]> Git Repo - qemu.git/blob - memory.c
memory: support stateless memory listeners
[qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #define WANT_EXEC_OBSOLETE
24 #include "exec-obsolete.h"
25
26 unsigned memory_region_transaction_depth = 0;
27 static bool memory_region_update_pending = false;
28 static bool global_dirty_log = false;
29
30 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
31     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
32
33 typedef struct AddrRange AddrRange;
34
35 /*
36  * Note using signed integers limits us to physical addresses at most
37  * 63 bits wide.  They are needed for negative offsetting in aliases
38  * (large MemoryRegion::alias_offset).
39  */
40 struct AddrRange {
41     Int128 start;
42     Int128 size;
43 };
44
45 static AddrRange addrrange_make(Int128 start, Int128 size)
46 {
47     return (AddrRange) { start, size };
48 }
49
50 static bool addrrange_equal(AddrRange r1, AddrRange r2)
51 {
52     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
53 }
54
55 static Int128 addrrange_end(AddrRange r)
56 {
57     return int128_add(r.start, r.size);
58 }
59
60 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
61 {
62     int128_addto(&range.start, delta);
63     return range;
64 }
65
66 static bool addrrange_contains(AddrRange range, Int128 addr)
67 {
68     return int128_ge(addr, range.start)
69         && int128_lt(addr, addrrange_end(range));
70 }
71
72 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
73 {
74     return addrrange_contains(r1, r2.start)
75         || addrrange_contains(r2, r1.start);
76 }
77
78 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
79 {
80     Int128 start = int128_max(r1.start, r2.start);
81     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
82     return addrrange_make(start, int128_sub(end, start));
83 }
84
85 enum ListenerDirection { Forward, Reverse };
86
87 static bool memory_listener_match(MemoryListener *listener,
88                                   MemoryRegionSection *section)
89 {
90     return !listener->address_space_filter
91         || listener->address_space_filter == section->address_space;
92 }
93
94 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
95     do {                                                                \
96         MemoryListener *_listener;                                      \
97                                                                         \
98         switch (_direction) {                                           \
99         case Forward:                                                   \
100             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
101                 _listener->_callback(_listener, ##_args);               \
102             }                                                           \
103             break;                                                      \
104         case Reverse:                                                   \
105             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
106                                    memory_listeners, link) {            \
107                 _listener->_callback(_listener, ##_args);               \
108             }                                                           \
109             break;                                                      \
110         default:                                                        \
111             abort();                                                    \
112         }                                                               \
113     } while (0)
114
115 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
116     do {                                                                \
117         MemoryListener *_listener;                                      \
118                                                                         \
119         switch (_direction) {                                           \
120         case Forward:                                                   \
121             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
122                 if (memory_listener_match(_listener, _section)) {       \
123                     _listener->_callback(_listener, _section, ##_args); \
124                 }                                                       \
125             }                                                           \
126             break;                                                      \
127         case Reverse:                                                   \
128             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
129                                    memory_listeners, link) {            \
130                 if (memory_listener_match(_listener, _section)) {       \
131                     _listener->_callback(_listener, _section, ##_args); \
132                 }                                                       \
133             }                                                           \
134             break;                                                      \
135         default:                                                        \
136             abort();                                                    \
137         }                                                               \
138     } while (0)
139
140 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
141     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
142         .mr = (fr)->mr,                                                 \
143         .address_space = (as)->root,                                    \
144         .offset_within_region = (fr)->offset_in_region,                 \
145         .size = int128_get64((fr)->addr.size),                          \
146         .offset_within_address_space = int128_get64((fr)->addr.start),  \
147         .readonly = (fr)->readonly,                                     \
148               }))
149
150 struct CoalescedMemoryRange {
151     AddrRange addr;
152     QTAILQ_ENTRY(CoalescedMemoryRange) link;
153 };
154
155 struct MemoryRegionIoeventfd {
156     AddrRange addr;
157     bool match_data;
158     uint64_t data;
159     int fd;
160 };
161
162 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
163                                            MemoryRegionIoeventfd b)
164 {
165     if (int128_lt(a.addr.start, b.addr.start)) {
166         return true;
167     } else if (int128_gt(a.addr.start, b.addr.start)) {
168         return false;
169     } else if (int128_lt(a.addr.size, b.addr.size)) {
170         return true;
171     } else if (int128_gt(a.addr.size, b.addr.size)) {
172         return false;
173     } else if (a.match_data < b.match_data) {
174         return true;
175     } else  if (a.match_data > b.match_data) {
176         return false;
177     } else if (a.match_data) {
178         if (a.data < b.data) {
179             return true;
180         } else if (a.data > b.data) {
181             return false;
182         }
183     }
184     if (a.fd < b.fd) {
185         return true;
186     } else if (a.fd > b.fd) {
187         return false;
188     }
189     return false;
190 }
191
192 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
193                                           MemoryRegionIoeventfd b)
194 {
195     return !memory_region_ioeventfd_before(a, b)
196         && !memory_region_ioeventfd_before(b, a);
197 }
198
199 typedef struct FlatRange FlatRange;
200 typedef struct FlatView FlatView;
201
202 /* Range of memory in the global map.  Addresses are absolute. */
203 struct FlatRange {
204     MemoryRegion *mr;
205     target_phys_addr_t offset_in_region;
206     AddrRange addr;
207     uint8_t dirty_log_mask;
208     bool readable;
209     bool readonly;
210 };
211
212 /* Flattened global view of current active memory hierarchy.  Kept in sorted
213  * order.
