4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
37 #include "main-loop.h"
45 #include <sys/prctl.h>
48 #define PR_MCE_KILL 33
51 #ifndef PR_MCE_KILL_SET
52 #define PR_MCE_KILL_SET 1
55 #ifndef PR_MCE_KILL_EARLY
56 #define PR_MCE_KILL_EARLY 1
59 #endif /* CONFIG_LINUX */
61 static CPUState *next_cpu;
63 /***********************************************************/
64 /* guest cycle counter */
66 /* Conversion factor from emulated instructions to virtual clock ticks. */
67 static int icount_time_shift;
68 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
69 #define MAX_ICOUNT_SHIFT 10
70 /* Compensate for varying guest execution speed. */
71 static int64_t qemu_icount_bias;
72 static QEMUTimer *icount_rt_timer;
73 static QEMUTimer *icount_vm_timer;
74 static QEMUTimer *icount_warp_timer;
75 static int64_t vm_clock_warp_start;
76 static int64_t qemu_icount;
78 typedef struct TimersState {
79 int64_t cpu_ticks_prev;
80 int64_t cpu_ticks_offset;
81 int64_t cpu_clock_offset;
82 int32_t cpu_ticks_enabled;
86 TimersState timers_state;
88 /* Return the virtual CPU time, based on the instruction counter. */
89 int64_t cpu_get_icount(void)
92 CPUState *env = cpu_single_env;
96 if (!can_do_io(env)) {
97 fprintf(stderr, "Bad clock read\n");
99 icount -= (env->icount_decr.u16.low + env->icount_extra);
101 return qemu_icount_bias + (icount << icount_time_shift);
104 /* return the host CPU cycle counter and handle stop/restart */
105 int64_t cpu_get_ticks(void)
108 return cpu_get_icount();
110 if (!timers_state.cpu_ticks_enabled) {
111 return timers_state.cpu_ticks_offset;
114 ticks = cpu_get_real_ticks();
115 if (timers_state.cpu_ticks_prev > ticks) {
116 /* Note: non increasing ticks may happen if the host uses
118 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
120 timers_state.cpu_ticks_prev = ticks;
121 return ticks + timers_state.cpu_ticks_offset;
125 /* return the host CPU monotonic timer and handle stop/restart */
126 int64_t cpu_get_clock(void)
129 if (!timers_state.cpu_ticks_enabled) {
130 return timers_state.cpu_clock_offset;
133 return ti + timers_state.cpu_clock_offset;
137 /* enable cpu_get_ticks() */
138 void cpu_enable_ticks(void)
140 if (!timers_state.cpu_ticks_enabled) {
141 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
142 timers_state.cpu_clock_offset -= get_clock();
143 timers_state.cpu_ticks_enabled = 1;
147 /* disable cpu_get_ticks() : the clock is stopped. You must not call
148 cpu_get_ticks() after that. */
149 void cpu_disable_ticks(void)
151 if (timers_state.cpu_ticks_enabled) {
152 timers_state.cpu_ticks_offset = cpu_get_ticks();
153 timers_state.cpu_clock_offset = cpu_get_clock();
154 timers_state.cpu_ticks_enabled = 0;
158 /* Correlation between real and virtual time is always going to be
159 fairly approximate, so ignore small variation.
160 When the guest is idle real and virtual time will be aligned in
162 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
164 static void icount_adjust(void)
169 static int64_t last_delta;
170 /* If the VM is not running, then do nothing. */
171 if (!runstate_is_running()) {
174 cur_time = cpu_get_clock();
175 cur_icount = qemu_get_clock_ns(vm_clock);
176 delta = cur_icount - cur_time;
177 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
179 && last_delta + ICOUNT_WOBBLE < delta * 2
180 && icount_time_shift > 0) {
181 /* The guest is getting too far ahead. Slow time down. */
185 && last_delta - ICOUNT_WOBBLE > delta * 2
186 && icount_time_shift < MAX_ICOUNT_SHIFT) {
187 /* The guest is getting too far behind. Speed time up. */
191 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
194 static void icount_adjust_rt(void *opaque)
196 qemu_mod_timer(icount_rt_timer,
197 qemu_get_clock_ms(rt_clock) + 1000);
201 static void icount_adjust_vm(void *opaque)
203 qemu_mod_timer(icount_vm_timer,
204 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
208 static int64_t qemu_icount_round(int64_t count)
210 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
213 static void icount_warp_rt(void *opaque)
215 if (vm_clock_warp_start == -1) {
219 if (runstate_is_running()) {
220 int64_t clock = qemu_get_clock_ns(rt_clock);
221 int64_t warp_delta = clock - vm_clock_warp_start;
222 if (use_icount == 1) {
223 qemu_icount_bias += warp_delta;
226 * In adaptive mode, do not let the vm_clock run too
227 * far ahead of real time.
