4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/msi.h"
43 #include "migration/migration.h"
44 #include "exec/memattrs.h"
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #define DPRINTF(fmt, ...) \
56 #define MSR_KVM_WALL_CLOCK 0x11
57 #define MSR_KVM_SYSTEM_TIME 0x12
60 #define BUS_MCEERR_AR 4
63 #define BUS_MCEERR_AO 5
66 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR),
68 KVM_CAP_INFO(EXT_CPUID),
69 KVM_CAP_INFO(MP_STATE),
73 static bool has_msr_star;
74 static bool has_msr_hsave_pa;
75 static bool has_msr_tsc_aux;
76 static bool has_msr_tsc_adjust;
77 static bool has_msr_tsc_deadline;
78 static bool has_msr_feature_control;
79 static bool has_msr_async_pf_en;
80 static bool has_msr_pv_eoi_en;
81 static bool has_msr_misc_enable;
82 static bool has_msr_smbase;
83 static bool has_msr_bndcfgs;
84 static bool has_msr_kvm_steal_time;
85 static int lm_capable_kernel;
86 static bool has_msr_hv_hypercall;
87 static bool has_msr_hv_vapic;
88 static bool has_msr_hv_tsc;
89 static bool has_msr_hv_crash;
90 static bool has_msr_hv_reset;
91 static bool has_msr_hv_vpindex;
92 static bool has_msr_hv_runtime;
93 static bool has_msr_hv_synic;
94 static bool has_msr_hv_stimer;
95 static bool has_msr_mtrr;
96 static bool has_msr_xss;
98 static bool has_msr_architectural_pmu;
99 static uint32_t num_architectural_pmu_counters;
101 static int has_xsave;
103 static int has_pit_state2;
105 int kvm_has_pit_state2(void)
107 return has_pit_state2;
110 bool kvm_has_smm(void)
112 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
115 bool kvm_allows_irq0_override(void)
117 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
120 static int kvm_get_tsc(CPUState *cs)
122 X86CPU *cpu = X86_CPU(cs);
123 CPUX86State *env = &cpu->env;
125 struct kvm_msrs info;
126 struct kvm_msr_entry entries[1];
130 if (env->tsc_valid) {
134 msr_data.info.nmsrs = 1;
135 msr_data.entries[0].index = MSR_IA32_TSC;
136 env->tsc_valid = !runstate_is_running();
138 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
143 env->tsc = msr_data.entries[0].data;
147 static inline void do_kvm_synchronize_tsc(void *arg)
154 void kvm_synchronize_all_tsc(void)
160 run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu);
165 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
167 struct kvm_cpuid2 *cpuid;
170 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
171 cpuid = g_malloc0(size);
173 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
174 if (r == 0 && cpuid->nent >= max) {
182 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
190 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
193 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
195 struct kvm_cpuid2 *cpuid;
197 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
203 static const struct kvm_para_features {
206 } para_features[] = {
207 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
208 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
209 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
210 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
213 static int get_para_features(KVMState *s)
217 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
218 if (kvm_check_extension(s, para_features[i].cap)) {
219 features |= (1 << para_features[i].feature);
227 /* Returns the value for a specific register on the cpuid entry
229 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
249 /* Find matching entry for function/index on kvm_cpuid2 struct
251 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
256 for (i = 0; i < cpuid->nent; ++i) {
257 if (cpuid->entries[i].function == function &&
258 cpuid->entries[i].index == index) {
259 return &cpuid->entries[i];
266 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
267 uint32_t index, int reg)
269 struct kvm_cpuid2 *cpuid;
271 uint32_t cpuid_1_edx;
274 cpuid = get_supported_cpuid(s);
276 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
279 ret = cpuid_entry_get_reg(entry, reg);
282 /* Fixups for the data returned by KVM, below */
284 if (function == 1 && reg == R_EDX) {
285 /* KVM before 2.6.30 misreports the following features */
286 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
287 } else if (function == 1 && reg == R_ECX) {
288 /* We can set the hypervisor flag, even if KVM does not return it on
289 * GET_SUPPORTED_CPUID
291 ret |= CPUID_EXT_HYPERVISOR;
292 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
293 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
294 * and the irqchip is in the kernel.
296 if (kvm_irqchip_in_kernel() &&
297 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
298 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
301 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
302 * without the in-kernel irqchip
304 if (!kvm_irqchip_in_kernel()) {
305 ret &= ~CPUID_EXT_X2APIC;
307 } else if (function == 6 && reg == R_EAX) {
308 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
309 } else if (function == 0x80000001 && reg == R_EDX) {
310 /* On Intel, kvm returns cpuid according to the Intel spec,
311 * so add missing bits according to the AMD spec:
313 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
314 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
319 /* fallback for older kernels */
320 if ((function == KVM_CPUID_FEATURES) && !found) {
321 ret = get_para_features(s);
327 typedef struct HWPoisonPage {
329 QLIST_ENTRY(HWPoisonPage) list;
332 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
333 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
335 static void kvm_unpoison_all(void *param)
337 HWPoisonPage *page, *next_page;
339 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
340 QLIST_REMOVE(page, list);
341 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
346 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
350 QLIST_FOREACH(page, &hwpoison_page_list, list) {
351 if (page->ram_addr == ram_addr) {
355 page = g_new(HWPoisonPage, 1);
356 page->ram_addr = ram_addr;
357 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
360 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
365 r = kvm_check_extension(s, KVM_CAP_MCE);
368 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
373 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
375 CPUX86State *env = &cpu->env;
376 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
377 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
378 uint64_t mcg_status = MCG_STATUS_MCIP;
380 if (code == BUS_MCEERR_AR) {
381 status |= MCI_STATUS_AR | 0x134;
382 mcg_status |= MCG_STATUS_EIPV;
385 mcg_status |= MCG_STATUS_RIPV;
387 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
388 (MCM_ADDR_PHYS << 6) | 0xc,
389 cpu_x86_support_mca_broadcast(env) ?
390 MCE_INJECT_BROADCAST : 0);
393 static void hardware_memory_error(void)
395 fprintf(stderr, "Hardware memory error!\n");
399 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
401 X86CPU *cpu = X86_CPU(c);
402 CPUX86State *env = &cpu->env;
406 if ((env->mcg_cap & MCG_SER_P) && addr
407 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
408 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
409 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
410 fprintf(stderr, "Hardware memory error for memory used by "
411 "QEMU itself instead of guest system!\n");
412 /* Hope we are lucky for AO MCE */
413 if (code == BUS_MCEERR_AO) {
416 hardware_memory_error();
419 kvm_hwpoison_page_add(ram_addr);
420 kvm_mce_inject(cpu, paddr, code);
422 if (code == BUS_MCEERR_AO) {
424 } else if (code == BUS_MCEERR_AR) {
425 hardware_memory_error();
433 int kvm_arch_on_sigbus(int code, void *addr)
435 X86CPU *cpu = X86_CPU(first_cpu);
437 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
441 /* Hope we are lucky for AO MCE */
442 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
443 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
445 fprintf(stderr, "Hardware memory error for memory used by "
446 "QEMU itself instead of guest system!: %p\n", addr);
449 kvm_hwpoison_page_add(ram_addr);
450 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
452 if (code == BUS_MCEERR_AO) {
454 } else if (code == BUS_MCEERR_AR) {
455 hardware_memory_error();
463 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
465 CPUX86State *env = &cpu->env;
467 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
468 unsigned int bank, bank_num = env->mcg_cap & 0xff;
469 struct kvm_x86_mce mce;
471 env->exception_injected = -1;
474 * There must be at least one bank in use if an MCE is pending.
475 * Find it and use its values for the event injection.