214  */
215 struct FlatView {
216     FlatRange *ranges;
217     unsigned nr;
218     unsigned nr_allocated;
219 };
220
221 typedef struct AddressSpace AddressSpace;
222 typedef struct AddressSpaceOps AddressSpaceOps;
223
224 /* A system address space - I/O, memory, etc. */
225 struct AddressSpace {
226     MemoryRegion *root;
227     FlatView current_map;
228     int ioeventfd_nb;
229     MemoryRegionIoeventfd *ioeventfds;
230 };
231
232 #define FOR_EACH_FLAT_RANGE(var, view)          \
233     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
234
235 static bool flatrange_equal(FlatRange *a, FlatRange *b)
236 {
237     return a->mr == b->mr
238         && addrrange_equal(a->addr, b->addr)
239         && a->offset_in_region == b->offset_in_region
240         && a->readable == b->readable
241         && a->readonly == b->readonly;
242 }
243
244 static void flatview_init(FlatView *view)
245 {
246     view->ranges = NULL;
247     view->nr = 0;
248     view->nr_allocated = 0;
249 }
250
251 /* Insert a range into a given position.  Caller is responsible for maintaining
252  * sorting order.
253  */
254 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
255 {
256     if (view->nr == view->nr_allocated) {
257         view->nr_allocated = MAX(2 * view->nr, 10);
258         view->ranges = g_realloc(view->ranges,
259                                     view->nr_allocated * sizeof(*view->ranges));
260     }
261     memmove(view->ranges + pos + 1, view->ranges + pos,
262             (view->nr - pos) * sizeof(FlatRange));
263     view->ranges[pos] = *range;
264     ++view->nr;
265 }
266
267 static void flatview_destroy(FlatView *view)
268 {
269     g_free(view->ranges);
270 }
271
272 static bool can_merge(FlatRange *r1, FlatRange *r2)
273 {
274     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
275         && r1->mr == r2->mr
276         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
277                                 r1->addr.size),
278                      int128_make64(r2->offset_in_region))
279         && r1->dirty_log_mask == r2->dirty_log_mask
280         && r1->readable == r2->readable
281         && r1->readonly == r2->readonly;
282 }
283
284 /* Attempt to simplify a view by merging ajacent ranges */
285 static void flatview_simplify(FlatView *view)
286 {
287     unsigned i, j;
288
289     i = 0;
290     while (i < view->nr) {
291         j = i + 1;
292         while (j < view->nr
293                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
294             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
295             ++j;
296         }
297         ++i;
298         memmove(&view->ranges[i], &view->ranges[j],
299                 (view->nr - j) * sizeof(view->ranges[j]));
300         view->nr -= j - i;
301     }
302 }
303
304 static void memory_region_read_accessor(void *opaque,
305                                         target_phys_addr_t addr,
306                                         uint64_t *value,
307                                         unsigned size,
308                                         unsigned shift,
309                                         uint64_t mask)
310 {
311     MemoryRegion *mr = opaque;
312     uint64_t tmp;
313
314     tmp = mr->ops->read(mr->opaque, addr, size);
315     *value |= (tmp & mask) << shift;
316 }
317
318 static void memory_region_write_accessor(void *opaque,
319                                          target_phys_addr_t addr,
320                                          uint64_t *value,
321                                          unsigned size,
322                                          unsigned shift,
323                                          uint64_t mask)
324 {
325     MemoryRegion *mr = opaque;
326     uint64_t tmp;
327
328     tmp = (*value >> shift) & mask;
329     mr->ops->write(mr->opaque, addr, tmp, size);
330 }
331
332 static void access_with_adjusted_size(target_phys_addr_t addr,
333                                       uint64_t *value,
334                                       unsigned size,
335                                       unsigned access_size_min,
336                                       unsigned access_size_max,
337                                       void (*access)(void *opaque,
338                                                      target_phys_addr_t addr,
339                                                      uint64_t *value,
340                                                      unsigned size,
341                                                      unsigned shift,
342                                                      uint64_t mask),
343                                       void *opaque)
344 {
345     uint64_t access_mask;
346     unsigned access_size;
347     unsigned i;
348
349     if (!access_size_min) {
350         access_size_min = 1;
351     }
352     if (!access_size_max) {
353         access_size_max = 4;
354     }
355     access_size = MAX(MIN(size, access_size_max), access_size_min);
356     access_mask = -1ULL >> (64 - access_size * 8);
357     for (i = 0; i < size; i += access_size) {
358         /* FIXME: big-endian support */
359         access(opaque, addr + i, value, access_size, i * 8, access_mask);
360     }
361 }
362
363 static AddressSpace address_space_memory;
364
365 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
366                                              unsigned width, bool write)
367 {
368     const MemoryRegionPortio *mrp;
369
370     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
371         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
372             && width == mrp->size
373             && (write ? (bool)mrp->write : (bool)mrp->read)) {
374             return mrp;
375         }
376     }
377     return NULL;
378 }
379
380 static void memory_region_iorange_read(IORange *iorange,
381                                        uint64_t offset,
382                                        unsigned width,
383                                        uint64_t *data)
384 {
385     MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
386
387     if (mr->ops->old_portio) {
388         const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
389
390         *data = ((uint64_t)1 << (width * 8)) - 1;
391         if (mrp) {
392             *data = mrp->read(mr->opaque, offset);
393         } else if (width == 2) {
394             mrp = find_portio(mr, offset, 1, false);
395             assert(mrp);
396             *data = mrp->read(mr->opaque, offset) |
397                     (mrp->read(mr->opaque, offset + 1) << 8);
398         }
399         return;
400     }
401     *data = 0;
402     access_with_adjusted_size(offset, data, width,
403                               mr->ops->impl.min_access_size,
404                               mr->ops->impl.max_access_size,
405                               memory_region_read_accessor, mr);
406 }
407
408 static void memory_region_iorange_write(IORange *iorange,
409                                         uint64_t offset,
410                                         unsigned width,
411                                         uint64_t data)
412 {
413     MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
414
415     if (mr->ops->old_portio) {
416         const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
417
418         if (mrp) {
419             mrp->write(mr->opaque, offset, data);
420         } else if (width == 2) {
421             mrp = find_portio(mr, offset, 1, false);
422             assert(mrp);
423             mrp->write(mr->opaque, offset, data & 0xff);
424             mrp->write(mr->opaque, offset + 1, data >> 8);
425         }
426         return;
427     }
428     access_with_adjusted_size(offset, &data, width,
429                               mr->ops->impl.min_access_size,
430                               mr->ops->impl.max_access_size,
431                               memory_region_write_accessor, mr);
432 }
433
434 const IORangeOps memory_region_iorange_ops = {
435     .read = memory_region_iorange_read,
436     .write = memory_region_iorange_write,
437 };
438
439 static AddressSpace address_space_io;
440
441 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
442 {
443     while (mr->parent) {
444         mr = mr->parent;
445     }
446     if (mr == address_space_memory.root) {
447         return &address_space_memory;
448     }
449     if (mr == address_space_io.root) {
450         return &address_space_io;
451     }
452     abort();
453 }
454
455 /* Render a memory region into the global view.  Ranges in @view obscure
456  * ranges in @mr.