229 int64_t cur_time = cpu_get_clock();
230 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
231 int64_t delta = cur_time - cur_icount;
232 qemu_icount_bias += MIN(warp_delta, delta);
234 if (qemu_clock_expired(vm_clock)) {
238 vm_clock_warp_start = -1;
241 void qemu_clock_warp(QEMUClock *clock)
246 * There are too many global variables to make the "warp" behavior
247 * applicable to other clocks. But a clock argument removes the
248 * need for if statements all over the place.
250 if (clock != vm_clock || !use_icount) {
255 * If the CPUs have been sleeping, advance the vm_clock timer now. This
256 * ensures that the deadline for the timer is computed correctly below.
257 * This also makes sure that the insn counter is synchronized before the
258 * CPU starts running, in case the CPU is woken by an event other than
259 * the earliest vm_clock timer.
261 icount_warp_rt(NULL);
262 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
263 qemu_del_timer(icount_warp_timer);
267 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
268 deadline = qemu_clock_deadline(vm_clock);
271 * Ensure the vm_clock proceeds even when the virtual CPU goes to
272 * sleep. Otherwise, the CPU might be waiting for a future timer
273 * interrupt to wake it up, but the interrupt never comes because
274 * the vCPU isn't running any insns and thus doesn't advance the
277 * An extreme solution for this problem would be to never let VCPUs
278 * sleep in icount mode if there is a pending vm_clock timer; rather
279 * time could just advance to the next vm_clock event. Instead, we
280 * do stop VCPUs and only advance vm_clock after some "real" time,
281 * (related to the time left until the next event) has passed. This
282 * rt_clock timer will do this. This avoids that the warps are too
283 * visible externally---for example, you will not be sending network
284 * packets continuously instead of every 100ms.
286 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
292 static const VMStateDescription vmstate_timers = {
295 .minimum_version_id = 1,
296 .minimum_version_id_old = 1,
297 .fields = (VMStateField[]) {
298 VMSTATE_INT64(cpu_ticks_offset, TimersState),
299 VMSTATE_INT64(dummy, TimersState),
300 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
301 VMSTATE_END_OF_LIST()
305 void configure_icount(const char *option)
307 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
312 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
313 if (strcmp(option, "auto") != 0) {
314 icount_time_shift = strtol(option, NULL, 0);
321 /* 125MIPS seems a reasonable initial guess at the guest speed.
322 It will be corrected fairly quickly anyway. */
323 icount_time_shift = 3;
325 /* Have both realtime and virtual time triggers for speed adjustment.
326 The realtime trigger catches emulated time passing too slowly,
327 the virtual time trigger catches emulated time passing too fast.
328 Realtime triggers occur even when idle, so use them less frequently
330 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
331 qemu_mod_timer(icount_rt_timer,
332 qemu_get_clock_ms(rt_clock) + 1000);
333 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
334 qemu_mod_timer(icount_vm_timer,
335 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
338 /***********************************************************/
339 void hw_error(const char *fmt, ...)
