1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
6 #include "qemu/error-report.h"
7 #include "sysemu/kvm.h"
10 #include "migration/cpu.h"
12 static bool vfp_needed(void *opaque)
15 CPUARMState *env = &cpu->env;
17 return arm_feature(env, ARM_FEATURE_VFP);
20 static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
24 CPUARMState *env = &cpu->env;
25 uint32_t val = qemu_get_be32(f);
27 vfp_set_fpscr(env, val);
31 static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
32 VMStateField *field, QJSON *vmdesc)
35 CPUARMState *env = &cpu->env;
37 qemu_put_be32(f, vfp_get_fpscr(env));
41 static const VMStateInfo vmstate_fpscr = {
47 static const VMStateDescription vmstate_vfp = {
50 .minimum_version_id = 3,
52 .fields = (VMStateField[]) {
53 VMSTATE_FLOAT64_ARRAY(env.vfp.regs, ARMCPU, 64),
54 /* The xregs array is a little awkward because element 1 (FPSCR)
55 * requires a specific accessor, so we have to split it up in
58 VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
59 VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
63 .size = sizeof(uint32_t),
64 .info = &vmstate_fpscr,
72 static bool iwmmxt_needed(void *opaque)
75 CPUARMState *env = &cpu->env;
77 return arm_feature(env, ARM_FEATURE_IWMMXT);
80 static const VMStateDescription vmstate_iwmmxt = {
83 .minimum_version_id = 1,
84 .needed = iwmmxt_needed,
85 .fields = (VMStateField[]) {
86 VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
87 VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
92 static bool m_needed(void *opaque)
95 CPUARMState *env = &cpu->env;
97 return arm_feature(env, ARM_FEATURE_M);
100 static const VMStateDescription vmstate_m_faultmask_primask = {
101 .name = "cpu/m/faultmask-primask",
103 .minimum_version_id = 1,
104 .fields = (VMStateField[]) {
105 VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
106 VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
107 VMSTATE_END_OF_LIST()
111 static const VMStateDescription vmstate_m = {
114 .minimum_version_id = 4,
116 .fields = (VMStateField[]) {
117 VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
118 VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
119 VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
120 VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
121 VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
122 VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
123 VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
124 VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
125 VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
126 VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
127 VMSTATE_INT32(env.v7m.exception, ARMCPU),
128 VMSTATE_END_OF_LIST()
130 .subsections = (const VMStateDescription*[]) {
131 &vmstate_m_faultmask_primask,
136 static bool thumb2ee_needed(void *opaque)
138 ARMCPU *cpu = opaque;
139 CPUARMState *env = &cpu->env;
141 return arm_feature(env, ARM_FEATURE_THUMB2EE);
144 static const VMStateDescription vmstate_thumb2ee = {
145 .name = "cpu/thumb2ee",
147 .minimum_version_id = 1,
148 .needed = thumb2ee_needed,
149 .fields = (VMStateField[]) {
150 VMSTATE_UINT32(env.teecr, ARMCPU),
151 VMSTATE_UINT32(env.teehbr, ARMCPU),
152 VMSTATE_END_OF_LIST()
156 static bool pmsav7_needed(void *opaque)
158 ARMCPU *cpu = opaque;
159 CPUARMState *env = &cpu->env;
161 return arm_feature(env, ARM_FEATURE_PMSA) &&
162 arm_feature(env, ARM_FEATURE_V7) &&
163 !arm_feature(env, ARM_FEATURE_V8);
166 static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
168 ARMCPU *cpu = opaque;
170 return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
173 static const VMStateDescription vmstate_pmsav7 = {
174 .name = "cpu/pmsav7",
176 .minimum_version_id = 1,
177 .needed = pmsav7_needed,
178 .fields = (VMStateField[]) {
179 VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
180 vmstate_info_uint32, uint32_t),
181 VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
182 vmstate_info_uint32, uint32_t),
183 VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
184 vmstate_info_uint32, uint32_t),
185 VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
186 VMSTATE_END_OF_LIST()
190 static bool pmsav7_rnr_needed(void *opaque)
192 ARMCPU *cpu = opaque;
193 CPUARMState *env = &cpu->env;
195 /* For R profile cores pmsav7.rnr is migrated via the cpreg
196 * "RGNR" definition in helper.h. For M profile we have to
197 * migrate it separately.