457  */
458 static void render_memory_region(FlatView *view,
459                                  MemoryRegion *mr,
460                                  Int128 base,
461                                  AddrRange clip,
462                                  bool readonly)
463 {
464     MemoryRegion *subregion;
465     unsigned i;
466     target_phys_addr_t offset_in_region;
467     Int128 remain;
468     Int128 now;
469     FlatRange fr;
470     AddrRange tmp;
471
472     if (!mr->enabled) {
473         return;
474     }
475
476     int128_addto(&base, int128_make64(mr->addr));
477     readonly |= mr->readonly;
478
479     tmp = addrrange_make(base, mr->size);
480
481     if (!addrrange_intersects(tmp, clip)) {
482         return;
483     }
484
485     clip = addrrange_intersection(tmp, clip);
486
487     if (mr->alias) {
488         int128_subfrom(&base, int128_make64(mr->alias->addr));
489         int128_subfrom(&base, int128_make64(mr->alias_offset));
490         render_memory_region(view, mr->alias, base, clip, readonly);
491         return;
492     }
493
494     /* Render subregions in priority order. */
495     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
496         render_memory_region(view, subregion, base, clip, readonly);
497     }
498
499     if (!mr->terminates) {
500         return;
501     }
502
503     offset_in_region = int128_get64(int128_sub(clip.start, base));
504     base = clip.start;
505     remain = clip.size;
506
507     /* Render the region itself into any gaps left by the current view. */
508     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
509         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
510             continue;
511         }
512         if (int128_lt(base, view->ranges[i].addr.start)) {
513             now = int128_min(remain,
514                              int128_sub(view->ranges[i].addr.start, base));
515             fr.mr = mr;
516             fr.offset_in_region = offset_in_region;
517             fr.addr = addrrange_make(base, now);
518             fr.dirty_log_mask = mr->dirty_log_mask;
519             fr.readable = mr->readable;
520             fr.readonly = readonly;
521             flatview_insert(view, i, &fr);
522             ++i;
523             int128_addto(&base, now);
524             offset_in_region += int128_get64(now);
525             int128_subfrom(&remain, now);
526         }
527         if (int128_eq(base, view->ranges[i].addr.start)) {
528             now = int128_min(remain, view->ranges[i].addr.size);
529             int128_addto(&base, now);
530             offset_in_region += int128_get64(now);
531             int128_subfrom(&remain, now);
532         }
533     }
534     if (int128_nz(remain)) {
535         fr.mr = mr;
536         fr.offset_in_region = offset_in_region;
537         fr.addr = addrrange_make(base, remain);
538         fr.dirty_log_mask = mr->dirty_log_mask;
539         fr.readable = mr->readable;
540         fr.readonly = readonly;
541         flatview_insert(view, i, &fr);
542     }
543 }
544
545 /* Render a memory topology into a list of disjoint absolute ranges. */
546 static FlatView generate_memory_topology(MemoryRegion *mr)
547 {
548     FlatView view;
549
550     flatview_init(&view);
551
552     render_memory_region(&view, mr, int128_zero(),
553                          addrrange_make(int128_zero(), int128_2_64()), false);
554     flatview_simplify(&view);
555
556     return view;
557 }
558
559 static void address_space_add_del_ioeventfds(AddressSpace *as,
560                                              MemoryRegionIoeventfd *fds_new,
561                                              unsigned fds_new_nb,
562                                              MemoryRegionIoeventfd *fds_old,
563                                              unsigned fds_old_nb)
564 {
565     unsigned iold, inew;
566     MemoryRegionIoeventfd *fd;
567     MemoryRegionSection section;
568
569     /* Generate a symmetric difference of the old and new fd sets, adding
570      * and deleting as necessary.
