4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "config-host.h"
26 #include "qemu-common.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
41 #include "qemu/bitops.h"
43 #include "block/snapshot.h"
44 #include "block/qapi.h"
46 #define SELF_ANNOUNCE_ROUNDS 5
49 #define ETH_P_RARP 0x8035
51 #define ARP_HTYPE_ETH 0x0001
52 #define ARP_PTYPE_IP 0x0800
53 #define ARP_OP_REQUEST_REV 0x3
55 static int announce_self_create(uint8_t *buf,
58 /* Ethernet header. */
59 memset(buf, 0xff, 6); /* destination MAC addr */
60 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
61 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
64 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
65 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
66 *(buf + 18) = 6; /* hardware addr length (ethernet) */
67 *(buf + 19) = 4; /* protocol addr length (IPv4) */
68 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
69 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
70 memset(buf + 28, 0x00, 4); /* source protocol addr */
71 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
72 memset(buf + 38, 0x00, 4); /* target protocol addr */
74 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
75 memset(buf + 42, 0x00, 18);
77 return 60; /* len (FCS will be added by hardware) */
80 static void qemu_announce_self_iter(NICState *nic, void *opaque)
85 len = announce_self_create(buf, nic->conf->macaddr.a);
87 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
91 static void qemu_announce_self_once(void *opaque)
93 static int count = SELF_ANNOUNCE_ROUNDS;
94 QEMUTimer *timer = *(QEMUTimer **)opaque;
96 qemu_foreach_nic(qemu_announce_self_iter, NULL);
99 /* delay 50ms, 150ms, 250ms, ... */
100 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
101 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
103 qemu_del_timer(timer);
104 qemu_free_timer(timer);
108 void qemu_announce_self(void)
110 static QEMUTimer *timer;
111 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
112 qemu_announce_self_once(&timer);
115 /***********************************************************/
116 /* savevm/loadvm support */
118 #define IO_BUF_SIZE 32768
119 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
122 const QEMUFileOps *ops;
128 int64_t pos; /* start of buffer when writing, end of buffer
131 int buf_size; /* 0 when writing */
132 uint8_t buf[IO_BUF_SIZE];
134 struct iovec iov[MAX_IOV_SIZE];
140 typedef struct QEMUFileStdio
146 typedef struct QEMUFileSocket
157 static void fd_coroutine_enter(void *opaque)
159 FDYieldUntilData *data = opaque;
160 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
161 qemu_coroutine_enter(data->co, NULL);
165 * Yield until a file descriptor becomes readable
167 * Note that this function clobbers the handlers for the file descriptor.
169 static void coroutine_fn yield_until_fd_readable(int fd)
171 FDYieldUntilData data;
173 assert(qemu_in_coroutine());
174 data.co = qemu_coroutine_self();
176 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
177 qemu_coroutine_yield();
180 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
183 QEMUFileSocket *s = opaque;
185 ssize_t size = iov_size(iov, iovcnt);
187 len = iov_send(s->fd, iov, iovcnt, 0, size);
189 len = -socket_error();
194 static int socket_get_fd(void *opaque)
196 QEMUFileSocket *s = opaque;
201 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
203 QEMUFileSocket *s = opaque;
207 len = qemu_recv(s->fd, buf, size, 0);
211 if (socket_error() == EAGAIN) {
212 yield_until_fd_readable(s->fd);
213 } else if (socket_error() != EINTR) {
219 len = -socket_error();
224 static int socket_close(void *opaque)
226 QEMUFileSocket *s = opaque;
232 static int stdio_get_fd(void *opaque)
234 QEMUFileStdio *s = opaque;
236 return fileno(s->stdio_file);
239 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
241 QEMUFileStdio *s = opaque;
242 return fwrite(buf, 1, size, s->stdio_file);
245 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
247 QEMUFileStdio *s = opaque;
248 FILE *fp = s->stdio_file;
253 bytes = fread(buf, 1, size, fp);
254 if (bytes != 0 || !ferror(fp)) {
257 if (errno == EAGAIN) {
258 yield_until_fd_readable(fileno(fp));
259 } else if (errno != EINTR) {
266 static int stdio_pclose(void *opaque)
268 QEMUFileStdio *s = opaque;
270 ret = pclose(s->stdio_file);
273 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
274 /* close succeeded, but non-zero exit code: */
275 ret = -EIO; /* fake errno value */
281 static int stdio_fclose(void *opaque)
283 QEMUFileStdio *s = opaque;
286 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
287 int fd = fileno(s->stdio_file);
290 ret = fstat(fd, &st);
291 if (ret == 0 && S_ISREG(st.st_mode)) {
293 * If the file handle is a regular file make sure the
294 * data is flushed to disk before signaling success.