477 for (bank = 0; bank < bank_num; bank++) {
478 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
482 assert(bank < bank_num);
485 mce.status = env->mce_banks[bank * 4 + 1];
486 mce.mcg_status = env->mcg_status;
487 mce.addr = env->mce_banks[bank * 4 + 2];
488 mce.misc = env->mce_banks[bank * 4 + 3];
490 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
495 static void cpu_update_state(void *opaque, int running, RunState state)
497 CPUX86State *env = opaque;
500 env->tsc_valid = false;
504 unsigned long kvm_arch_vcpu_id(CPUState *cs)
506 X86CPU *cpu = X86_CPU(cs);
510 #ifndef KVM_CPUID_SIGNATURE_NEXT
511 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
514 static bool hyperv_hypercall_available(X86CPU *cpu)
516 return cpu->hyperv_vapic ||
517 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
520 static bool hyperv_enabled(X86CPU *cpu)
522 CPUState *cs = CPU(cpu);
523 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
524 (hyperv_hypercall_available(cpu) ||
526 cpu->hyperv_relaxed_timing ||
529 cpu->hyperv_vpindex ||
530 cpu->hyperv_runtime ||
535 static int kvm_arch_set_tsc_khz(CPUState *cs)
537 X86CPU *cpu = X86_CPU(cs);
538 CPUX86State *env = &cpu->env;
545 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
546 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
549 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
550 * TSC frequency doesn't match the one we want.
552 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
553 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
555 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
556 error_report("warning: TSC frequency mismatch between "
557 "VM and host, and TSC scaling unavailable");
565 static Error *invtsc_mig_blocker;
567 #define KVM_MAX_CPUID_ENTRIES 100
569 int kvm_arch_init_vcpu(CPUState *cs)
572 struct kvm_cpuid2 cpuid;
573 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
574 } QEMU_PACKED cpuid_data;
575 X86CPU *cpu = X86_CPU(cs);
576 CPUX86State *env = &cpu->env;
577 uint32_t limit, i, j, cpuid_i;
579 struct kvm_cpuid_entry2 *c;
580 uint32_t signature[3];
581 int kvm_base = KVM_CPUID_SIGNATURE;
584 memset(&cpuid_data, 0, sizeof(cpuid_data));
588 /* Paravirtualization CPUIDs */
589 if (hyperv_enabled(cpu)) {
590 c = &cpuid_data.entries[cpuid_i++];
591 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
592 if (!cpu->hyperv_vendor_id) {
593 memcpy(signature, "Microsoft Hv", 12);
595 size_t len = strlen(cpu->hyperv_vendor_id);
598 error_report("hv-vendor-id truncated to 12 characters");
601 memset(signature, 0, 12);
602 memcpy(signature, cpu->hyperv_vendor_id, len);
604 c->eax = HYPERV_CPUID_MIN;
605 c->ebx = signature[0];
606 c->ecx = signature[1];
607 c->edx = signature[2];
609 c = &cpuid_data.entries[cpuid_i++];
610 c->function = HYPERV_CPUID_INTERFACE;
611 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
612 c->eax = signature[0];
617 c = &cpuid_data.entries[cpuid_i++];
618 c->function = HYPERV_CPUID_VERSION;
622 c = &cpuid_data.entries[cpuid_i++];
623 c->function = HYPERV_CPUID_FEATURES;
624 if (cpu->hyperv_relaxed_timing) {
625 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
627 if (cpu->hyperv_vapic) {
628 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
629 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
630 has_msr_hv_vapic = true;
632 if (cpu->hyperv_time &&
633 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
634 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
635 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
637 has_msr_hv_tsc = true;
639 if (cpu->hyperv_crash && has_msr_hv_crash) {
640 c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
642 if (cpu->hyperv_reset && has_msr_hv_reset) {
643 c->eax |= HV_X64_MSR_RESET_AVAILABLE;
645 if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
646 c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
648 if (cpu->hyperv_runtime && has_msr_hv_runtime) {
649 c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
651 if (cpu->hyperv_synic) {
654 if (!has_msr_hv_synic ||
655 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
656 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
660 c->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
661 env->msr_hv_synic_version = HV_SYNIC_VERSION_1;
662 for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
663 env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED;
666 if (cpu->hyperv_stimer) {
667 if (!has_msr_hv_stimer) {
668 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
671 c->eax |= HV_X64_MSR_SYNTIMER_AVAILABLE;
673 c = &cpuid_data.entries[cpuid_i++];
674 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
675 if (cpu->hyperv_relaxed_timing) {
676 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
678 if (has_msr_hv_vapic) {
679 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
681 c->ebx = cpu->hyperv_spinlock_attempts;
683 c = &cpuid_data.entries[cpuid_i++];
684 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
688 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
689 has_msr_hv_hypercall = true;
692 if (cpu->expose_kvm) {
693 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
694 c = &cpuid_data.entries[cpuid_i++];
695 c->function = KVM_CPUID_SIGNATURE | kvm_base;
696 c->eax = KVM_CPUID_FEATURES | kvm_base;
697 c->ebx = signature[0];
698 c->ecx = signature[1];
699 c->edx = signature[2];
701 c = &cpuid_data.entries[cpuid_i++];
702 c->function = KVM_CPUID_FEATURES | kvm_base;
703 c->eax = env->features[FEAT_KVM];
705 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
707 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
709 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
712 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
714 for (i = 0; i <= limit; i++) {
715 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
716 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
719 c = &cpuid_data.entries[cpuid_i++];
723 /* Keep reading function 2 till all the input is received */
727 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
728 KVM_CPUID_FLAG_STATE_READ_NEXT;
729 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
730 times = c->eax & 0xff;
732 for (j = 1; j < times; ++j) {
733 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
734 fprintf(stderr, "cpuid_data is full, no space for "
735 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
738 c = &cpuid_data.entries[cpuid_i++];
740 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
741 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
749 if (i == 0xd && j == 64) {
753 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
755 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
757 if (i == 4 && c->eax == 0) {
760 if (i == 0xb && !(c->ecx & 0xff00)) {
763 if (i == 0xd && c->eax == 0) {
766 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
767 fprintf(stderr, "cpuid_data is full, no space for "
768 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
771 c = &cpuid_data.entries[cpuid_i++];
777 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
785 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
786 if ((ver & 0xff) > 0) {
787 has_msr_architectural_pmu = true;
788 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
790 /* Shouldn't be more than 32, since that's the number of bits
791 * available in EBX to tell us _which_ counters are available.
794 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
795 num_architectural_pmu_counters = MAX_GP_COUNTERS;
800 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
802 for (i = 0x80000000; i <= limit; i++) {
803 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
804 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
807 c = &cpuid_data.entries[cpuid_i++];
811 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
814 /* Call Centaur's CPUID instructions they are supported. */
815 if (env->cpuid_xlevel2 > 0) {
816 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
818 for (i = 0xC0000000; i <= limit; i++) {
819 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
820 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
823 c = &cpuid_data.entries[cpuid_i++];
827 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
831 cpuid_data.cpuid.nent = cpuid_i;
833 if (((env->cpuid_version >> 8)&0xF) >= 6
834 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
835 (CPUID_MCE | CPUID_MCA)
836 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
837 uint64_t mcg_cap, unsupported_caps;
841 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
843 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
847 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
848 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
849 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
853 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
854 if (unsupported_caps) {
855 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
859 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
860 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
862 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
867 qemu_add_vm_change_state_handler(cpu_update_state, env);
869 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
871 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
872 !!(c->ecx & CPUID_EXT_SMX);
875 c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
876 if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
878 error_setg(&invtsc_mig_blocker,
879 "State blocked by non-migratable CPU device"
881 migrate_add_blocker(invtsc_mig_blocker);
883 vmstate_x86_cpu.unmigratable = 1;
886 cpuid_data.cpuid.padding = 0;
887 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
892 r = kvm_arch_set_tsc_khz(cs);
897 /* vcpu's TSC frequency is either specified by user, or following
898 * the value used by KVM if the former is not present. In the
899 * latter case, we query it from KVM and record in env->tsc_khz,
900 * so that vcpu's TSC frequency can be migrated later via this field.