571      */
572
573     iold = inew = 0;
574     while (iold < fds_old_nb || inew < fds_new_nb) {
575         if (iold < fds_old_nb
576             && (inew == fds_new_nb
577                 || memory_region_ioeventfd_before(fds_old[iold],
578                                                   fds_new[inew]))) {
579             fd = &fds_old[iold];
580             section = (MemoryRegionSection) {
581                 .address_space = as->root,
582                 .offset_within_address_space = int128_get64(fd->addr.start),
583                 .size = int128_get64(fd->addr.size),
584             };
585             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
586                                  fd->match_data, fd->data, fd->fd);
587             ++iold;
588         } else if (inew < fds_new_nb
589                    && (iold == fds_old_nb
590                        || memory_region_ioeventfd_before(fds_new[inew],
591                                                          fds_old[iold]))) {
592             fd = &fds_new[inew];
593             section = (MemoryRegionSection) {
594                 .address_space = as->root,
595                 .offset_within_address_space = int128_get64(fd->addr.start),
596                 .size = int128_get64(fd->addr.size),
597             };
598             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
599                                  fd->match_data, fd->data, fd->fd);
600             ++inew;
601         } else {
602             ++iold;
603             ++inew;
604         }
605     }
606 }
607
608 static void address_space_update_ioeventfds(AddressSpace *as)
609 {
610     FlatRange *fr;
611     unsigned ioeventfd_nb = 0;
612     MemoryRegionIoeventfd *ioeventfds = NULL;
613     AddrRange tmp;
614     unsigned i;
615
616     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
617         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
618             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
619                                   int128_sub(fr->addr.start,
620                                              int128_make64(fr->offset_in_region)));
621             if (addrrange_intersects(fr->addr, tmp)) {
622                 ++ioeventfd_nb;
623                 ioeventfds = g_realloc(ioeventfds,
624                                           ioeventfd_nb * sizeof(*ioeventfds));
625                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
626                 ioeventfds[ioeventfd_nb-1].addr = tmp;
627             }
628         }
629     }
630
631     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
632                                      as->ioeventfds, as->ioeventfd_nb);
633
634     g_free(as->ioeventfds);
635     as->ioeventfds = ioeventfds;
636     as->ioeventfd_nb = ioeventfd_nb;
637 }
638
639 static void address_space_update_topology_pass(AddressSpace *as,
640                                                FlatView old_view,
641                                                FlatView new_view,
642                                                bool adding)
643 {
644     unsigned iold, inew;
645     FlatRange *frold, *frnew;
646
647     /* Generate a symmetric difference of the old and new memory maps.
648      * Kill ranges in the old map, and instantiate ranges in the new map.
649      */
650     iold = inew = 0;
651     while (iold < old_view.nr || inew < new_view.nr) {
652         if (iold < old_view.nr) {
653             frold = &old_view.ranges[iold];
654         } else {
655             frold = NULL;
656         }
657         if (inew < new_view.nr) {
658             frnew = &new_view.ranges[inew];
659         } else {
660             frnew = NULL;
661         }
662
663         if (frold
664             && (!frnew
665                 || int128_lt(frold->addr.start, frnew->addr.start)
666                 || (int128_eq(frold->addr.start, frnew->addr.start)
667                     && !flatrange_equal(frold, frnew)))) {
668             /* In old, but (not in new, or in new but attributes changed). */
669
670             if (!adding) {
671                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
672             }
673
674             ++iold;
675         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
676             /* In both (logging may have changed) */
677
678             if (adding) {
679                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
680                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
681                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
682                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
683                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
684                 }
685             }
686
687             ++iold;
688             ++inew;
689         } else {
690             /* In new */
691
692             if (adding) {
693                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
694             }
695
696             ++inew;
697         }
698     }
699 }
700
701
702 static void address_space_update_topology(AddressSpace *as)
703 {
704     FlatView old_view = as->current_map;
705     FlatView new_view = generate_memory_topology(as->root);
706
707     address_space_update_topology_pass(as, old_view, new_view, false);
708     address_space_update_topology_pass(as, old_view, new_view, true);
709
710     as->current_map = new_view;
711     flatview_destroy(&old_view);
712     address_space_update_ioeventfds(as);
713 }
714
715 static void memory_region_update_topology(MemoryRegion *mr)
716 {
717     if (memory_region_transaction_depth) {
718         memory_region_update_pending |= !mr || mr->enabled;
719         return;
720     }
721
722     if (mr && !mr->enabled) {
723         return;
724     }
725
726     MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
727
728     if (address_space_memory.root) {
729         address_space_update_topology(&address_space_memory);
730     }
731     if (address_space_io.root) {
732         address_space_update_topology(&address_space_io);
733     }
734
735     MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
736
737     memory_region_update_pending = false;
738 }
739
740 void memory_region_transaction_begin(void)
741 {
742     ++memory_region_transaction_depth;
743 }
744
745 void memory_region_transaction_commit(void)
746 {
747     assert(memory_region_transaction_depth);
748     --memory_region_transaction_depth;
749     if (!memory_region_transaction_depth && memory_region_update_pending) {
750         memory_region_update_topology(NULL);
751     }
752 }
753
754 static void memory_region_destructor_none(MemoryRegion *mr)
755 {
756 }
757
758 static void memory_region_destructor_ram(MemoryRegion *mr)
759 {
760     qemu_ram_free(mr->ram_addr);
761 }
762
763 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
764 {
765     qemu_ram_free_from_ptr(mr->ram_addr);
766 }
767
768 static void memory_region_destructor_iomem(MemoryRegion *mr)
769 {
770     cpu_unregister_io_memory(mr->ram_addr);
771 }
772
773 static void memory_region_destructor_rom_device(MemoryRegion *mr)
774 {
775     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
776     cpu_unregister_io_memory(mr->ram_addr & ~TARGET_PAGE_MASK);
777 }
778