303 if (fclose(s->stdio_file) == EOF) {
310 static const QEMUFileOps stdio_pipe_read_ops = {
311 .get_fd = stdio_get_fd,
312 .get_buffer = stdio_get_buffer,
313 .close = stdio_pclose
316 static const QEMUFileOps stdio_pipe_write_ops = {
317 .get_fd = stdio_get_fd,
318 .put_buffer = stdio_put_buffer,
319 .close = stdio_pclose
322 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
327 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
328 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
332 stdio_file = popen(command, mode);
333 if (stdio_file == NULL) {
337 s = g_malloc0(sizeof(QEMUFileStdio));
339 s->stdio_file = stdio_file;
342 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
344 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
349 static const QEMUFileOps stdio_file_read_ops = {
350 .get_fd = stdio_get_fd,
351 .get_buffer = stdio_get_buffer,
352 .close = stdio_fclose
355 static const QEMUFileOps stdio_file_write_ops = {
356 .get_fd = stdio_get_fd,
357 .put_buffer = stdio_put_buffer,
358 .close = stdio_fclose
361 static ssize_t unix_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
364 QEMUFileSocket *s = opaque;
366 ssize_t size = iov_size(iov, iovcnt);
372 /* Find the next start position; skip all full-sized vector elements */
373 while (offset >= iov[0].iov_len) {
374 offset -= iov[0].iov_len;
378 /* skip `offset' bytes from the (now) first element, undo it on exit */
380 iov[0].iov_base += offset;
381 iov[0].iov_len -= offset;
384 len = writev(s->fd, iov, iovcnt);
385 } while (len == -1 && errno == EINTR);
390 /* Undo the changes above */
391 iov[0].iov_base -= offset;
392 iov[0].iov_len += offset;
394 /* Prepare for the next iteration */
403 static int unix_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
405 QEMUFileSocket *s = opaque;
409 len = read(s->fd, buf, size);
413 if (errno == EAGAIN) {
414 yield_until_fd_readable(s->fd);
415 } else if (errno != EINTR) {
426 static int unix_close(void *opaque)
428 QEMUFileSocket *s = opaque;
434 static const QEMUFileOps unix_read_ops = {
435 .get_fd = socket_get_fd,
436 .get_buffer = unix_get_buffer,
440 static const QEMUFileOps unix_write_ops = {
441 .get_fd = socket_get_fd,
442 .writev_buffer = unix_writev_buffer,
446 QEMUFile *qemu_fdopen(int fd, const char *mode)
451 (mode[0] != 'r' && mode[0] != 'w') ||
452 mode[1] != 'b' || mode[2] != 0) {
453 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
457 s = g_malloc0(sizeof(QEMUFileSocket));
461 s->file = qemu_fopen_ops(s, &unix_read_ops);
463 s->file = qemu_fopen_ops(s, &unix_write_ops);
468 static const QEMUFileOps socket_read_ops = {
469 .get_fd = socket_get_fd,
470 .get_buffer = socket_get_buffer,
471 .close = socket_close
474 static const QEMUFileOps socket_write_ops = {
475 .get_fd = socket_get_fd,
476 .writev_buffer = socket_writev_buffer,
477 .close = socket_close
480 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
485 (mode[0] != 'r' && mode[0] != 'w') ||
486 mode[1] != 'b' || mode[2] != 0) {
487 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
491 s = g_malloc0(sizeof(QEMUFileSocket));
