcnt - 1].iov_len) {
641 f->iov[f->iovcnt - 1].iov_len += size;
643 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
644 f->iov[f->iovcnt++].iov_len = size;
647 if (f->iovcnt >= MAX_IOV_SIZE) {
652 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
654 if (!f->ops->writev_buffer) {
655 qemu_put_buffer(f, buf, size);
663 f->bytes_xfer += size;
664 add_to_iovec(f, buf, size);
667 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
676 l = IO_BUF_SIZE - f->buf_index;
680 memcpy(f->buf + f->buf_index, buf, l);
682 if (f->ops->writev_buffer) {
683 add_to_iovec(f, f->buf + f->buf_index, l);
686 if (f->buf_index == IO_BUF_SIZE) {
689 if (qemu_file_get_error(f)) {
697 void qemu_put_byte(QEMUFile *f, int v)
703 f->buf[f->buf_index] = v;
705 if (f->ops->writev_buffer) {
706 add_to_iovec(f, f->buf + f->buf_index, 1);
709 if (f->buf_index == IO_BUF_SIZE) {
714 void qemu_file_skip(QEMUFile *f, int size)
716 if (f->buf_index + size <= f->buf_size) {
717 f->buf_index += size;
722 * Read 'size' bytes from file (at 'offset') into buf without moving the
725 * It will return size bytes unless there was an error, in which case it will
726 * return as many as it managed to read (assuming blocking fd's which
727 * all current QEMUFile are)
729 int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
734 assert(!qemu_file_is_writable(f));
735 assert(offset < IO_BUF_SIZE);
736 assert(size <= IO_BUF_SIZE - offset);
738 /* The 1st byte to read from */
739 index = f->buf_index + offset;
740 /* The number of available bytes starting at index */
741 pending = f->buf_size - index;
744 * qemu_fill_buffer might return just a few bytes, even when there isn't
745 * an error, so loop collecting them until we get enough.
747 while (pending < size) {
748 int received = qemu_fill_buffer(f);
754 index = f->buf_index + offset;
755 pending = f->buf_size - index;
761 if (size > pending) {
765 memcpy(buf, f->buf + index, size);
770 * Read 'size' bytes of data from the file into buf.
771 * 'size' can be larger than the internal buffer.
773 * It will return size bytes unless there was an error, in which case it will
774 * return as many as it managed to read (assuming blocking fd's which
775 * all current QEMUFile are)
777 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
782 while (pending > 0) {
785 res = qemu_peek_buffer(f, buf, MIN(pending, IO_BUF_SIZE), 0);
789 qemu_file_skip(f, res);
798 * Peeks a single byte from the buffer; this isn't guaranteed to work if
799 * offset leaves a gap after the previous read/peeked data.
801 int qemu_peek_byte(QEMUFile *f, int offset)
803 int index = f->buf_index + offset;
805 assert(!qemu_file_is_writable(f));
806 assert(offset < IO_BUF_SIZE);
808 if (index >= f->buf_size) {
810 index = f->buf_index + offset;
811 if (index >= f->buf_size) {
815 return f->buf[index];
818 int qemu_get_byte(QEMUFile *f)
822 result = qemu_peek_byte(f, 0);
823 qemu_file_skip(f, 1);
827 int64_t qemu_ftell(QEMUFile *f)
833 int qemu_file_rate_limit(QEMUFile *f)
835 if (qemu_file_get_error(f)) {
838 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
844 int64_t qemu_file_get_rate_limit(QEMUFile *f)
846 return f->xfer_limit;
849 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
851 f->xfer_limit = limit;
854 void qemu_file_reset_rate_limit(QEMUFile *f)
859 void qemu_put_be16(QEMUFile *f, unsigned int v)
861 qemu_put_byte(f, v >> 8);
865 void qemu_put_be32(QEMUFile *f, unsigned int v)
867 qemu_put_byte(f, v >> 24);
868 qemu_put_byte(f, v >> 16);
869 qemu_put_byte(f, v >> 8);
873 void qemu_put_be64(QEMUFile *f, uint64_t v)
875 qemu_put_be32(f, v >> 32);
879 unsigned int qemu_get_be16(QEMUFile *f)
882 v = qemu_get_byte(f) << 8;
883 v |= qemu_get_byte(f);
887 unsigned int qemu_get_be32(QEMUFile *f)
890 v = qemu_get_byte(f) << 24;
891 v |= qemu_get_byte(f) << 16;
892 v |= qemu_get_byte(f) << 8;
893 v |= qemu_get_byte(f);
897 uint64_t qemu_get_be64(QEMUFile *f)
900 v = (uint64_t)qemu_get_be32(f) << 32;
901 v |= qemu_get_be32(f);
905 #define QSB_CHUNK_SIZE (1 << 10)
906 #define QSB_MAX_CHUNK_SIZE (16 * QSB_CHUNK_SIZE)
909 * Create a QEMUSizedBuffer
910 * This type of buffer uses scatter-gather lists internally and
911 * can grow to any size. Any data array in the scatter-gather list
912 * can hold different amount of bytes.