779 static bool memory_region_wrong_endianness(MemoryRegion *mr)
780 {
781 #ifdef TARGET_WORDS_BIGENDIAN
782     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
783 #else
784     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
785 #endif
786 }
787
788 void memory_region_init(MemoryRegion *mr,
789                         const char *name,
790                         uint64_t size)
791 {
792     mr->ops = NULL;
793     mr->parent = NULL;
794     mr->size = int128_make64(size);
795     if (size == UINT64_MAX) {
796         mr->size = int128_2_64();
797     }
798     mr->addr = 0;
799     mr->subpage = false;
800     mr->enabled = true;
801     mr->terminates = false;
802     mr->ram = false;
803     mr->readable = true;
804     mr->readonly = false;
805     mr->rom_device = false;
806     mr->destructor = memory_region_destructor_none;
807     mr->priority = 0;
808     mr->may_overlap = false;
809     mr->alias = NULL;
810     QTAILQ_INIT(&mr->subregions);
811     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
812     QTAILQ_INIT(&mr->coalesced);
813     mr->name = g_strdup(name);
814     mr->dirty_log_mask = 0;
815     mr->ioeventfd_nb = 0;
816     mr->ioeventfds = NULL;
817 }
818
819 static bool memory_region_access_valid(MemoryRegion *mr,
820                                        target_phys_addr_t addr,
821                                        unsigned size,
822                                        bool is_write)
823 {
824     if (mr->ops->valid.accepts
825         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
826         return false;
827     }
828
829     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
830         return false;
831     }
832
833     /* Treat zero as compatibility all valid */
834     if (!mr->ops->valid.max_access_size) {
835         return true;
836     }
837
838     if (size > mr->ops->valid.max_access_size
839         || size < mr->ops->valid.min_access_size) {
840         return false;
841     }
842     return true;
843 }
844
845 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
846                                              target_phys_addr_t addr,
847                                              unsigned size)
848 {
849     uint64_t data = 0;
850
851     if (!memory_region_access_valid(mr, addr, size, false)) {
852         return -1U; /* FIXME: better signalling */
853     }
854
855     if (!mr->ops->read) {
856         return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
857     }
858
859     /* FIXME: support unaligned access */
860     access_with_adjusted_size(addr, &data, size,
861                               mr->ops->impl.min_access_size,
862                               mr->ops->impl.max_access_size,
863                               memory_region_read_accessor, mr);
864
865     return data;
866 }
867
868 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
869 {
870     if (memory_region_wrong_endianness(mr)) {
871         switch (size) {
872         case 1:
873             break;
874         case 2:
875             *data = bswap16(*data);
876             break;
877         case 4:
878             *data = bswap32(*data);
879             break;
880         default:
881             abort();
882         }
883     }
884 }
885
886 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
887                                             target_phys_addr_t addr,
888                                             unsigned size)
889 {
890     uint64_t ret;
891
892     ret = memory_region_dispatch_read1(mr, addr, size);
893     adjust_endianness(mr, &ret, size);
894     return ret;
895 }
896
897 static void memory_region_dispatch_write(MemoryRegion *mr,
898                                          target_phys_addr_t addr,
899                                          uint64_t data,
900                                          unsigned size)
901 {
902     if (!memory_region_access_valid(mr, addr, size, true)) {
903         return; /* FIXME: better signalling */
904     }
905
906     adjust_endianness(mr, &data, size);
907
908     if (!mr->ops->write) {
909         mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
910         return;
911     }
912
913     /* FIXME: support unaligned access */
914     access_with_adjusted_size(addr, &data, size,
915                               mr->ops->impl.min_access_size,
916                               mr->ops->impl.max_access_size,
917                               memory_region_write_accessor, mr);
918 }
919
920 void memory_region_init_io(MemoryRegion *mr,
921                            const MemoryRegionOps *ops,
922                            void *opaque,
923                            const char *name,
924                            uint64_t size)
925 {
926     memory_region_init(mr, name, size);
927     mr->ops = ops;
928     mr->opaque = opaque;
929     mr->terminates = true;
930     mr->destructor = memory_region_destructor_iomem;
931     mr->ram_addr = cpu_register_io_memory(mr);
932 }
933
934 void memory_region_init_ram(MemoryRegion *mr,
935                             const char *name,
936                             uint64_t size)
937 {
938     memory_region_init(mr, name, size);
939     mr->ram = true;
940     mr->terminates = true;
941     mr->destructor = memory_region_destructor_ram;
942     mr->ram_addr = qemu_ram_alloc(size, mr);
943 }
944
945 void memory_region_init_ram_ptr(MemoryRegion *mr,
946                                 const char *name,
947                                 uint64_t size,
948                                 void *ptr)
949 {
950     memory_region_init(mr, name, size);
951     mr->ram = true;
952     mr->terminates = true;
953     mr->destructor = memory_region_destructor_ram_from_ptr;
954     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
955 }
956
957 void memory_region_init_alias(MemoryRegion *mr,
958                               const char *name,
959                               MemoryRegion *orig,
960                               target_phys_addr_t offset,
961                               uint64_t size)
962 {
963     memory_region_init(mr, name, size);
964     mr->alias = orig;
965     mr->alias_offset = offset;
966 }
967
968 void memory_region_init_rom_device(MemoryRegion *mr,
969                                    const MemoryRegionOps *ops,
970                                    void *opaque,
971                                    const char *name,
972                                    uint64_t size)
973 {
974     memory_region_init(mr, name, size);
975     mr->ops = ops;
976     mr->opaque = opaque;
977     mr->terminates = true;
978     mr->rom_device = true;
979     mr->destructor = memory_region_destructor_rom_device;
980     mr->ram_addr = qemu_ram_alloc(size, mr);
981     mr->ram_addr |= cpu_register_io_memory(mr);
982 }
983
984 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
985                              unsigned size)
986 {
987     MemoryRegion *mr = opaque;
988
989     if (!mr->warning_printed) {
990         fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
991         mr->warning_printed = true;
992     }
993     return -1U;
994 }
995
996 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
997                           unsigned size)
998 {
999     MemoryRegion *mr = opaque;