493 if (mode[0] == 'w') {
494 qemu_set_block(s->fd);
495 s->file = qemu_fopen_ops(s, &socket_write_ops);
497 s->file = qemu_fopen_ops(s, &socket_read_ops);
502 QEMUFile *qemu_fopen(const char *filename, const char *mode)
507 (mode[0] != 'r' && mode[0] != 'w') ||
508 mode[1] != 'b' || mode[2] != 0) {
509 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
513 s = g_malloc0(sizeof(QEMUFileStdio));
515 s->stdio_file = fopen(filename, mode);
520 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
522 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
530 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
536 qemu_iovec_init_external(&qiov, iov, iovcnt);
537 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
545 static int block_put_buffer(void *opaque, const uint8_t *buf,
546 int64_t pos, int size)
548 bdrv_save_vmstate(opaque, buf, pos, size);
552 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
554 return bdrv_load_vmstate(opaque, buf, pos, size);
557 static int bdrv_fclose(void *opaque)
559 return bdrv_flush(opaque);
562 static const QEMUFileOps bdrv_read_ops = {
563 .get_buffer = block_get_buffer,
567 static const QEMUFileOps bdrv_write_ops = {
568 .put_buffer = block_put_buffer,
569 .writev_buffer = block_writev_buffer,
573 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
576 return qemu_fopen_ops(bs, &bdrv_write_ops);
577 return qemu_fopen_ops(bs, &bdrv_read_ops);
580 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
584 f = g_malloc0(sizeof(QEMUFile));
591 int qemu_file_get_error(QEMUFile *f)
593 return f->last_error;
596 static void qemu_file_set_error(QEMUFile *f, int ret)
598 if (f->last_error == 0) {
603 static inline bool qemu_file_is_writable(QEMUFile *f)
605 return f->ops->writev_buffer || f->ops->put_buffer;
609 * Flushes QEMUFile buffer
611 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
614 static void qemu_fflush(QEMUFile *f)
618 if (!qemu_file_is_writable(f)) {
622 if (f->ops->writev_buffer) {
624 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
627 if (f->buf_index > 0) {
628 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
637 qemu_file_set_error(f, ret);
641 static void qemu_fill_buffer(QEMUFile *f)
646 assert(!qemu_file_is_writable(f));
648 pending = f->buf_size - f->buf_index;
650 memmove(f->buf, f->buf + f->buf_index, pending);
653 f->buf_size = pending;
655 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
656 IO_BUF_SIZE - pending);
660 } else if (len == 0) {
661 qemu_file_set_error(f, -EIO);
662 } else if (len != -EAGAIN)
663 qemu_file_set_error(f, len);
666 int qemu_get_fd(QEMUFile *f)
668 if (f->ops->get_fd) {
669 return f->ops->get_fd(f->opaque);
676 * Returns negative error value if any error happened on previous operations or
677 * while closing the file. Returns 0 or positive number on success.
679 * The meaning of return value on success depends on the specific backend
682 int qemu_fclose(QEMUFile *f)
686 ret = qemu_file_get_error(f);
689 int ret2 = f->ops->close(f->opaque);
694 /* If any error was spotted before closing, we should report it
695 * instead of the close() return value.