903 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
904 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
912 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
915 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
922 void kvm_arch_reset_vcpu(X86CPU *cpu)
924 CPUX86State *env = &cpu->env;
926 env->exception_injected = -1;
927 env->interrupt_injected = -1;
929 if (kvm_irqchip_in_kernel()) {
930 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
931 KVM_MP_STATE_UNINITIALIZED;
933 env->mp_state = KVM_MP_STATE_RUNNABLE;
937 void kvm_arch_do_init_vcpu(X86CPU *cpu)
939 CPUX86State *env = &cpu->env;
941 /* APs get directly into wait-for-SIPI state. */
942 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
943 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
947 static int kvm_get_supported_msrs(KVMState *s)
949 static int kvm_supported_msrs;
953 if (kvm_supported_msrs == 0) {
954 struct kvm_msr_list msr_list, *kvm_msr_list;
956 kvm_supported_msrs = -1;
958 /* Obtain MSR list from KVM. These are the MSRs that we must
961 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
962 if (ret < 0 && ret != -E2BIG) {
965 /* Old kernel modules had a bug and could write beyond the provided
966 memory. Allocate at least a safe amount of 1K. */
967 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
969 sizeof(msr_list.indices[0])));
971 kvm_msr_list->nmsrs = msr_list.nmsrs;
972 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
976 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
977 if (kvm_msr_list->indices[i] == MSR_STAR) {
981 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
982 has_msr_hsave_pa = true;
985 if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
986 has_msr_tsc_aux = true;
989 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
990 has_msr_tsc_adjust = true;
993 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
994 has_msr_tsc_deadline = true;
997 if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
998 has_msr_smbase = true;
1001 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
1002 has_msr_misc_enable = true;
1005 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
1006 has_msr_bndcfgs = true;
1009 if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
1013 if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
1014 has_msr_hv_crash = true;
1017 if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
1018 has_msr_hv_reset = true;
1021 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
1022 has_msr_hv_vpindex = true;
1025 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
1026 has_msr_hv_runtime = true;
1029 if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) {
1030 has_msr_hv_synic = true;
1033 if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) {
1034 has_msr_hv_stimer = true;
1040 g_free(kvm_msr_list);
1046 static Notifier smram_machine_done;
1047 static KVMMemoryListener smram_listener;
1048 static AddressSpace smram_address_space;
1049 static MemoryRegion smram_as_root;
1050 static MemoryRegion smram_as_mem;
1052 static void register_smram_listener(Notifier *n, void *unused)
1054 MemoryRegion *smram =
1055 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1057 /* Outer container... */
1058 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1059 memory_region_set_enabled(&smram_as_root, true);
1061 /* ... with two regions inside: normal system memory with low
1064 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1065 get_system_memory(), 0, ~0ull);
1066 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1067 memory_region_set_enabled(&smram_as_mem, true);
1070 /* ... SMRAM with higher priority */
1071 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1072 memory_region_set_enabled(smram, true);
1075 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1076 kvm_memory_listener_register(kvm_state, &smram_listener,
1077 &smram_address_space, 1);
1080 int kvm_arch_init(MachineState *ms, KVMState *s)
1082 uint64_t identity_base = 0xfffbc000;
1083 uint64_t shadow_mem;
1085 struct utsname utsname;
1087 #ifdef KVM_CAP_XSAVE
1088 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1092 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1095 #ifdef KVM_CAP_PIT_STATE2
1096 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1099 ret = kvm_get_supported_msrs(s);
1105 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1108 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1109 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1110 * Since these must be part of guest physical memory, we need to allocate
1111 * them, both by setting their start addresses in the kernel and by
1112 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1114 * Older KVM versions may not support setting the identity map base. In
1115 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1118 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1119 /* Allows up to 16M BIOSes. */
1120 identity_base = 0xfeffc000;
1122 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1128 /* Set TSS base one page after EPT identity map. */
1129 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1134 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1135 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1137 fprintf(stderr, "e820_add_entry() table is full\n");
1140 qemu_register_reset(kvm_unpoison_all, NULL);
1142 shadow_mem = machine_kvm_shadow_mem(ms);
1143 if (shadow_mem != -1) {
1145 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1151 if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1152 smram_machine_done.notify = register_smram_listener;
1153 qemu_add_machine_init_done_notifier(&smram_machine_done);
1158 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1160 lhs->selector = rhs->selector;
1161 lhs->base = rhs->base;
1162 lhs->limit = rhs->limit;
1174 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1176 unsigned flags = rhs->flags;
1177 lhs->selector = rhs->selector;
1178 lhs->base = rhs->base;
1179 lhs->limit = rhs->limit;
1180 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1181 lhs->present = (flags & DESC_P_MASK) != 0;
1182 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1183 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1184 lhs->s = (flags & DESC_S_MASK) != 0;
1185 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1186 lhs->g = (flags & DESC_G_MASK) != 0;
1187 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1188 lhs->unusable = !lhs->present;
1192 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1194 lhs->selector = rhs->selector;
1195 lhs->base = rhs->base;
1196 lhs->limit = rhs->limit;
1197 if (rhs->unusable) {
1200 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1201 (rhs->present * DESC_P_MASK) |
1202 (rhs->dpl << DESC_DPL_SHIFT) |
1203 (rhs->db << DESC_B_SHIFT) |
1204 (rhs->s * DESC_S_MASK) |
1205 (rhs->l << DESC_L_SHIFT) |
1206 (rhs->g * DESC_G_MASK) |
1207 (rhs->avl * DESC_AVL_MASK);
1211 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1214 *kvm_reg = *qemu_reg;
1216 *qemu_reg = *kvm_reg;
1220 static int kvm_getput_regs(X86CPU *cpu, int set)
1222 CPUX86State *env = &cpu->env;
1223 struct kvm_regs regs;
1227 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s);
1233 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
1234 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
1235 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
1236 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
1237 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
1238 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
1239 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
1240 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
1241 #ifdef TARGET_X86_64
1242 kvm_getput_reg(®s.r8, &env->regs[8], set);
1243 kvm_getput_reg(®s.r9, &env->regs[9], set);
1244 kvm_getput_reg(®s.r10, &env->regs[10], set);
1245 kvm_getput_reg(®s.r11, &env->regs[11], set);
1246 kvm_getput_reg(®s.r12, &env->regs[12], set);
1247 kvm_getput_reg(®s.r13, &env->regs[13], set);
1248 kvm_getput_reg(®s.r14, &env->regs[14], set);
1249 kvm_getput_reg(®s.r15, &env->regs[15], set);
1252 kvm_getput_reg(®s.rflags, &env->eflags, set);
1253 kvm_getput_reg(®s.rip, &env->eip, set);
1256 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s);
1262 static int kvm_put_fpu(X86CPU *cpu)
1264 CPUX86State *env = &cpu->env;
1268 memset(&fpu, 0, sizeof fpu);
1269 fpu.fsw = env->fpus & ~(7 << 11);
1270 fpu.fsw |= (env->fpstt & 7) << 11;
1271 fpu.fcw = env->fpuc;
1272 fpu.last_opcode = env->fpop;
1273 fpu.last_ip = env->fpip;
1274 fpu.last_dp = env->fpdp;
1275 for (i = 0; i < 8; ++i) {
1276 fpu.ftwx |= (!env->fptags[i]) << i;
1278 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1279 for (i = 0; i < CPU_NB_REGS; i++) {
1280 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1281 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1283 fpu.mxcsr = env->mxcsr;
1285 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1288 #define XSAVE_FCW_FSW 0
1289 #define XSAVE_FTW_FOP 1
1290 #define XSAVE_CWD_RIP 2
1291 #define XSAVE_CWD_RDP 4
1292 #define XSAVE_MXCSR 6
1293 #define XSAVE_ST_SPACE 8
1294 #define XSAVE_XMM_SPACE 40
1295 #define XSAVE_XSTATE_BV 128
1296 #define XSAVE_YMMH_SPACE 144
1297 #define XSAVE_BNDREGS 240
1298 #define XSAVE_BNDCSR 256
1299 #define XSAVE_OPMASK 272
1300 #define XSAVE_ZMM_Hi256 288
1301 #define XSAVE_Hi16_ZMM 416
1303 static int kvm_put_xsave(X86CPU *cpu)