1000
1001     if (!mr->warning_printed) {
1002         fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1003         mr->warning_printed = true;
1004     }
1005 }
1006
1007 static const MemoryRegionOps reservation_ops = {
1008     .read = invalid_read,
1009     .write = invalid_write,
1010     .endianness = DEVICE_NATIVE_ENDIAN,
1011 };
1012
1013 void memory_region_init_reservation(MemoryRegion *mr,
1014                                     const char *name,
1015                                     uint64_t size)
1016 {
1017     memory_region_init_io(mr, &reservation_ops, mr, name, size);
1018 }
1019
1020 void memory_region_destroy(MemoryRegion *mr)
1021 {
1022     assert(QTAILQ_EMPTY(&mr->subregions));
1023     mr->destructor(mr);
1024     memory_region_clear_coalescing(mr);
1025     g_free((char *)mr->name);
1026     g_free(mr->ioeventfds);
1027 }
1028
1029 uint64_t memory_region_size(MemoryRegion *mr)
1030 {
1031     if (int128_eq(mr->size, int128_2_64())) {
1032         return UINT64_MAX;
1033     }
1034     return int128_get64(mr->size);
1035 }
1036
1037 const char *memory_region_name(MemoryRegion *mr)
1038 {
1039     return mr->name;
1040 }
1041
1042 bool memory_region_is_ram(MemoryRegion *mr)
1043 {
1044     return mr->ram;
1045 }
1046
1047 bool memory_region_is_logging(MemoryRegion *mr)
1048 {
1049     return mr->dirty_log_mask;
1050 }
1051
1052 bool memory_region_is_rom(MemoryRegion *mr)
1053 {
1054     return mr->ram && mr->readonly;
1055 }
1056
1057 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1058 {
1059     uint8_t mask = 1 << client;
1060
1061     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1062     memory_region_update_topology(mr);
1063 }
1064
1065 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1066                              target_phys_addr_t size, unsigned client)
1067 {
1068     assert(mr->terminates);
1069     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1070                                          1 << client);
1071 }
1072
1073 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1074                              target_phys_addr_t size)
1075 {
1076     assert(mr->terminates);
1077     return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1078 }
1079
1080 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1081 {
1082     FlatRange *fr;
1083
1084     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1085         if (fr->mr == mr) {
1086             MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1087                                           Forward, log_sync);
1088         }
1089     }
1090 }
1091
1092 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1093 {
1094     if (mr->readonly != readonly) {
1095         mr->readonly = readonly;
1096         memory_region_update_topology(mr);
1097     }
1098 }
1099
1100 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1101 {
1102     if (mr->readable != readable) {
1103         mr->readable = readable;
1104         memory_region_update_topology(mr);
1105     }
1106 }
1107
1108 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1109                                target_phys_addr_t size, unsigned client)
1110 {
1111     assert(mr->terminates);
1112     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1113                                     mr->ram_addr + addr + size,
1114                                     1 << client);
1115 }
1116
1117 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1118 {
1119     if (mr->alias) {
1120         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1121     }
1122
1123     assert(mr->terminates);
1124
1125     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1126 }
1127
1128 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1129 {
1130     FlatRange *fr;
1131     CoalescedMemoryRange *cmr;
1132     AddrRange tmp;
1133
1134     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1135         if (fr->mr == mr) {
1136             qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1137                                            int128_get64(fr->addr.size));
1138             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1139                 tmp = addrrange_shift(cmr->addr,
1140                                       int128_sub(fr->addr.start,
1141                                                  int128_make64(fr->offset_in_region)));
1142                 if (!addrrange_intersects(tmp, fr->addr)) {
1143                     continue;
1144                 }
1145                 tmp = addrrange_intersection(tmp, fr->addr);
1146                 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1147                                              int128_get64(tmp.size));
1148             }
1149         }
1150     }
1151 }
1152
1153 void memory_region_set_coalescing(MemoryRegion *mr)
1154 {
1155     memory_region_clear_coalescing(mr);
1156     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1157 }
1158
1159 void memory_region_add_coalescing(MemoryRegion *mr,
1160                                   target_phys_addr_t offset,
1161                                   uint64_t size)
1162 {
1163     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1164
1165     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1166     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1167     memory_region_update_coalesced_range(mr);
1168 }
1169
1170 void memory_region_clear_coalescing(MemoryRegion *mr)
1171 {
1172     CoalescedMemoryRange *cmr;
1173
1174     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1175         cmr = QTAILQ_FIRST(&mr->coalesced);
1176         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1177         g_free(cmr);
1178     }
1179     memory_region_update_coalesced_range(mr);
1180 }
1181
1182 void memory_region_add_eventfd(MemoryRegion *mr,
1183                                target_phys_addr_t addr,
1184                                unsigned size,
1185                                bool match_data,
1186                                uint64_t data,
1187                                int fd)
1188 {
1189     MemoryRegionIoeventfd mrfd = {
1190         .addr.start = int128_make64(addr),
1191         .addr.size = int128_make64(size),
1192         .match_data = match_data,
1193         .data = data,
1194         .fd = fd,
1195     };
1196     unsigned i;
1197
1198     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1199         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1200             break;
1201         }
1202     }
1203     ++mr->ioeventfd_nb;
1204     mr->ioeventfds = g_realloc(mr->ioeventfds,
1205                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1206     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1207             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1208     mr->ioeventfds[i] = mrfd;
1209     memory_region_update_topology(mr);
1210 }
1211
1212 void memory_region_del_eventfd(MemoryRegion *mr,
1213                                target_phys_addr_t addr,
1214                                unsigned size,
1215                                bool match_data,
1216                                uint64_t data,
1217                                int fd)
1218 {
1219     MemoryRegionIoeventfd mrfd = {