704 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
706 /* check for adjacent buffer and coalesce them */
707 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
708 f->iov[f->iovcnt - 1].iov_len) {
709 f->iov[f->iovcnt - 1].iov_len += size;
711 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
712 f->iov[f->iovcnt++].iov_len = size;
715 if (f->iovcnt >= MAX_IOV_SIZE) {
720 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
722 if (!f->ops->writev_buffer) {
723 qemu_put_buffer(f, buf, size);
731 f->bytes_xfer += size;
732 add_to_iovec(f, buf, size);
735 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
744 l = IO_BUF_SIZE - f->buf_index;
747 memcpy(f->buf + f->buf_index, buf, l);
748 f->bytes_xfer += size;
749 if (f->ops->writev_buffer) {
750 add_to_iovec(f, f->buf + f->buf_index, l);
753 if (f->buf_index == IO_BUF_SIZE) {
756 if (qemu_file_get_error(f)) {
764 void qemu_put_byte(QEMUFile *f, int v)
770 f->buf[f->buf_index] = v;
772 if (f->ops->writev_buffer) {
773 add_to_iovec(f, f->buf + f->buf_index, 1);
776 if (f->buf_index == IO_BUF_SIZE) {
781 static void qemu_file_skip(QEMUFile *f, int size)
783 if (f->buf_index + size <= f->buf_size) {
784 f->buf_index += size;
788 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
793 assert(!qemu_file_is_writable(f));
795 index = f->buf_index + offset;
796 pending = f->buf_size - index;
797 if (pending < size) {
799 index = f->buf_index + offset;
800 pending = f->buf_size - index;
806 if (size > pending) {
810 memcpy(buf, f->buf + index, size);
814 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
819 while (pending > 0) {
822 res = qemu_peek_buffer(f, buf, pending, 0);
826 qemu_file_skip(f, res);
834 static int qemu_peek_byte(QEMUFile *f, int offset)
836 int index = f->buf_index + offset;
838 assert(!qemu_file_is_writable(f));
840 if (index >= f->buf_size) {
842 index = f->buf_index + offset;
843 if (index >= f->buf_size) {
847 return f->buf[index];
850 int qemu_get_byte(QEMUFile *f)
854 result = qemu_peek_byte(f, 0);
855 qemu_file_skip(f, 1);
859 int64_t qemu_ftell(QEMUFile *f)
865 int qemu_file_rate_limit(QEMUFile *f)
867 if (qemu_file_get_error(f)) {
870 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
876 int64_t qemu_file_get_rate_limit(QEMUFile *f)
878 return f->xfer_limit;
881 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
883 f->xfer_limit = limit;
886 void qemu_file_reset_rate_limit(QEMUFile *f)
891 void qemu_put_be16(QEMUFile *f, unsigned int v)
893 qemu_put_byte(f, v >> 8);
897 void qemu_put_be32(QEMUFile *f, unsigned int v)
899 qemu_put_byte(f, v >> 24);
900 qemu_put_byte(f, v >> 16);
901 qemu_put_byte(f, v >> 8);
905 void qemu_put_be64(QEMUFile *f, uint64_t v)
907 qemu_put_be32(f, v >> 32);
911 unsigned int qemu_get_be16(QEMUFile *f)
914 v = qemu_get_byte(f) << 8;
915 v |= qemu_get_byte(f);
919 unsigned int qemu_get_be32(QEMUFile *f)
922 v = qemu_get_byte(f) << 24;
923 v |= qemu_get_byte(f) << 16;
924 v |= qemu_get_byte(f) << 8;
925 v |= qemu_get_byte(f);
929 uint64_t qemu_get_be64(QEMUFile *f)
932 v = (uint64_t)qemu_get_be32(f) << 32;
933 v |= qemu_get_be32(f);
940 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
942 uint64_t expire_time;
944 expire_time = qemu_timer_expire_time_ns(ts);
945 qemu_put_be64(f, expire_time);
948 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
950 uint64_t expire_time;
952 expire_time = qemu_get_be64(f);
953 if (expire_time != -1) {
954 qemu_mod_timer_ns(ts, expire_time);
963 static int get_bool(QEMUFile *f, void *pv, size_t size)
966 *v = qemu_get_byte(f);
970 static void put_bool(QEMUFile *f, void *pv, size_t size)
973 qemu_put_byte(f, *v);
976 const VMStateInfo vmstate_info_bool = {
984 static int get_int8(QEMUFile *f, void *pv, size_t size)
991 static void put_int8(QEMUFile *f, void *pv, size_t size)