1305 CPUX86State *env = &cpu->env;
1306 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1307 uint16_t cwd, swd, twd;
1308 uint8_t *xmm, *ymmh, *zmmh;
1312 return kvm_put_fpu(cpu);
1315 memset(xsave, 0, sizeof(struct kvm_xsave));
1317 swd = env->fpus & ~(7 << 11);
1318 swd |= (env->fpstt & 7) << 11;
1320 for (i = 0; i < 8; ++i) {
1321 twd |= (!env->fptags[i]) << i;
1323 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1324 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1325 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1326 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1327 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1328 sizeof env->fpregs);
1329 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1330 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1331 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1332 sizeof env->bnd_regs);
1333 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1334 sizeof(env->bndcs_regs));
1335 memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
1336 sizeof env->opmask_regs);
1338 xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1339 ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1340 zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1341 for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1342 stq_p(xmm, env->xmm_regs[i].ZMM_Q(0));
1343 stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1));
1344 stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2));
1345 stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3));
1346 stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4));
1347 stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5));
1348 stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6));
1349 stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7));
1352 #ifdef TARGET_X86_64
1353 memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
1354 16 * sizeof env->xmm_regs[16]);
1356 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1360 static int kvm_put_xcrs(X86CPU *cpu)
1362 CPUX86State *env = &cpu->env;
1363 struct kvm_xcrs xcrs = {};
1371 xcrs.xcrs[0].xcr = 0;
1372 xcrs.xcrs[0].value = env->xcr0;
1373 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1376 static int kvm_put_sregs(X86CPU *cpu)
1378 CPUX86State *env = &cpu->env;
1379 struct kvm_sregs sregs;
1381 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1382 if (env->interrupt_injected >= 0) {
1383 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1384 (uint64_t)1 << (env->interrupt_injected % 64);
1387 if ((env->eflags & VM_MASK)) {
1388 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1389 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1390 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1391 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1392 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1393 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1395 set_seg(&sregs.cs, &env->segs[R_CS]);
1396 set_seg(&sregs.ds, &env->segs[R_DS]);
1397 set_seg(&sregs.es, &env->segs[R_ES]);
1398 set_seg(&sregs.fs, &env->segs[R_FS]);
1399 set_seg(&sregs.gs, &env->segs[R_GS]);
1400 set_seg(&sregs.ss, &env->segs[R_SS]);
1403 set_seg(&sregs.tr, &env->tr);
1404 set_seg(&sregs.ldt, &env->ldt);
1406 sregs.idt.limit = env->idt.limit;
1407 sregs.idt.base = env->idt.base;
1408 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1409 sregs.gdt.limit = env->gdt.limit;
1410 sregs.gdt.base = env->gdt.base;
1411 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1413 sregs.cr0 = env->cr[0];
1414 sregs.cr2 = env->cr[2];
1415 sregs.cr3 = env->cr[3];
1416 sregs.cr4 = env->cr[4];
1418 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1419 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1421 sregs.efer = env->efer;
1423 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1426 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1427 uint32_t index, uint64_t value)
1429 entry->index = index;
1430 entry->reserved = 0;
1431 entry->data = value;
1434 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1436 CPUX86State *env = &cpu->env;
1438 struct kvm_msrs info;
1439 struct kvm_msr_entry entries[1];
1441 struct kvm_msr_entry *msrs = msr_data.entries;
1443 if (!has_msr_tsc_deadline) {
1447 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1449 msr_data.info = (struct kvm_msrs) {
1453 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1457 * Provide a separate write service for the feature control MSR in order to
1458 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1459 * before writing any other state because forcibly leaving nested mode
1460 * invalidates the VCPU state.
1462 static int kvm_put_msr_feature_control(X86CPU *cpu)
1465 struct kvm_msrs info;
1466 struct kvm_msr_entry entry;
1469 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1470 cpu->env.msr_ia32_feature_control);
1472 msr_data.info = (struct kvm_msrs) {
1476 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1479 static int kvm_put_msrs(X86CPU *cpu, int level)
1481 CPUX86State *env = &cpu->env;
1483 struct kvm_msrs info;
1484 struct kvm_msr_entry entries[150];
1486 struct kvm_msr_entry *msrs = msr_data.entries;
1489 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1490 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1491 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1492 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1494 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1496 if (has_msr_hsave_pa) {
1497 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1499 if (has_msr_tsc_aux) {
1500 kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux);
1502 if (has_msr_tsc_adjust) {
1503 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1505 if (has_msr_misc_enable) {
1506 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1507 env->msr_ia32_misc_enable);
1509 if (has_msr_smbase) {
1510 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
1512 if (has_msr_bndcfgs) {
1513 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1516 kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1518 #ifdef TARGET_X86_64
1519 if (lm_capable_kernel) {
1520 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1521 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1522 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1523 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1527 * The following MSRs have side effects on the guest or are too heavy
1528 * for normal writeback. Limit them to reset or full state updates.
1530 if (level >= KVM_PUT_RESET_STATE) {
1531 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1532 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1533 env->system_time_msr);
1534 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1535 if (has_msr_async_pf_en) {
1536 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1537 env->async_pf_en_msr);
1539 if (has_msr_pv_eoi_en) {
1540 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1541 env->pv_eoi_en_msr);
1543 if (has_msr_kvm_steal_time) {
1544 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1545 env->steal_time_msr);
1547 if (has_msr_architectural_pmu) {
1548 /* Stop the counter. */
1549 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1550 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1552 /* Set the counter values. */
1553 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1554 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1555 env->msr_fixed_counters[i]);
1557 for (i = 0; i < num_architectural_pmu_counters; i++) {
1558 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1559 env->msr_gp_counters[i]);
1560 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1561 env->msr_gp_evtsel[i]);
1563 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1564 env->msr_global_status);
1565 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1566 env->msr_global_ovf_ctrl);
1568 /* Now start the PMU. */
1569 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1570 env->msr_fixed_ctr_ctrl);
1571 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1572 env->msr_global_ctrl);
1574 if (has_msr_hv_hypercall) {
1575 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1576 env->msr_hv_guest_os_id);
1577 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1578 env->msr_hv_hypercall);
1580 if (has_msr_hv_vapic) {
1581 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1584 if (has_msr_hv_tsc) {
1585 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1588 if (has_msr_hv_crash) {
1591 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
1592 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j,
1593 env->msr_hv_crash_params[j]);
1595 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL,
1596 HV_X64_MSR_CRASH_CTL_NOTIFY);
1598 if (has_msr_hv_runtime) {
1599 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME,
1600 env->msr_hv_runtime);
1602 if (cpu->hyperv_synic) {
1605 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SCONTROL,
1606 env->msr_hv_synic_control);
1607 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SVERSION,
1608 env->msr_hv_synic_version);
1609 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIEFP,
1610 env->msr_hv_synic_evt_page);
1611 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIMP,
1612 env->msr_hv_synic_msg_page);
1614 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1615 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SINT0 + j,