914 * @buffer: Optional buffer to copy into the QSB
915 * @len: size of initial buffer; if @buffer is given, buffer must
916 * hold at least len bytes
918 * Returns a pointer to a QEMUSizedBuffer or NULL on allocation failure
920 QEMUSizedBuffer *qsb_create(const uint8_t *buffer, size_t len)
922 QEMUSizedBuffer *qsb;
923 size_t alloc_len, num_chunks, i, to_copy;
924 size_t chunk_size = (len > QSB_MAX_CHUNK_SIZE)
928 num_chunks = DIV_ROUND_UP(len ? len : QSB_CHUNK_SIZE, chunk_size);
929 alloc_len = num_chunks * chunk_size;
931 qsb = g_try_new0(QEMUSizedBuffer, 1);
936 qsb->iov = g_try_new0(struct iovec, num_chunks);
942 qsb->n_iov = num_chunks;
944 for (i = 0; i < num_chunks; i++) {
945 qsb->iov[i].iov_base = g_try_malloc0(chunk_size);
946 if (!qsb->iov[i].iov_base) {
947 /* qsb_free is safe since g_free can cope with NULL */
952 qsb->iov[i].iov_len = chunk_size;
954 to_copy = (len - qsb->used) > chunk_size
955 ? chunk_size : (len - qsb->used);
956 memcpy(qsb->iov[i].iov_base, &buffer[qsb->used], to_copy);
957 qsb->used += to_copy;
961 qsb->size = alloc_len;
967 * Free the QEMUSizedBuffer
969 * @qsb: The QEMUSizedBuffer to free
971 void qsb_free(QEMUSizedBuffer *qsb)
979 for (i = 0; i < qsb->n_iov; i++) {
980 g_free(qsb->iov[i].iov_base);
987 * Get the number of used bytes in the QEMUSizedBuffer
989 * @qsb: A QEMUSizedBuffer
991 * Returns the number of bytes currently used in this buffer
993 size_t qsb_get_length(const QEMUSizedBuffer *qsb)
999 * Set the length of the buffer; the primary usage of this
1000 * function is to truncate the number of used bytes in the buffer.
1001 * The size will not be extended beyond the current number of
1002 * allocated bytes in the QEMUSizedBuffer.
1004 * @qsb: A QEMUSizedBuffer
1005 * @new_len: The new length of bytes in the buffer
1007 * Returns the number of bytes the buffer was truncated or extended
1010 size_t qsb_set_length(QEMUSizedBuffer *qsb, size_t new_len)
1012 if (new_len <= qsb->size) {
1013 qsb->used = new_len;
1015 qsb->used = qsb->size;
1021 * Get the iovec that holds the data for a given position @pos.
1023 * @qsb: A QEMUSizedBuffer
1024 * @pos: The index of a byte in the buffer
1025 * @d_off: Pointer to an offset that this function will indicate
1026 * at what position within the returned iovec the byte
1029 * Returns the index of the iovec that holds the byte at the given
1030 * index @pos in the byte stream; a negative number if the iovec
1031 * for the given position @pos does not exist.
1033 static ssize_t qsb_get_iovec(const QEMUSizedBuffer *qsb,
1034 off_t pos, off_t *d_off)
1039 if (pos > qsb->used) {
1043 for (i = 0; i < qsb->n_iov; i++) {
1044 if (curr + qsb->iov[i].iov_len > pos) {
1045 *d_off = pos - curr;
1048 curr += qsb->iov[i].iov_len;
1054 * Convert the QEMUSizedBuffer into a flat buffer.
1056 * Note: If at all possible, try to avoid this function since it
1057 * may unnecessarily copy memory around.