345 fprintf(stderr, "qemu: hardware error: ");
346 vfprintf(stderr, fmt, ap);
347 fprintf(stderr, "\n");
348 for(env = first_cpu; env != NULL; env = env->next_cpu) {
349 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
351 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
353 cpu_dump_state(env, stderr, fprintf, 0);
360 void cpu_synchronize_all_states(void)
364 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
365 cpu_synchronize_state(cpu);
369 void cpu_synchronize_all_post_reset(void)
373 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
374 cpu_synchronize_post_reset(cpu);
378 void cpu_synchronize_all_post_init(void)
382 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
383 cpu_synchronize_post_init(cpu);
387 int cpu_is_stopped(CPUState *env)
389 return !runstate_is_running() || env->stopped;
392 static void do_vm_stop(RunState state)
394 if (runstate_is_running()) {
398 vm_state_notify(0, state);
401 monitor_protocol_event(QEVENT_STOP, NULL);
405 static int cpu_can_run(CPUState *env)
410 if (env->stopped || !runstate_is_running()) {
416 static bool cpu_thread_is_idle(CPUState *env)
418 if (env->stop || env->queued_work_first) {
421 if (env->stopped || !runstate_is_running()) {
424 if (!env->halted || qemu_cpu_has_work(env) ||
425 (kvm_enabled() && kvm_irqchip_in_kernel())) {
431 bool all_cpu_threads_idle(void)
435 for (env = first_cpu; env != NULL; env = env->next_cpu) {
436 if (!cpu_thread_is_idle(env)) {
443 static void cpu_handle_guest_debug(CPUState *env)
445 gdb_set_stop_cpu(env);
446 qemu_system_debug_request();
450 static void cpu_signal(int sig)
452 if (cpu_single_env) {
453 cpu_exit(cpu_single_env);
459 static void sigbus_reraise(void)
462 struct sigaction action;
464 memset(&action, 0, sizeof(action));
465 action.sa_handler = SIG_DFL;
466 if (!sigaction(SIGBUS, &action, NULL)) {
469 sigaddset(&set, SIGBUS);
470 sigprocmask(SIG_UNBLOCK, &set, NULL);
472 perror("Failed to re-raise SIGBUS!\n");
476 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
479 if (kvm_on_sigbus(siginfo->ssi_code,
480 (void *)(intptr_t)siginfo->ssi_addr)) {
485 static void qemu_init_sigbus(void)
487 struct sigaction action;
489 memset(&action, 0, sizeof(action));
490 action.sa_flags = SA_SIGINFO;
491 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
492 sigaction(SIGBUS, &action, NULL);
494 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
497 static void qemu_kvm_eat_signals(CPUState *env)
499 struct timespec ts = { 0, 0 };
505 sigemptyset(&waitset);
506 sigaddset(&waitset, SIG_IPI);
507 sigaddset(&waitset, SIGBUS);
510 r = sigtimedwait(&waitset, &siginfo, &ts);
511 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
512 perror("sigtimedwait");
518 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
526 r = sigpending(&chkset);
528 perror("sigpending");
531 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
534 #else /* !CONFIG_LINUX */
536 static void qemu_init_sigbus(void)
540 static void qemu_kvm_eat_signals(CPUState *env)
543 #endif /* !CONFIG_LINUX */
546 static void dummy_signal(int sig)
550 static void qemu_kvm_init_cpu_signals(CPUState *env)
554 struct sigaction sigact;
556 memset(&sigact, 0, sizeof(sigact));
557 sigact.sa_handler = dummy_signal;
558 sigaction(SIG_IPI, &sigact, NULL);
560 pthread_sigmask(SIG_BLOCK, NULL, &set);
561 sigdelset(&set, SIG_IPI);
562 sigdelset(&set, SIGBUS);
563 r = kvm_set_signal_mask(env, &set);
565 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