1616 env->msr_hv_synic_sint[j]);
1619 if (has_msr_hv_stimer) {
1622 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1623 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_STIMER0_CONFIG + j*2,
1624 env->msr_hv_stimer_config[j]);
1627 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1628 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_STIMER0_COUNT + j*2,
1629 env->msr_hv_stimer_count[j]);
1633 kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1634 kvm_msr_entry_set(&msrs[n++],
1635 MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1636 kvm_msr_entry_set(&msrs[n++],
1637 MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1638 kvm_msr_entry_set(&msrs[n++],
1639 MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1640 kvm_msr_entry_set(&msrs[n++],
1641 MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1642 kvm_msr_entry_set(&msrs[n++],
1643 MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1644 kvm_msr_entry_set(&msrs[n++],
1645 MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1646 kvm_msr_entry_set(&msrs[n++],
1647 MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1648 kvm_msr_entry_set(&msrs[n++],
1649 MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1650 kvm_msr_entry_set(&msrs[n++],
1651 MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1652 kvm_msr_entry_set(&msrs[n++],
1653 MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1654 kvm_msr_entry_set(&msrs[n++],
1655 MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1656 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1657 kvm_msr_entry_set(&msrs[n++],
1658 MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1659 kvm_msr_entry_set(&msrs[n++],
1660 MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1664 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1665 * kvm_put_msr_feature_control. */
1670 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1671 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1672 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1673 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1677 msr_data.info = (struct kvm_msrs) {
1681 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1686 static int kvm_get_fpu(X86CPU *cpu)
1688 CPUX86State *env = &cpu->env;
1692 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1697 env->fpstt = (fpu.fsw >> 11) & 7;
1698 env->fpus = fpu.fsw;
1699 env->fpuc = fpu.fcw;
1700 env->fpop = fpu.last_opcode;
1701 env->fpip = fpu.last_ip;
1702 env->fpdp = fpu.last_dp;
1703 for (i = 0; i < 8; ++i) {
1704 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1706 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1707 for (i = 0; i < CPU_NB_REGS; i++) {
1708 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1709 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1711 env->mxcsr = fpu.mxcsr;
1716 static int kvm_get_xsave(X86CPU *cpu)
1718 CPUX86State *env = &cpu->env;
1719 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1721 const uint8_t *xmm, *ymmh, *zmmh;
1722 uint16_t cwd, swd, twd;
1725 return kvm_get_fpu(cpu);
1728 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1733 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1734 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1735 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1736 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1737 env->fpstt = (swd >> 11) & 7;
1740 for (i = 0; i < 8; ++i) {
1741 env->fptags[i] = !((twd >> i) & 1);
1743 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1744 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1745 env->mxcsr = xsave->region[XSAVE_MXCSR];
1746 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1747 sizeof env->fpregs);
1748 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1749 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1750 sizeof env->bnd_regs);
1751 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1752 sizeof(env->bndcs_regs));
1753 memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
1754 sizeof env->opmask_regs);
1756 xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1757 ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1758 zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1759 for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1760 env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm);
1761 env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8);
1762 env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh);
1763 env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8);
1764 env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh);
1765 env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8);
1766 env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16);
1767 env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24);
1770 #ifdef TARGET_X86_64
1771 memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
1772 16 * sizeof env->xmm_regs[16]);
1777 static int kvm_get_xcrs(X86CPU *cpu)
1779 CPUX86State *env = &cpu->env;
1781 struct kvm_xcrs xcrs;
1787 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1792 for (i = 0; i < xcrs.nr_xcrs; i++) {
1793 /* Only support xcr0 now */
1794 if (xcrs.xcrs[i].xcr == 0) {
1795 env->xcr0 = xcrs.xcrs[i].value;
1802 static int kvm_get_sregs(X86CPU *cpu)
1804 CPUX86State *env = &cpu->env;
1805 struct kvm_sregs sregs;
1809 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1814 /* There can only be one pending IRQ set in the bitmap at a time, so try
1815 to find it and save its number instead (-1 for none). */
1816 env->interrupt_injected = -1;
1817 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1818 if (sregs.interrupt_bitmap[i]) {
1819 bit = ctz64(sregs.interrupt_bitmap[i]);
1820 env->interrupt_injected = i * 64 + bit;
1825 get_seg(&env->segs[R_CS], &sregs.cs);
1826 get_seg(&env->segs[R_DS], &sregs.ds);
1827 get_seg(&env->segs[R_ES], &sregs.es);
1828 get_seg(&env->segs[R_FS], &sregs.fs);
1829 get_seg(&env->segs[R_GS], &sregs.gs);
1830 get_seg(&env->segs[R_SS], &sregs.ss);
1832 get_seg(&env->tr, &sregs.tr);
1833 get_seg(&env->ldt, &sregs.ldt);
1835 env->idt.limit = sregs.idt.limit;
1836 env->idt.base = sregs.idt.base;
1837 env->gdt.limit = sregs.gdt.limit;
1838 env->gdt.base = sregs.gdt.base;
1840 env->cr[0] = sregs.cr0;
1841 env->cr[2] = sregs.cr2;
1842 env->cr[3] = sregs.cr3;
1843 env->cr[4] = sregs.cr4;
1845 env->efer = sregs.efer;
1847 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1849 #define HFLAG_COPY_MASK \
1850 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1851 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1852 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1853 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1855 hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1856 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1857 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1858 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1859 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1860 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1861 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1863 if (env->efer & MSR_EFER_LMA) {
1864 hflags |= HF_LMA_MASK;
1867 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1868 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1870 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1871 (DESC_B_SHIFT - HF_CS32_SHIFT);
1872 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1873 (DESC_B_SHIFT - HF_SS32_SHIFT);
1874 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1875 !(hflags & HF_CS32_MASK)) {
1876 hflags |= HF_ADDSEG_MASK;
1878 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1879 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1882 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1887 static int kvm_get_msrs(X86CPU *cpu)
1889 CPUX86State *env = &cpu->env;
1891 struct kvm_msrs info;
1892 struct kvm_msr_entry entries[150];
1894 struct kvm_msr_entry *msrs = msr_data.entries;
1898 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1899 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1900 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1901 msrs[n++].index = MSR_PAT;
1903 msrs[n++].index = MSR_STAR;
1905 if (has_msr_hsave_pa) {
1906 msrs[n++].index = MSR_VM_HSAVE_PA;
1908 if (has_msr_tsc_aux) {
1909 msrs[n++].index = MSR_TSC_AUX;
1911 if (has_msr_tsc_adjust) {
1912 msrs[n++].index = MSR_TSC_ADJUST;
1914 if (has_msr_tsc_deadline) {
1915 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1917 if (has_msr_misc_enable) {
1918 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1920 if (has_msr_smbase) {
1921 msrs[n++].index = MSR_IA32_SMBASE;
1923 if (has_msr_feature_control) {
1924 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1926 if (has_msr_bndcfgs) {
1927 msrs[n++].index = MSR_IA32_BNDCFGS;
1930 msrs[n++].index = MSR_IA32_XSS;
1934 if (!env->tsc_valid) {
1935 msrs[n++].index = MSR_IA32_TSC;
1936 env->tsc_valid = !runstate_is_running();
1939 #ifdef TARGET_X86_64
1940 if (lm_capable_kernel) {
1941 msrs[n++].index = MSR_CSTAR;
1942 msrs[n++].index = MSR_KERNELGSBASE;
1943 msrs[n++].index = MSR_FMASK;
1944 msrs[n++].index = MSR_LSTAR;
1947 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1948 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1949 if (has_msr_async_pf_en) {
1950 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1952 if (has_msr_pv_eoi_en) {