1220         .addr.start = int128_make64(addr),
1221         .addr.size = int128_make64(size),
1222         .match_data = match_data,
1223         .data = data,
1224         .fd = fd,
1225     };
1226     unsigned i;
1227
1228     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1229         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1230             break;
1231         }
1232     }
1233     assert(i != mr->ioeventfd_nb);
1234     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1235             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1236     --mr->ioeventfd_nb;
1237     mr->ioeventfds = g_realloc(mr->ioeventfds,
1238                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1239     memory_region_update_topology(mr);
1240 }
1241
1242 static void memory_region_add_subregion_common(MemoryRegion *mr,
1243                                                target_phys_addr_t offset,
1244                                                MemoryRegion *subregion)
1245 {
1246     MemoryRegion *other;
1247
1248     assert(!subregion->parent);
1249     subregion->parent = mr;
1250     subregion->addr = offset;
1251     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1252         if (subregion->may_overlap || other->may_overlap) {
1253             continue;
1254         }
1255         if (int128_gt(int128_make64(offset),
1256                       int128_add(int128_make64(other->addr), other->size))
1257             || int128_le(int128_add(int128_make64(offset), subregion->size),
1258                          int128_make64(other->addr))) {
1259             continue;
1260         }
1261 #if 0
1262         printf("warning: subregion collision %llx/%llx (%s) "
1263                "vs %llx/%llx (%s)\n",
1264                (unsigned long long)offset,
1265                (unsigned long long)int128_get64(subregion->size),
1266                subregion->name,
1267                (unsigned long long)other->addr,
1268                (unsigned long long)int128_get64(other->size),
1269                other->name);
1270 #endif
1271     }
1272     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1273         if (subregion->priority >= other->priority) {
1274             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1275             goto done;
1276         }
1277     }
1278     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1279 done:
1280     memory_region_update_topology(mr);
1281 }
1282
1283
1284 void memory_region_add_subregion(MemoryRegion *mr,
1285                                  target_phys_addr_t offset,
1286                                  MemoryRegion *subregion)
1287 {
1288     subregion->may_overlap = false;
1289     subregion->priority = 0;
1290     memory_region_add_subregion_common(mr, offset, subregion);
1291 }
1292
1293 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1294                                          target_phys_addr_t offset,
1295                                          MemoryRegion *subregion,
1296                                          unsigned priority)
1297 {
1298     subregion->may_overlap = true;
1299     subregion->priority = priority;
1300     memory_region_add_subregion_common(mr, offset, subregion);
1301 }
1302
1303 void memory_region_del_subregion(MemoryRegion *mr,
1304                                  MemoryRegion *subregion)
1305 {
1306     assert(subregion->parent == mr);
1307     subregion->parent = NULL;
1308     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1309     memory_region_update_topology(mr);
1310 }
1311
1312 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1313 {
1314     if (enabled == mr->enabled) {
1315         return;
1316     }
1317     mr->enabled = enabled;
1318     memory_region_update_topology(NULL);
1319 }
1320
1321 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1322 {
1323     MemoryRegion *parent = mr->parent;
1324     unsigned priority = mr->priority;
1325     bool may_overlap = mr->may_overlap;
1326
1327     if (addr == mr->addr || !parent) {
1328         mr->addr = addr;
1329         return;
1330     }
1331
1332     memory_region_transaction_begin();
1333     memory_region_del_subregion(parent, mr);
1334     if (may_overlap) {
1335         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1336     } else {
1337         memory_region_add_subregion(parent, addr, mr);
1338     }
1339     memory_region_transaction_commit();
1340 }
1341
1342 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1343 {
1344     target_phys_addr_t old_offset = mr->alias_offset;
1345
1346     assert(mr->alias);
1347     mr->alias_offset = offset;
1348
1349     if (offset == old_offset || !mr->parent) {
1350         return;
1351     }
1352
1353     memory_region_update_topology(mr);
1354 }
1355
1356 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1357 {
1358     return mr->ram_addr;
1359 }
1360
1361 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1362 {
1363     const AddrRange *addr = addr_;
1364     const FlatRange *fr = fr_;
1365
1366     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1367         return -1;
1368     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1369         return 1;
1370     }
1371     return 0;
1372 }
1373
1374 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1375 {
1376     return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
1377                    sizeof(FlatRange), cmp_flatrange_addr);
1378 }
1379
1380 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1381                                        target_phys_addr_t addr, uint64_t size)
1382 {
1383     AddressSpace *as = memory_region_to_address_space(address_space);
1384     AddrRange range = addrrange_make(int128_make64(addr),
1385                                      int128_make64(size));
1386     FlatRange *fr = address_space_lookup(as, range);
1387     MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1388
1389     if (!fr) {
1390         return ret;
1391     }
1392
1393     while (fr > as->current_map.ranges
1394            && addrrange_intersects(fr[-1].addr, range)) {
1395         --fr;
1396     }
1397
1398     ret.mr = fr->mr;
1399     range = addrrange_intersection(range, fr->addr);
1400     ret.offset_within_region = fr->offset_in_region;
1401     ret.offset_within_region += int128_get64(int128_sub(range.start,
1402                                                         fr->addr.start));
1403     ret.size = int128_get64(range.size);
1404     ret.offset_within_address_space = int128_get64(range.start);
1405     ret.readonly = fr->readonly;
1406     return ret;
1407 }
1408
1409 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1410 {
1411     AddressSpace *as = memory_region_to_address_space(address_space);
1412     FlatRange *fr;
1413
1414     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1415         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1416     }
1417 }
1418
1419 void memory_global_dirty_log_start(void)
1420 {
1421     global_dirty_log = true;
1422     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1423 }
1424
1425 void memory_global_dirty_log_stop(void)
1426 {
1427     global_dirty_log = false;
1428     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1429 }
1430