570 static void qemu_tcg_init_cpu_signals(void)
573 struct sigaction sigact;
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = cpu_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
580 sigaddset(&set, SIG_IPI);
581 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
585 static void qemu_kvm_init_cpu_signals(CPUState *env)
590 static void qemu_tcg_init_cpu_signals(void)
595 QemuMutex qemu_global_mutex;
596 static QemuCond qemu_io_proceeded_cond;
597 static bool iothread_requesting_mutex;
599 static QemuThread io_thread;
601 static QemuThread *tcg_cpu_thread;
602 static QemuCond *tcg_halt_cond;
605 static QemuCond qemu_cpu_cond;
607 static QemuCond qemu_pause_cond;
608 static QemuCond qemu_work_cond;
610 void qemu_init_cpu_loop(void)
613 qemu_cond_init(&qemu_cpu_cond);
614 qemu_cond_init(&qemu_pause_cond);
615 qemu_cond_init(&qemu_work_cond);
616 qemu_cond_init(&qemu_io_proceeded_cond);
617 qemu_mutex_init(&qemu_global_mutex);
619 qemu_thread_get_self(&io_thread);
622 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
624 struct qemu_work_item wi;
626 if (qemu_cpu_is_self(env)) {
633 if (!env->queued_work_first) {
634 env->queued_work_first = &wi;
636 env->queued_work_last->next = &wi;
638 env->queued_work_last = &wi;
644 CPUState *self_env = cpu_single_env;
646 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
647 cpu_single_env = self_env;
651 static void flush_queued_work(CPUState *env)
653 struct qemu_work_item *wi;
655 if (!env->queued_work_first) {
659 while ((wi = env->queued_work_first)) {
660 env->queued_work_first = wi->next;
664 env->queued_work_last = NULL;
665 qemu_cond_broadcast(&qemu_work_cond);
668 static void qemu_wait_io_event_common(CPUState *env)
673 qemu_cond_signal(&qemu_pause_cond);
675 flush_queued_work(env);
676 env->thread_kicked = false;
679 static void qemu_tcg_wait_io_event(void)
683 while (all_cpu_threads_idle()) {
684 /* Start accounting real time to the virtual clock if the CPUs
686 qemu_clock_warp(vm_clock);
687 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
690 while (iothread_requesting_mutex) {
691 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
694 for (env = first_cpu; env != NULL; env = env->next_cpu) {
695 qemu_wait_io_event_common(env);
699 static void qemu_kvm_wait_io_event(CPUState *env)
701 while (cpu_thread_is_idle(env)) {
702 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
705 qemu_kvm_eat_signals(env);
706 qemu_wait_io_event_common(env);
709 static void *qemu_kvm_cpu_thread_fn(void *arg)
714 qemu_mutex_lock(&qemu_global_mutex);
715 qemu_thread_get_self(env->thread);
716 env->thread_id = qemu_get_thread_id();
717 cpu_single_env = env;
719 r = kvm_init_vcpu(env);
721 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
725 qemu_kvm_init_cpu_signals(env);
727 /* signal CPU creation */
729 qemu_cond_signal(&qemu_cpu_cond);
732 if (cpu_can_run(env)) {
733 r = kvm_cpu_exec(env);
734 if (r == EXCP_DEBUG) {
735 cpu_handle_guest_debug(env);
738 qemu_kvm_wait_io_event(env);
744 static void tcg_exec_all(void);
746 static void *qemu_tcg_cpu_thread_fn(void *arg)
750 qemu_tcg_init_cpu_signals();
751 qemu_thread_get_self(env->thread);
753 /* signal CPU creation */
754 qemu_mutex_lock(&qemu_global_mutex);
755 for (env = first_cpu; env != NULL; env = env->next_cpu) {
756 env->thread_id = qemu_get_thread_id();
759 qemu_cond_signal(&qemu_cpu_cond);
761 /* wait for initial kick-off after machine start */