1953 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1955 if (has_msr_kvm_steal_time) {
1956 msrs[n++].index = MSR_KVM_STEAL_TIME;
1958 if (has_msr_architectural_pmu) {
1959 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1960 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1961 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1962 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1963 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1964 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1966 for (i = 0; i < num_architectural_pmu_counters; i++) {
1967 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1968 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1973 msrs[n++].index = MSR_MCG_STATUS;
1974 msrs[n++].index = MSR_MCG_CTL;
1975 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1976 msrs[n++].index = MSR_MC0_CTL + i;
1980 if (has_msr_hv_hypercall) {
1981 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1982 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1984 if (has_msr_hv_vapic) {
1985 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1987 if (has_msr_hv_tsc) {
1988 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1990 if (has_msr_hv_crash) {
1993 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
1994 msrs[n++].index = HV_X64_MSR_CRASH_P0 + j;
1997 if (has_msr_hv_runtime) {
1998 msrs[n++].index = HV_X64_MSR_VP_RUNTIME;
2000 if (cpu->hyperv_synic) {
2003 msrs[n++].index = HV_X64_MSR_SCONTROL;
2004 msrs[n++].index = HV_X64_MSR_SVERSION;
2005 msrs[n++].index = HV_X64_MSR_SIEFP;
2006 msrs[n++].index = HV_X64_MSR_SIMP;
2007 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2008 msrs[n++].index = msr;
2011 if (has_msr_hv_stimer) {
2014 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2016 msrs[n++].index = msr;
2020 msrs[n++].index = MSR_MTRRdefType;
2021 msrs[n++].index = MSR_MTRRfix64K_00000;
2022 msrs[n++].index = MSR_MTRRfix16K_80000;
2023 msrs[n++].index = MSR_MTRRfix16K_A0000;
2024 msrs[n++].index = MSR_MTRRfix4K_C0000;
2025 msrs[n++].index = MSR_MTRRfix4K_C8000;
2026 msrs[n++].index = MSR_MTRRfix4K_D0000;
2027 msrs[n++].index = MSR_MTRRfix4K_D8000;
2028 msrs[n++].index = MSR_MTRRfix4K_E0000;
2029 msrs[n++].index = MSR_MTRRfix4K_E8000;
2030 msrs[n++].index = MSR_MTRRfix4K_F0000;
2031 msrs[n++].index = MSR_MTRRfix4K_F8000;
2032 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2033 msrs[n++].index = MSR_MTRRphysBase(i);
2034 msrs[n++].index = MSR_MTRRphysMask(i);
2038 msr_data.info = (struct kvm_msrs) {
2042 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2047 for (i = 0; i < ret; i++) {
2048 uint32_t index = msrs[i].index;
2050 case MSR_IA32_SYSENTER_CS:
2051 env->sysenter_cs = msrs[i].data;
2053 case MSR_IA32_SYSENTER_ESP:
2054 env->sysenter_esp = msrs[i].data;
2056 case MSR_IA32_SYSENTER_EIP:
2057 env->sysenter_eip = msrs[i].data;
2060 env->pat = msrs[i].data;
2063 env->star = msrs[i].data;
2065 #ifdef TARGET_X86_64
2067 env->cstar = msrs[i].data;
2069 case MSR_KERNELGSBASE:
2070 env->kernelgsbase = msrs[i].data;
2073 env->fmask = msrs[i].data;
2076 env->lstar = msrs[i].data;
2080 env->tsc = msrs[i].data;
2083 env->tsc_aux = msrs[i].data;
2085 case MSR_TSC_ADJUST:
2086 env->tsc_adjust = msrs[i].data;
2088 case MSR_IA32_TSCDEADLINE:
2089 env->tsc_deadline = msrs[i].data;
2091 case MSR_VM_HSAVE_PA:
2092 env->vm_hsave = msrs[i].data;
2094 case MSR_KVM_SYSTEM_TIME:
2095 env->system_time_msr = msrs[i].data;
2097 case MSR_KVM_WALL_CLOCK:
2098 env->wall_clock_msr = msrs[i].data;
2100 case MSR_MCG_STATUS:
2101 env->mcg_status = msrs[i].data;
2104 env->mcg_ctl = msrs[i].data;
2106 case MSR_IA32_MISC_ENABLE:
2107 env->msr_ia32_misc_enable = msrs[i].data;
2109 case MSR_IA32_SMBASE:
2110 env->smbase = msrs[i].data;
2112 case MSR_IA32_FEATURE_CONTROL:
2113 env->msr_ia32_feature_control = msrs[i].data;
2115 case MSR_IA32_BNDCFGS:
2116 env->msr_bndcfgs = msrs[i].data;
2119 env->xss = msrs[i].data;
2122 if (msrs[i].index >= MSR_MC0_CTL &&
2123 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2124 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2127 case MSR_KVM_ASYNC_PF_EN:
2128 env->async_pf_en_msr = msrs[i].data;
2130 case MSR_KVM_PV_EOI_EN:
2131 env->pv_eoi_en_msr = msrs[i].data;
2133 case MSR_KVM_STEAL_TIME:
2134 env->steal_time_msr = msrs[i].data;
2136 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2137 env->msr_fixed_ctr_ctrl = msrs[i].data;
2139 case MSR_CORE_PERF_GLOBAL_CTRL:
2140 env->msr_global_ctrl = msrs[i].data;
2142 case MSR_CORE_PERF_GLOBAL_STATUS:
2143 env->msr_global_status = msrs[i].data;
2145 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2146 env->msr_global_ovf_ctrl = msrs[i].data;
2148 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2149 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2151 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2152 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2154 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2155 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2157 case HV_X64_MSR_HYPERCALL:
2158 env->msr_hv_hypercall = msrs[i].data;
2160 case HV_X64_MSR_GUEST_OS_ID:
2161 env->msr_hv_guest_os_id = msrs[i].data;
2163 case HV_X64_MSR_APIC_ASSIST_PAGE:
2164 env->msr_hv_vapic = msrs[i].data;
2166 case HV_X64_MSR_REFERENCE_TSC:
2167 env->msr_hv_tsc = msrs[i].data;
2169 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2170 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2172 case HV_X64_MSR_VP_RUNTIME:
2173 env->msr_hv_runtime = msrs[i].data;
2175 case HV_X64_MSR_SCONTROL:
2176 env->msr_hv_synic_control = msrs[i].data;
2178 case HV_X64_MSR_SVERSION:
2179 env->msr_hv_synic_version = msrs[i].data;
2181 case HV_X64_MSR_SIEFP:
2182 env->msr_hv_synic_evt_page = msrs[i].data;
2184 case HV_X64_MSR_SIMP:
2185 env->msr_hv_synic_msg_page = msrs[i].data;
2187 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2188 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2190 case HV_X64_MSR_STIMER0_CONFIG:
2191 case HV_X64_MSR_STIMER1_CONFIG:
2192 case HV_X64_MSR_STIMER2_CONFIG:
2193 case HV_X64_MSR_STIMER3_CONFIG:
2194 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2197 case HV_X64_MSR_STIMER0_COUNT:
2198 case HV_X64_MSR_STIMER1_COUNT:
2199 case HV_X64_MSR_STIMER2_COUNT:
2200 case HV_X64_MSR_STIMER3_COUNT:
2201 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2204 case MSR_MTRRdefType:
2205 env->mtrr_deftype = msrs[i].data;
2207 case MSR_MTRRfix64K_00000:
2208 env->mtrr_fixed[0] = msrs[i].data;
2210 case MSR_MTRRfix16K_80000:
2211 env->mtrr_fixed[1] = msrs[i].data;
2213 case MSR_MTRRfix16K_A0000:
2214 env->mtrr_fixed[2] = msrs[i].data;
2216 case MSR_MTRRfix4K_C0000:
2217 env->mtrr_fixed[3] = msrs[i].data;
2219 case MSR_MTRRfix4K_C8000:
2220 env->mtrr_fixed[4] = msrs[i].data;
2222 case MSR_MTRRfix4K_D0000:
2223 env->mtrr_fixed[5] = msrs[i].data;
2225 case MSR_MTRRfix4K_D8000:
2226 env->mtrr_fixed[6] = msrs[i].data;
2228 case MSR_MTRRfix4K_E0000:
2229 env->mtrr_fixed[7] = msrs[i].data;
2231 case MSR_MTRRfix4K_E8000:
2232 env->mtrr_fixed[8] = msrs[i].data;
2234 case MSR_MTRRfix4K_F0000:
2235 env->mtrr_fixed[9] = msrs[i].data;
2237 case MSR_MTRRfix4K_F8000:
2238 env->mtrr_fixed[10] = msrs[i].data;
2240 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2242 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
2244 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2253 static int kvm_put_mp_state(X86CPU *cpu)
2255 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2257 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2260 static int kvm_get_mp_state(X86CPU *cpu)
2262 CPUState *cs = CPU(cpu);
2263 CPUX86State *env = &cpu->env;
2264 struct kvm_mp_state mp_state;
2267 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2271 env->mp_state = mp_state.mp_state;
2272 if (kvm_irqchip_in_kernel()) {
2273 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2278 static int kvm_get_apic(X86CPU *cpu)
2280 DeviceState *apic = cpu->apic_state;
2281 struct kvm_lapic_state kapic;
2284 if (apic && kvm_irqchip_in_kernel()) {
2285 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2290 kvm_get_apic_state(apic, &kapic);
2295 static int kvm_put_apic(X86CPU *cpu)
2297 DeviceState *apic = cpu->apic_state;
2298 struct kvm_lapic_state kapic;
2300 if (apic && kvm_irqchip_in_kernel()) {
2301 kvm_put_apic_state(apic, &kapic);
2303 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
2308 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2310 CPUState *cs = CPU(cpu);
2311 CPUX86State *env = &cpu->env;
2312 struct kvm_vcpu_events events = {};
2314 if (!kvm_has_vcpu_events()) {
2318 events.exception.injected = (env->exception_injected >= 0);
2319 events.exception.nr = env->exception_injected;
2320 events.exception.has_error_code = env->has_error_code;
2321 events.exception.error_code = env->error_code;
2322 events.exception.pad = 0;
2324 events.interrupt.injected = (env->interrupt_injected >= 0);
2325 events.interrupt.nr = env->interrupt_injected;
2326 events.interrupt.soft = env->soft_interrupt;
2328 events.nmi.injected = env->nmi_injected;
2329 events.nmi.pending = env->nmi_pending;
2330 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2333 events.sipi_vector = env->sipi_vector;
2335 if (has_msr_smbase) {
2336 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2337 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2338 if (kvm_irqchip_in_kernel()) {
2339 /* As soon as these are moved to the kernel, remove them
2340 * from cs->interrupt_request.