199 return arm_feature(env, ARM_FEATURE_M);
202 static const VMStateDescription vmstate_pmsav7_rnr = {
203 .name = "cpu/pmsav7-rnr",
205 .minimum_version_id = 1,
206 .needed = pmsav7_rnr_needed,
207 .fields = (VMStateField[]) {
208 VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
209 VMSTATE_END_OF_LIST()
213 static bool pmsav8_needed(void *opaque)
215 ARMCPU *cpu = opaque;
216 CPUARMState *env = &cpu->env;
218 return arm_feature(env, ARM_FEATURE_PMSA) &&
219 arm_feature(env, ARM_FEATURE_V8);
222 static const VMStateDescription vmstate_pmsav8 = {
223 .name = "cpu/pmsav8",
225 .minimum_version_id = 1,
226 .needed = pmsav8_needed,
227 .fields = (VMStateField[]) {
228 VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
229 0, vmstate_info_uint32, uint32_t),
230 VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
231 0, vmstate_info_uint32, uint32_t),
232 VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
233 VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
234 VMSTATE_END_OF_LIST()
238 static bool s_rnr_vmstate_validate(void *opaque, int version_id)
240 ARMCPU *cpu = opaque;
242 return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
245 static bool sau_rnr_vmstate_validate(void *opaque, int version_id)
247 ARMCPU *cpu = opaque;
249 return cpu->env.sau.rnr < cpu->sau_sregion;
252 static bool m_security_needed(void *opaque)
254 ARMCPU *cpu = opaque;
255 CPUARMState *env = &cpu->env;
257 return arm_feature(env, ARM_FEATURE_M_SECURITY);
260 static const VMStateDescription vmstate_m_security = {
261 .name = "cpu/m-security",
263 .minimum_version_id = 1,
264 .needed = m_security_needed,
265 .fields = (VMStateField[]) {
266 VMSTATE_UINT32(env.v7m.secure, ARMCPU),
267 VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
268 VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
269 VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
270 VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
271 VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
272 VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
273 VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
274 VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
275 VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
276 VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
277 0, vmstate_info_uint32, uint32_t),
278 VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
279 0, vmstate_info_uint32, uint32_t),
280 VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
281 VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
282 VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
283 VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
284 VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
285 VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
286 VMSTATE_UINT32(env.v7m.sfsr, ARMCPU),
287 VMSTATE_UINT32(env.v7m.sfar, ARMCPU),
288 VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0,
289 vmstate_info_uint32, uint32_t),
290 VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0,
291 vmstate_info_uint32, uint32_t),
292 VMSTATE_UINT32(env.sau.rnr, ARMCPU),
293 VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate),
294 VMSTATE_UINT32(env.sau.ctrl, ARMCPU),
295 VMSTATE_END_OF_LIST()
299 static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
302 ARMCPU *cpu = opaque;
303 CPUARMState *env = &cpu->env;
304 uint32_t val = qemu_get_be32(f);
306 if (arm_feature(env, ARM_FEATURE_M)) {
307 if (val & XPSR_EXCP) {
308 /* This is a CPSR format value from an older QEMU. (We can tell
309 * because values transferred in XPSR format always have zero
310 * for the EXCP field, and CPSR format will always have bit 4
311 * set in CPSR_M.) Rearrange it into XPSR format. The significant
312 * differences are that the T bit is not in the same place, the
313 * primask/faultmask info may be in the CPSR I and F bits, and
314 * we do not want the mode bits.
315 * We know that this cleanup happened before v8M, so there
316 * is no complication with banked primask/faultmask.
318 uint32_t newval = val;
320 assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
322 newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
326 /* If the I or F bits are set then this is a migration from
327 * an old QEMU which still stored the M profile FAULTMASK
328 * and PRIMASK in env->daif. For a new QEMU, the data is
329 * transferred using the vmstate_m_faultmask_primask subsection.