762 while (first_cpu->stopped) {
763 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
768 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
771 qemu_tcg_wait_io_event();
777 static void qemu_cpu_kick_thread(CPUState *env)
782 err = pthread_kill(env->thread->thread, SIG_IPI);
784 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
788 if (!qemu_cpu_is_self(env)) {
789 SuspendThread(env->hThread);
791 ResumeThread(env->hThread);
796 void qemu_cpu_kick(void *_env)
798 CPUState *env = _env;
800 qemu_cond_broadcast(env->halt_cond);
801 if (kvm_enabled() && !env->thread_kicked) {
802 qemu_cpu_kick_thread(env);
803 env->thread_kicked = true;
807 void qemu_cpu_kick_self(void)
810 assert(cpu_single_env);
812 if (!cpu_single_env->thread_kicked) {
813 qemu_cpu_kick_thread(cpu_single_env);
814 cpu_single_env->thread_kicked = true;
821 int qemu_cpu_is_self(void *_env)
823 CPUState *env = _env;
825 return qemu_thread_is_self(env->thread);
828 void qemu_mutex_lock_iothread(void)
831 qemu_mutex_lock(&qemu_global_mutex);
833 iothread_requesting_mutex = true;
834 if (qemu_mutex_trylock(&qemu_global_mutex)) {
835 qemu_cpu_kick_thread(first_cpu);
836 qemu_mutex_lock(&qemu_global_mutex);
838 iothread_requesting_mutex = false;
839 qemu_cond_broadcast(&qemu_io_proceeded_cond);
843 void qemu_mutex_unlock_iothread(void)
845 qemu_mutex_unlock(&qemu_global_mutex);
848 static int all_vcpus_paused(void)
850 CPUState *penv = first_cpu;
853 if (!penv->stopped) {
856 penv = penv->next_cpu;
862 void pause_all_vcpus(void)
864 CPUState *penv = first_cpu;
866 qemu_clock_enable(vm_clock, false);
870 penv = penv->next_cpu;
873 while (!all_vcpus_paused()) {
874 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
878 penv = penv->next_cpu;
883 void resume_all_vcpus(void)
885 CPUState *penv = first_cpu;
887 qemu_clock_enable(vm_clock, true);
892 penv = penv->next_cpu;
896 static void qemu_tcg_init_vcpu(void *_env)
898 CPUState *env = _env;
900 /* share a single thread for all cpus with TCG */
901 if (!tcg_cpu_thread) {
902 env->thread = g_malloc0(sizeof(QemuThread));
903 env->halt_cond = g_malloc0(sizeof(QemuCond));
904 qemu_cond_init(env->halt_cond);
905 tcg_halt_cond = env->halt_cond;
906 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
907 QEMU_THREAD_JOINABLE);
909 env->hThread = qemu_thread_get_handle(env->thread);
911 while (env->created == 0) {
912 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
914 tcg_cpu_thread = env->thread;
916 env->thread = tcg_cpu_thread;
917 env->halt_cond = tcg_halt_cond;
921 static void qemu_kvm_start_vcpu(CPUState *env)
923 env->thread = g_malloc0(sizeof(QemuThread));
924 env->halt_cond = g_malloc0(sizeof(QemuCond));
925 qemu_cond_init(env->halt_cond);
926 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
927 QEMU_THREAD_JOINABLE);
928 while (env->created == 0) {
929 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
933 void qemu_init_vcpu(void *_env)
935 CPUState *env = _env;
937 env->nr_cores = smp_cores;
938 env->nr_threads = smp_threads;
941 qemu_kvm_start_vcpu(env);
943 qemu_tcg_init_vcpu(env);
947 void cpu_stop_current(void)
949 if (cpu_single_env) {
950 cpu_single_env->stop = 0;
951 cpu_single_env->stopped = 1;
952 cpu_exit(cpu_single_env);
953 qemu_cond_signal(&qemu_pause_cond);
957 void vm_stop(RunState state)
959 if (!qemu_thread_is_self(&io_thread)) {
960 qemu_system_vmstop_request(state);
962 * FIXME: should not return to device code in case
963 * vm_stop() has been requested.