2342 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2343 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2344 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2346 /* Keep these in cs->interrupt_request. */
2347 events.smi.pending = 0;
2348 events.smi.latched_init = 0;
2350 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2354 if (level >= KVM_PUT_RESET_STATE) {
2356 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2359 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2362 static int kvm_get_vcpu_events(X86CPU *cpu)
2364 CPUX86State *env = &cpu->env;
2365 struct kvm_vcpu_events events;
2368 if (!kvm_has_vcpu_events()) {
2372 memset(&events, 0, sizeof(events));
2373 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2377 env->exception_injected =
2378 events.exception.injected ? events.exception.nr : -1;
2379 env->has_error_code = events.exception.has_error_code;
2380 env->error_code = events.exception.error_code;
2382 env->interrupt_injected =
2383 events.interrupt.injected ? events.interrupt.nr : -1;
2384 env->soft_interrupt = events.interrupt.soft;
2386 env->nmi_injected = events.nmi.injected;
2387 env->nmi_pending = events.nmi.pending;
2388 if (events.nmi.masked) {
2389 env->hflags2 |= HF2_NMI_MASK;
2391 env->hflags2 &= ~HF2_NMI_MASK;
2394 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2395 if (events.smi.smm) {
2396 env->hflags |= HF_SMM_MASK;
2398 env->hflags &= ~HF_SMM_MASK;
2400 if (events.smi.pending) {
2401 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2403 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2405 if (events.smi.smm_inside_nmi) {
2406 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2408 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2410 if (events.smi.latched_init) {
2411 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2413 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2417 env->sipi_vector = events.sipi_vector;
2422 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2424 CPUState *cs = CPU(cpu);
2425 CPUX86State *env = &cpu->env;
2427 unsigned long reinject_trap = 0;
2429 if (!kvm_has_vcpu_events()) {
2430 if (env->exception_injected == 1) {
2431 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2432 } else if (env->exception_injected == 3) {
2433 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2435 env->exception_injected = -1;
2439 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2440 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2441 * by updating the debug state once again if single-stepping is on.
2442 * Another reason to call kvm_update_guest_debug here is a pending debug
2443 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2444 * reinject them via SET_GUEST_DEBUG.
2446 if (reinject_trap ||
2447 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2448 ret = kvm_update_guest_debug(cs, reinject_trap);
2453 static int kvm_put_debugregs(X86CPU *cpu)
2455 CPUX86State *env = &cpu->env;
2456 struct kvm_debugregs dbgregs;
2459 if (!kvm_has_debugregs()) {
2463 for (i = 0; i < 4; i++) {
2464 dbgregs.db[i] = env->dr[i];
2466 dbgregs.dr6 = env->dr[6];
2467 dbgregs.dr7 = env->dr[7];
2470 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2473 static int kvm_get_debugregs(X86CPU *cpu)
2475 CPUX86State *env = &cpu->env;
2476 struct kvm_debugregs dbgregs;
2479 if (!kvm_has_debugregs()) {
2483 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2487 for (i = 0; i < 4; i++) {
2488 env->dr[i] = dbgregs.db[i];
2490 env->dr[4] = env->dr[6] = dbgregs.dr6;
2491 env->dr[5] = env->dr[7] = dbgregs.dr7;
2496 int kvm_arch_put_registers(CPUState *cpu, int level)
2498 X86CPU *x86_cpu = X86_CPU(cpu);
2501 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2503 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
2504 ret = kvm_put_msr_feature_control(x86_cpu);
2510 ret = kvm_getput_regs(x86_cpu, 1);
2514 ret = kvm_put_xsave(x86_cpu);
2518 ret = kvm_put_xcrs(x86_cpu);
2522 ret = kvm_put_sregs(x86_cpu);
2526 /* must be before kvm_put_msrs */
2527 ret = kvm_inject_mce_oldstyle(x86_cpu);
2531 ret = kvm_put_msrs(x86_cpu, level);
2535 if (level >= KVM_PUT_RESET_STATE) {
2536 ret = kvm_put_mp_state(x86_cpu);
2540 ret = kvm_put_apic(x86_cpu);
2546 ret = kvm_put_tscdeadline_msr(x86_cpu);
2551 ret = kvm_put_vcpu_events(x86_cpu, level);
2555 ret = kvm_put_debugregs(x86_cpu);
2560 ret = kvm_guest_debug_workarounds(x86_cpu);
2567 int kvm_arch_get_registers(CPUState *cs)
2569 X86CPU *cpu = X86_CPU(cs);
2572 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2574 ret = kvm_getput_regs(cpu, 0);
2578 ret = kvm_get_xsave(cpu);
2582 ret = kvm_get_xcrs(cpu);
2586 ret = kvm_get_sregs(cpu);
2590 ret = kvm_get_msrs(cpu);
2594 ret = kvm_get_mp_state(cpu);
2598 ret = kvm_get_apic(cpu);
2602 ret = kvm_get_vcpu_events(cpu);
2606 ret = kvm_get_debugregs(cpu);
2613 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2615 X86CPU *x86_cpu = X86_CPU(cpu);
2616 CPUX86State *env = &x86_cpu->env;
2620 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2621 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2622 qemu_mutex_lock_iothread();
2623 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2624 qemu_mutex_unlock_iothread();
2625 DPRINTF("injected NMI\n");
2626 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2628 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2632 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2633 qemu_mutex_lock_iothread();
2634 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2635 qemu_mutex_unlock_iothread();
2636 DPRINTF("injected SMI\n");
2637 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2639 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2645 if (!kvm_pic_in_kernel()) {
2646 qemu_mutex_lock_iothread();
2649 /* Force the VCPU out of its inner loop to process any INIT requests
2650 * or (for userspace APIC, but it is cheap to combine the checks here)
2651 * pending TPR access reports.
2653 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2654 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2655 !(env->hflags & HF_SMM_MASK)) {
2656 cpu->exit_request = 1;
2658 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2659 cpu->exit_request = 1;
2663 if (!kvm_pic_in_kernel()) {
2664 /* Try to inject an interrupt if the guest can accept it */
2665 if (run->ready_for_interrupt_injection &&
2666 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2667 (env->eflags & IF_MASK)) {
2670 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2671 irq = cpu_get_pic_interrupt(env);
2673 struct kvm_interrupt intr;
2676 DPRINTF("injected interrupt %d\n", irq);
2677 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2680 "KVM: injection failed, interrupt lost (%s)\n",
2686 /* If we have an interrupt but the guest is not ready to receive an
2687 * interrupt, request an interrupt window exit. This will
2688 * cause a return to userspace as soon as the guest is ready to
2689 * receive interrupts. */
2690 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2691 run->request_interrupt_window = 1;
2693 run->request_interrupt_window = 0;
2696 DPRINTF("setting tpr\n");
2697 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2699 qemu_mutex_unlock_iothread();
2703 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2705 X86CPU *x86_cpu = X86_CPU(cpu);
2706 CPUX86State *env = &x86_cpu->env;
2708 if (run->flags & KVM_RUN_X86_SMM) {
2709 env->hflags |= HF_SMM_MASK;
2711 env->hflags &= HF_SMM_MASK;
2714 env->eflags |= IF_MASK;
2716 env->eflags &= ~IF_MASK;
2719 /* We need to protect the apic state against concurrent accesses from
2720 * different threads in case the userspace irqchip is used. */
2721 if (!kvm_irqchip_in_kernel()) {
2722 qemu_mutex_lock_iothread();
2724 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2725 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2726 if (!kvm_irqchip_in_kernel()) {
2727 qemu_mutex_unlock_iothread();
2729 return cpu_get_mem_attrs(env);
2732 int kvm_arch_process_async_events(CPUState *cs)
2734 X86CPU *cpu = X86_CPU(cs);
2735 CPUX86State *env = &cpu->env;
2737 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2738 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2739 assert(env->mcg_cap);
2741 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2743 kvm_cpu_synchronize_state(cs);
2745 if (env->exception_injected == EXCP08_DBLE) {
2746 /* this means triple fault */
2747 qemu_system_reset_request();
2748 cs->exit_request = 1;
2751 env->exception_injected = EXCP12_MCHK;
2752 env->has_error_code = 0;
2755 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2756 env->mp_state = KVM_MP_STATE_RUNNABLE;
2760 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2761 !(env->hflags & HF_SMM_MASK)) {
2762 kvm_cpu_synchronize_state(cs);
2766 if (kvm_irqchip_in_kernel()) {
2770 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2771 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2772 apic_poll_irq(cpu->apic_state);
2774 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2775 (env->eflags & IF_MASK)) ||
2776 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2779 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2780 kvm_cpu_synchronize_state(cs);
2783 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2784 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2785 kvm_cpu_synchronize_state(cs);
2786 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2787 env->tpr_access_type);
2793 static int kvm_handle_halt(X86CPU *cpu)
2795 CPUState *cs = CPU(cpu);
2796 CPUX86State *env = &cpu->env;
2798 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2799 (env->eflags & IF_MASK)) &&
2800 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2808 static int kvm_handle_tpr_access(X86CPU *cpu)
2810 CPUState *cs = CPU(cpu);