1431 static void listener_add_address_space(MemoryListener *listener,
1432                                        AddressSpace *as)
1433 {
1434     FlatRange *fr;
1435
1436     if (global_dirty_log) {
1437         listener->log_global_start(listener);
1438     }
1439     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1440         MemoryRegionSection section = {
1441             .mr = fr->mr,
1442             .address_space = as->root,
1443             .offset_within_region = fr->offset_in_region,
1444             .size = int128_get64(fr->addr.size),
1445             .offset_within_address_space = int128_get64(fr->addr.start),
1446             .readonly = fr->readonly,
1447         };
1448         listener->region_add(listener, &section);
1449     }
1450 }
1451
1452 void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1453 {
1454     MemoryListener *other = NULL;
1455
1456     listener->address_space_filter = filter;
1457     if (QTAILQ_EMPTY(&memory_listeners)
1458         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1459                                              memory_listeners)->priority) {
1460         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1461     } else {
1462         QTAILQ_FOREACH(other, &memory_listeners, link) {
1463             if (listener->priority < other->priority) {
1464                 break;
1465             }
1466         }
1467         QTAILQ_INSERT_BEFORE(other, listener, link);
1468     }
1469     listener_add_address_space(listener, &address_space_memory);
1470     listener_add_address_space(listener, &address_space_io);
1471 }
1472
1473 void memory_listener_unregister(MemoryListener *listener)
1474 {
1475     QTAILQ_REMOVE(&memory_listeners, listener, link);
1476 }
1477
1478 void set_system_memory_map(MemoryRegion *mr)
1479 {
1480     address_space_memory.root = mr;
1481     memory_region_update_topology(NULL);
1482 }
1483
1484 void set_system_io_map(MemoryRegion *mr)
1485 {
1486     address_space_io.root = mr;
1487     memory_region_update_topology(NULL);
1488 }
1489
1490 uint64_t io_mem_read(int io_index, target_phys_addr_t addr, unsigned size)
1491 {
1492     return memory_region_dispatch_read(io_mem_region[io_index], addr, size);
1493 }
1494
1495 void io_mem_write(int io_index, target_phys_addr_t addr,
1496                   uint64_t val, unsigned size)
1497 {
1498     memory_region_dispatch_write(io_mem_region[io_index], addr, val, size);
1499 }
1500
1501 typedef struct MemoryRegionList MemoryRegionList;
1502
1503 struct MemoryRegionList {
1504     const MemoryRegion *mr;
1505     bool printed;
1506     QTAILQ_ENTRY(MemoryRegionList) queue;
1507 };
1508
1509 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1510
1511 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1512                            const MemoryRegion *mr, unsigned int level,
1513                            target_phys_addr_t base,
1514                            MemoryRegionListHead *alias_print_queue)
1515 {
1516     MemoryRegionList *new_ml, *ml, *next_ml;
1517     MemoryRegionListHead submr_print_queue;
1518     const MemoryRegion *submr;
1519     unsigned int i;
1520
1521     if (!mr) {
1522         return;
1523     }
1524
1525     for (i = 0; i < level; i++) {
1526         mon_printf(f, "  ");
1527     }
1528
1529     if (mr->alias) {
1530         MemoryRegionList *ml;
1531         bool found = false;
1532
1533         /* check if the alias is already in the queue */
1534         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1535             if (ml->mr == mr->alias && !ml->printed) {
1536                 found = true;
1537             }
1538         }
1539
1540         if (!found) {
1541             ml = g_new(MemoryRegionList, 1);
1542             ml->mr = mr->alias;
1543             ml->printed = false;
1544             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1545         }
1546         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1547                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1548                    "-" TARGET_FMT_plx "\n",
1549                    base + mr->addr,
1550                    base + mr->addr
1551                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1552                    mr->priority,
1553                    mr->readable ? 'R' : '-',
1554                    !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1555                                                                       : '-',
1556                    mr->name,
1557                    mr->alias->name,
1558                    mr->alias_offset,
1559                    mr->alias_offset
1560                    + (target_phys_addr_t)int128_get64(mr->size) - 1);
1561     } else {
1562         mon_printf(f,
1563                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1564                    base + mr->addr,
1565                    base + mr->addr
1566                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1567                    mr->priority,
1568                    mr->readable ? 'R' : '-',
1569                    !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1570                                                                       : '-',
1571                    mr->name);
1572     }
1573
1574     QTAILQ_INIT(&submr_print_queue);
1575
1576     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1577         new_ml = g_new(MemoryRegionList, 1);
1578         new_ml->mr = submr;
1579         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1580             if (new_ml->mr->addr < ml->mr->addr ||
1581                 (new_ml->mr->addr == ml->mr->addr &&
1582                  new_ml->mr->priority > ml->mr->priority)) {
1583                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1584                 new_ml = NULL;
1585                 break;
1586             }
1587         }
1588         if (new_ml) {
1589             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1590         }
1591     }
1592
1593     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1594         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1595                        alias_print_queue);
1596     }
1597
1598     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1599         g_free(ml);
1600     }
1601 }
1602
1603 void mtree_info(fprintf_function mon_printf, void *f)
1604 {
1605     MemoryRegionListHead ml_head;
1606     MemoryRegionList *ml, *ml2;
1607
1608     QTAILQ_INIT(&ml_head);
1609
1610     mon_printf(f, "memory\n");
1611     mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1612
1613     /* print aliased regions */
1614     QTAILQ_FOREACH(ml, &ml_head, queue) {
1615         if (!ml->printed) {
1616             mon_printf(f, "%s\n", ml->mr->name);
1617             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1618         }
1619     }
1620
1621     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1622         g_free(ml);
1623     }
1624
1625     if (address_space_io.root &&
1626         !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1627         QTAILQ_INIT(&ml_head);
1628         mon_printf(f, "I/O\n");
1629         mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1630     }
1631 }
This page took 0.114879 seconds and 4 git commands to generate.