971 /* does a state transition even if the VM is already stopped,
972 current state is forgotten forever */
973 void vm_stop_force_state(RunState state)
975 if (runstate_is_running()) {
982 static int tcg_cpu_exec(CPUState *env)
985 #ifdef CONFIG_PROFILER
989 #ifdef CONFIG_PROFILER
990 ti = profile_getclock();
995 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
996 env->icount_decr.u16.low = 0;
997 env->icount_extra = 0;
998 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
999 qemu_icount += count;
1000 decr = (count > 0xffff) ? 0xffff : count;
1002 env->icount_decr.u16.low = decr;
1003 env->icount_extra = count;
1005 ret = cpu_exec(env);
1006 #ifdef CONFIG_PROFILER
1007 qemu_time += profile_getclock() - ti;
1010 /* Fold pending instructions back into the
1011 instruction counter, and clear the interrupt flag. */
1012 qemu_icount -= (env->icount_decr.u16.low
1013 + env->icount_extra);
1014 env->icount_decr.u32 = 0;
1015 env->icount_extra = 0;
1020 static void tcg_exec_all(void)
1024 /* Account partial waits to the vm_clock. */
1025 qemu_clock_warp(vm_clock);
1027 if (next_cpu == NULL) {
1028 next_cpu = first_cpu;
1030 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1031 CPUState *env = next_cpu;
1033 qemu_clock_enable(vm_clock,
1034 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1036 if (cpu_can_run(env)) {
1037 r = tcg_cpu_exec(env);
1038 if (r == EXCP_DEBUG) {
1039 cpu_handle_guest_debug(env);
1042 } else if (env->stop || env->stopped) {
1049 void set_numa_modes(void)
1054 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1055 for (i = 0; i < nb_numa_nodes; i++) {
1056 if (node_cpumask[i] & (1 << env->cpu_index)) {
1063 void set_cpu_log(const char *optarg)
1066 const CPULogItem *item;
1068 mask = cpu_str_to_log_mask(optarg);
1070 printf("Log items (comma separated):\n");
1071 for (item = cpu_log_items; item->mask != 0; item++) {
1072 printf("%-10s %s\n", item->name, item->help);
1079 void set_cpu_log_filename(const char *optarg)
1081 cpu_set_log_filename(optarg);
1084 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1086 /* XXX: implement xxx_cpu_list for targets that still miss it */
1087 #if defined(cpu_list_id)
1088 cpu_list_id(f, cpu_fprintf, optarg);
1089 #elif defined(cpu_list)
1090 cpu_list(f, cpu_fprintf); /* deprecated */
1094 CpuInfoList *qmp_query_cpus(Error **errp)
1096 CpuInfoList *head = NULL, *cur_item = NULL;
1099 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1102 cpu_synchronize_state(env);
1104 info = g_malloc0(sizeof(*info));
1105 info->value = g_malloc0(sizeof(*info->value));
1106 info->value->CPU = env->cpu_index;
1107 info->value->current = (env == first_cpu);
1108 info->value->halted = env->halted;
1109 info->value->thread_id = env->thread_id;
1110 #if defined(TARGET_I386)
1111 info->value->has_pc = true;
1112 info->value->pc = env->eip + env->segs[R_CS].base;
1113 #elif defined(TARGET_PPC)
1114 info->value->has_nip = true;
1115 info->value->nip = env->nip;
1116 #elif defined(TARGET_SPARC)
1117 info->value->has_pc = true;
1118 info->value->pc = env->pc;
1119 info->value->has_npc = true;
1120 info->value->npc = env->npc;
1121 #elif defined(TARGET_MIPS)
1122 info->value->has_PC = true;
1123 info->value->PC = env->active_tc.PC;
1126 /* XXX: waiting for the qapi to support GSList */
1128 head = cur_item = info;
1130 cur_item->next = info;
1138 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1139 bool has_cpu, int64_t cpu_index, Error **errp)
1150 for (env = first_cpu; env; env = env->next_cpu) {
1151 if (cpu_index == env->cpu_index) {
1157 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1162 f = fopen(filename, "wb");
1164 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1172 cpu_memory_rw_debug(env, addr, buf, l, 0);
1173 if (fwrite(buf, 1, l, f) != l) {
1174 error_set(errp, QERR_IO_ERROR);
1185 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1192 f = fopen(filename, "wb");
1194 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1202 cpu_physical_memory_rw(addr, buf, l, 0);
1203 if (fwrite(buf, 1, l, f) != l) {
1204 error_set(errp, QERR_IO_ERROR);
1215 void qmp_inject_nmi(Error **errp)
1217 #if defined(TARGET_I386)
1220 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1221 if (!env->apic_state) {
1222 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1224 apic_deliver_nmi(env->apic_state);
1228 error_set(errp, QERR_UNSUPPORTED);