1059 * @qsb: pointer to QEMUSizedBuffer
1060 * @start: offset to start at
1061 * @count: number of bytes to copy
1062 * @buf: a pointer to a buffer to write into (at least @count bytes)
1064 * Returns the number of bytes copied into the output buffer
1066 ssize_t qsb_get_buffer(const QEMUSizedBuffer *qsb, off_t start,
1067 size_t count, uint8_t *buffer)
1069 const struct iovec *iov;
1070 size_t to_copy, all_copy;
1076 if (start > qsb->used) {
1080 all_copy = qsb->used - start;
1081 if (all_copy > count) {
1087 index = qsb_get_iovec(qsb, start, &s_off);
1092 while (all_copy > 0) {
1093 iov = &qsb->iov[index];
1097 to_copy = iov->iov_len - s_off;
1098 if (to_copy > all_copy) {
1101 memcpy(&buffer[d_off], &s[s_off], to_copy);
1104 all_copy -= to_copy;
1114 * Grow the QEMUSizedBuffer to the given size and allocate
1117 * @qsb: A QEMUSizedBuffer
1118 * @new_size: The new size of the buffer
1121 * a negative error code in case of memory allocation failure
1123 * the new size of the buffer. The returned size may be greater or equal
1126 static ssize_t qsb_grow(QEMUSizedBuffer *qsb, size_t new_size)
1128 size_t needed_chunks, i;
1130 if (qsb->size < new_size) {
1131 struct iovec *new_iov;
1132 size_t size_diff = new_size - qsb->size;
1133 size_t chunk_size = (size_diff > QSB_MAX_CHUNK_SIZE)
1134 ? QSB_MAX_CHUNK_SIZE : QSB_CHUNK_SIZE;
1136 needed_chunks = DIV_ROUND_UP(size_diff, chunk_size);
1138 new_iov = g_try_new(struct iovec, qsb->n_iov + needed_chunks);
1139 if (new_iov == NULL) {
1143 /* Allocate new chunks as needed into new_iov */
1144 for (i = qsb->n_iov; i < qsb->n_iov + needed_chunks; i++) {
1145 new_iov[i].iov_base = g_try_malloc0(chunk_size);
1146 new_iov[i].iov_len = chunk_size;
1147 if (!new_iov[i].iov_base) {
1150 /* Free previously allocated new chunks */
1151 for (j = qsb->n_iov; j < i; j++) {
1152 g_free(new_iov[j].iov_base);
1161 * Now we can't get any allocation errors, copy over to new iov
1164 for (i = 0; i < qsb->n_iov; i++) {
1165 new_iov[i] = qsb->iov[i];
1168 qsb->n_iov += needed_chunks;
1171 qsb->size += (needed_chunks * chunk_size);
1178 * Write into the QEMUSizedBuffer at a given position and a given
1179 * number of bytes. This function will automatically grow the
1182 * @qsb: A QEMUSizedBuffer
1183 * @source: A byte array to copy data from
1184 * @pos: The position within the @qsb to write data to
1185 * @size: The number of bytes to copy into the @qsb
1187 * Returns @size or a negative error code in case of memory allocation failure,
1188 * or with an invalid 'pos'
1190 ssize_t qsb_write_at(QEMUSizedBuffer *qsb, const uint8_t *source,
1191 off_t pos, size_t count)
1193 ssize_t rc = qsb_grow(qsb, pos + count);
1195 size_t all_copy = count;
1196 const struct iovec *iov;
1199 off_t d_off, s_off = 0;
1205 if (pos + count > qsb->used) {
1206 qsb->used = pos + count;
1209 index = qsb_get_iovec(qsb, pos, &d_off);
1214 while (all_copy > 0) {
1215 iov = &qsb->iov[index];
1217 dest = iov->iov_base;
1219 to_copy = iov->iov_len - d_off;
1220 if (to_copy > all_copy) {
1224 memcpy(&dest[d_off], &source[s_off], to_copy);
1227 all_copy -= to_copy;
1237 * Create a deep copy of the given QEMUSizedBuffer.
1239 * @qsb: A QEMUSizedBuffer
1241 * Returns a clone of @qsb or NULL on allocation failure
1243 QEMUSizedBuffer *qsb_clone(const QEMUSizedBuffer *qsb)
1245 QEMUSizedBuffer *out = qsb_create(NULL, qsb_get_length(qsb));
1254 for (i = 0; i < qsb->n_iov; i++) {
1255 res = qsb_write_at(out, qsb->iov[i].iov_base,
1256 pos, qsb->iov[i].iov_len);
1267 typedef struct QEMUBuffer {
1268 QEMUSizedBuffer *qsb;
1272 static int buf_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
1274 QEMUBuffer *s = opaque;
1275 ssize_t len = qsb_get_length(s->qsb) - pos;
1284 return qsb_get_buffer(s->qsb, pos, len, buf);
1287 static int buf_put_buffer(void *opaque, const uint8_t *buf,
1288 int64_t pos, int size)
1290 QEMUBuffer *s = opaque;
1292 return qsb_write_at(s->qsb, buf, pos, size);
1295 static int buf_close(void *opaque)
1297 QEMUBuffer *s = opaque;
1306 const QEMUSizedBuffer *qemu_buf_get(QEMUFile *f)
1317 static const QEMUFileOps buf_read_ops = {
1318 .get_buffer = buf_get_buffer,
1322 static const QEMUFileOps buf_write_ops = {
1323 .put_buffer = buf_put_buffer,
1327 QEMUFile *qemu_bufopen(const char *mode, QEMUSizedBuffer *input)
1331 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') ||
1333 error_report("qemu_bufopen: Argument validity check failed");
1337 s = g_malloc0(sizeof(QEMUBuffer));
1338 if (mode[0] == 'r') {
1342 if (s->qsb == NULL) {
1343 s->qsb = qsb_create(NULL, 0);
1347 error_report("qemu_bufopen: qsb_create failed");
1352 if (mode[0] == 'r') {
1353 s->file = qemu_fopen_ops(s, &buf_read_ops);
1355 s->file = qemu_fopen_ops(s, &buf_write_ops);