332 env->v7m.faultmask[M_REG_NS] = 1;
335 env->v7m.primask[M_REG_NS] = 1;
339 /* Ignore the low bits, they are handled by vmstate_m. */
340 xpsr_write(env, val, ~XPSR_EXCP);
344 env->aarch64 = ((val & PSTATE_nRW) == 0);
347 pstate_write(env, val);
351 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
355 static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
356 VMStateField *field, QJSON *vmdesc)
358 ARMCPU *cpu = opaque;
359 CPUARMState *env = &cpu->env;
362 if (arm_feature(env, ARM_FEATURE_M)) {
363 /* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
364 val = xpsr_read(env) & ~XPSR_EXCP;
365 } else if (is_a64(env)) {
366 val = pstate_read(env);
368 val = cpsr_read(env);
371 qemu_put_be32(f, val);
375 static const VMStateInfo vmstate_cpsr = {
381 static int get_power(QEMUFile *f, void *opaque, size_t size,
384 ARMCPU *cpu = opaque;
385 bool powered_off = qemu_get_byte(f);
386 cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
390 static int put_power(QEMUFile *f, void *opaque, size_t size,
391 VMStateField *field, QJSON *vmdesc)
393 ARMCPU *cpu = opaque;
395 /* Migration should never happen while we transition power states */
397 if (cpu->power_state == PSCI_ON ||
398 cpu->power_state == PSCI_OFF) {
399 bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
400 qemu_put_byte(f, powered_off);
407 static const VMStateInfo vmstate_powered_off = {
408 .name = "powered_off",
413 static int cpu_pre_save(void *opaque)
415 ARMCPU *cpu = opaque;
418 if (!write_kvmstate_to_list(cpu)) {
419 /* This should never fail */
423 if (!write_cpustate_to_list(cpu)) {
424 /* This should never fail. */
429 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
430 memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
431 cpu->cpreg_array_len * sizeof(uint64_t));
432 memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
433 cpu->cpreg_array_len * sizeof(uint64_t));
438 static int cpu_post_load(void *opaque, int version_id)
440 ARMCPU *cpu = opaque;
443 /* Update the values list from the incoming migration data.
444 * Anything in the incoming data which we don't know about is
445 * a migration failure; anything we know about but the incoming
446 * data doesn't specify retains its current (reset) value.
447 * The indexes list remains untouched -- we only inspect the
448 * incoming migration index list so we can match the values array
449 * entries with the right slots in our own values array.
452 for (i = 0, v = 0; i < cpu->cpreg_array_len
453 && v < cpu->cpreg_vmstate_array_len; i++) {
454 if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
455 /* register in our list but not incoming : skip it */
458 if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
459 /* register in their list but not ours: fail migration */
462 /* matching register, copy the value over */
463 cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
468 if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
471 /* Note that it's OK for the TCG side not to know about
472 * every register in the list; KVM is authoritative if
475 write_list_to_cpustate(cpu);
477 if (!write_list_to_cpustate(cpu)) {
482 hw_breakpoint_update_all(cpu);
483 hw_watchpoint_update_all(cpu);
488 const VMStateDescription vmstate_arm_cpu = {
491 .minimum_version_id = 22,
492 .pre_save = cpu_pre_save,
493 .post_load = cpu_post_load,
494 .fields = (VMStateField[]) {
495 VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
496 VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
497 VMSTATE_UINT64(env.pc, ARMCPU),
501 .size = sizeof(uint32_t),
502 .info = &vmstate_cpsr,
506 VMSTATE_UINT32(env.spsr, ARMCPU),
507 VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
508 VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
509 VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
510 VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
511 VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
512 VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
513 VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
514 /* The length-check must come before the arrays to avoid
515 * incoming data possibly overflowing the array.
517 VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
518 VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
519 cpreg_vmstate_array_len,
520 0, vmstate_info_uint64, uint64_t),
521 VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
522 cpreg_vmstate_array_len,
523 0, vmstate_info_uint64, uint64_t),
524 VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
525 VMSTATE_UINT64(env.exclusive_val, ARMCPU),
526 VMSTATE_UINT64(env.exclusive_high, ARMCPU),
527 VMSTATE_UINT64(env.features, ARMCPU),
528 VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
529 VMSTATE_UINT32(env.exception.fsr, ARMCPU),
530 VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
531 VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
532 VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
534 .name = "power_state",
536 .size = sizeof(bool),
537 .info = &vmstate_powered_off,
541 VMSTATE_END_OF_LIST()
543 .subsections = (const VMStateDescription*[]) {
548 /* pmsav7_rnr must come before pmsav7 so that we have the
549 * region number before we test it in the VMSTATE_VALIDATE