2811 struct kvm_run *run = cs->kvm_run;
2813 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2814 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2819 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2821 static const uint8_t int3 = 0xcc;
2823 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2824 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2830 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2834 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2835 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2847 static int nb_hw_breakpoint;
2849 static int find_hw_breakpoint(target_ulong addr, int len, int type)
2853 for (n = 0; n < nb_hw_breakpoint; n++) {
2854 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2855 (hw_breakpoint[n].len == len || len == -1)) {
2862 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2863 target_ulong len, int type)
2866 case GDB_BREAKPOINT_HW:
2869 case GDB_WATCHPOINT_WRITE:
2870 case GDB_WATCHPOINT_ACCESS:
2877 if (addr & (len - 1)) {
2889 if (nb_hw_breakpoint == 4) {
2892 if (find_hw_breakpoint(addr, len, type) >= 0) {
2895 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2896 hw_breakpoint[nb_hw_breakpoint].len = len;
2897 hw_breakpoint[nb_hw_breakpoint].type = type;
2903 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2904 target_ulong len, int type)
2908 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2913 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2918 void kvm_arch_remove_all_hw_breakpoints(void)
2920 nb_hw_breakpoint = 0;
2923 static CPUWatchpoint hw_watchpoint;
2925 static int kvm_handle_debug(X86CPU *cpu,
2926 struct kvm_debug_exit_arch *arch_info)
2928 CPUState *cs = CPU(cpu);
2929 CPUX86State *env = &cpu->env;
2933 if (arch_info->exception == 1) {
2934 if (arch_info->dr6 & (1 << 14)) {
2935 if (cs->singlestep_enabled) {
2939 for (n = 0; n < 4; n++) {
2940 if (arch_info->dr6 & (1 << n)) {
2941 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2947 cs->watchpoint_hit = &hw_watchpoint;
2948 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2949 hw_watchpoint.flags = BP_MEM_WRITE;
2953 cs->watchpoint_hit = &hw_watchpoint;
2954 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2955 hw_watchpoint.flags = BP_MEM_ACCESS;
2961 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
2965 cpu_synchronize_state(cs);
2966 assert(env->exception_injected == -1);
2969 env->exception_injected = arch_info->exception;
2970 env->has_error_code = 0;
2976 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2978 const uint8_t type_code[] = {
2979 [GDB_BREAKPOINT_HW] = 0x0,
2980 [GDB_WATCHPOINT_WRITE] = 0x1,
2981 [GDB_WATCHPOINT_ACCESS] = 0x3
2983 const uint8_t len_code[] = {
2984 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2988 if (kvm_sw_breakpoints_active(cpu)) {
2989 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2991 if (nb_hw_breakpoint > 0) {
2992 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2993 dbg->arch.debugreg[7] = 0x0600;
2994 for (n = 0; n < nb_hw_breakpoint; n++) {
2995 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2996 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2997 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2998 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3003 static bool host_supports_vmx(void)
3005 uint32_t ecx, unused;
3007 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3008 return ecx & CPUID_EXT_VMX;
3011 #define VMX_INVALID_GUEST_STATE 0x80000021
3013 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3015 X86CPU *cpu = X86_CPU(cs);
3019 switch (run->exit_reason) {
3021 DPRINTF("handle_hlt\n");
3022 qemu_mutex_lock_iothread();
3023 ret = kvm_handle_halt(cpu);
3024 qemu_mutex_unlock_iothread();
3026 case KVM_EXIT_SET_TPR:
3029 case KVM_EXIT_TPR_ACCESS:
3030 qemu_mutex_lock_iothread();
3031 ret = kvm_handle_tpr_access(cpu);
3032 qemu_mutex_unlock_iothread();
3034 case KVM_EXIT_FAIL_ENTRY:
3035 code = run->fail_entry.hardware_entry_failure_reason;
3036 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3038 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3040 "\nIf you're running a guest on an Intel machine without "
3041 "unrestricted mode\n"
3042 "support, the failure can be most likely due to the guest "
3043 "entering an invalid\n"
3044 "state for Intel VT. For example, the guest maybe running "
3045 "in big real mode\n"
3046 "which is not supported on less recent Intel processors."
3051 case KVM_EXIT_EXCEPTION:
3052 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3053 run->ex.exception, run->ex.error_code);
3056 case KVM_EXIT_DEBUG:
3057 DPRINTF("kvm_exit_debug\n");
3058 qemu_mutex_lock_iothread();
3059 ret = kvm_handle_debug(cpu, &run->debug.arch);
3060 qemu_mutex_unlock_iothread();
3062 case KVM_EXIT_HYPERV:
3063 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3065 case KVM_EXIT_IOAPIC_EOI:
3066 ioapic_eoi_broadcast(run->eoi.vector);
3070 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3078 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3080 X86CPU *cpu = X86_CPU(cs);
3081 CPUX86State *env = &cpu->env;
3083 kvm_cpu_synchronize_state(cs);
3084 return !(env->cr[0] & CR0_PE_MASK) ||
3085 ((env->segs[R_CS].selector & 3) != 3);
3088 void kvm_arch_init_irq_routing(KVMState *s)
3090 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3091 /* If kernel can't do irq routing, interrupt source
3092 * override 0->2 cannot be set up as required by HPET.
3093 * So we have to disable it.
3097 /* We know at this point that we're using the in-kernel
3098 * irqchip, so we can use irqfds, and on x86 we know
3099 * we can use msi via irqfd and GSI routing.
3101 kvm_msi_via_irqfd_allowed = true;
3102 kvm_gsi_routing_allowed = true;
3104 if (kvm_irqchip_is_split()) {
3107 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3108 MSI routes for signaling interrupts to the local apics. */
3109 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3110 struct MSIMessage msg = { 0x0, 0x0 };
3111 if (kvm_irqchip_add_msi_route(s, msg, NULL) < 0) {
3112 error_report("Could not enable split IRQ mode.");
3119 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3122 if (machine_kernel_irqchip_split(ms)) {
3123 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3125 error_report("Could not enable split irqchip mode: %s\n",
3129 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3130 kvm_split_irqchip = true;
3138 /* Classic KVM device assignment interface. Will remain x86 only. */
3139 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3140 uint32_t flags, uint32_t *dev_id)
3142 struct kvm_assigned_pci_dev dev_data = {
3143 .segnr = dev_addr->domain,
3144 .busnr = dev_addr->bus,
3145 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3150 dev_data.assigned_dev_id =
3151 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3153 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3158 *dev_id = dev_data.assigned_dev_id;
3163 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3165 struct kvm_assigned_pci_dev dev_data = {
3166 .assigned_dev_id = dev_id,
3169 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3172 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3173 uint32_t irq_type, uint32_t guest_irq)
3175 struct kvm_assigned_irq assigned_irq = {
3176 .assigned_dev_id = dev_id,
3177 .guest_irq = guest_irq,
3181 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3182 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3184 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3188 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3191 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3192 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3194 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3197 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3199 struct kvm_assigned_pci_dev dev_data = {
3200 .assigned_dev_id = dev_id,
3201 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3204 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3207 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3210 struct kvm_assigned_irq assigned_irq = {
3211 .assigned_dev_id = dev_id,
3215 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3218 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3220 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3221 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3224 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3226 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3227 KVM_DEV_IRQ_GUEST_MSI, virq);
3230 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3232 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3233 KVM_DEV_IRQ_HOST_MSI);
3236 bool kvm_device_msix_supported(KVMState *s)
3238 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3239 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3240 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3243 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3244 uint32_t nr_vectors)
3246 struct kvm_assigned_msix_nr msix_nr = {
3247 .assigned_dev_id = dev_id,
3248 .entry_nr = nr_vectors,
3251 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3254 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3257 struct kvm_assigned_msix_entry msix_entry = {
3258 .assigned_dev_id = dev_id,
3263 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3266 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3268 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3269 KVM_DEV_IRQ_GUEST_MSIX, 0);
3272 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3274 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3275 KVM_DEV_IRQ_HOST_MSIX);
3278 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3279 uint64_t address, uint32_t data, PCIDevice *dev)
3284 int kvm_arch_msi_data_to_gsi(uint32_t data)