997 const VMStateInfo vmstate_info_int8 = {
1005 static int get_int16(QEMUFile *f, void *pv, size_t size)
1008 qemu_get_sbe16s(f, v);
1012 static void put_int16(QEMUFile *f, void *pv, size_t size)
1015 qemu_put_sbe16s(f, v);
1018 const VMStateInfo vmstate_info_int16 = {
1026 static int get_int32(QEMUFile *f, void *pv, size_t size)
1029 qemu_get_sbe32s(f, v);
1033 static void put_int32(QEMUFile *f, void *pv, size_t size)
1036 qemu_put_sbe32s(f, v);
1039 const VMStateInfo vmstate_info_int32 = {
1045 /* 32 bit int. See that the received value is the same than the one
1048 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
1052 qemu_get_sbe32s(f, &v2);
1059 const VMStateInfo vmstate_info_int32_equal = {
1060 .name = "int32 equal",
1061 .get = get_int32_equal,
1065 /* 32 bit int. See that the received value is the less or the same
1066 than the one in the field */
1068 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
1072 qemu_get_sbe32s(f, &new);
1079 const VMStateInfo vmstate_info_int32_le = {
1080 .name = "int32 equal",
1081 .get = get_int32_le,
1087 static int get_int64(QEMUFile *f, void *pv, size_t size)
1090 qemu_get_sbe64s(f, v);
1094 static void put_int64(QEMUFile *f, void *pv, size_t size)
1097 qemu_put_sbe64s(f, v);
1100 const VMStateInfo vmstate_info_int64 = {
1106 /* 8 bit unsigned int */
1108 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1115 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1121 const VMStateInfo vmstate_info_uint8 = {
1127 /* 16 bit unsigned int */
1129 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1132 qemu_get_be16s(f, v);
1136 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1139 qemu_put_be16s(f, v);
1142 const VMStateInfo vmstate_info_uint16 = {
1148 /* 32 bit unsigned int */
1150 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1153 qemu_get_be32s(f, v);
1157 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1160 qemu_put_be32s(f, v);
1163 const VMStateInfo vmstate_info_uint32 = {
1169 /* 32 bit uint. See that the received value is the same than the one
1172 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1176 qemu_get_be32s(f, &v2);
1184 const VMStateInfo vmstate_info_uint32_equal = {
1185 .name = "uint32 equal",
1186 .get = get_uint32_equal,
1190 /* 64 bit unsigned int */
1192 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1195 qemu_get_be64s(f, v);
1199 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1202 qemu_put_be64s(f, v);
1205 const VMStateInfo vmstate_info_uint64 = {
1211 /* 64 bit unsigned int. See that the received value is the same than the one
1214 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1218 qemu_get_be64s(f, &v2);
1226 const VMStateInfo vmstate_info_uint64_equal = {
1227 .name = "int64 equal",
1228 .get = get_uint64_equal,
1232 /* 8 bit int. See that the received value is the same than the one
1235 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1239 qemu_get_8s(f, &v2);
1246 const VMStateInfo vmstate_info_uint8_equal = {
1247 .name = "uint8 equal",
1248 .get = get_uint8_equal,
1252 /* 16 bit unsigned int int. See that the received value is the same than the one
1255 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1259 qemu_get_be16s(f, &v2);
1266 const VMStateInfo vmstate_info_uint16_equal = {
1267 .name = "uint16 equal",
1268 .get = get_uint16_equal,
1272 /* floating point */
1274 static int get_float64(QEMUFile *f, void *pv, size_t size)
1278 *v = make_float64(qemu_get_be64(f));
1282 static void put_float64(QEMUFile *f, void *pv, size_t size)
1286 qemu_put_be64(f, float64_val(*v));
1289 const VMStateInfo vmstate_info_float64 = {
1297 static int get_timer(QEMUFile *f, void *pv, size_t size)
1300 qemu_get_timer(f, v);
1304 static void put_timer(QEMUFile *f, void *pv, size_t size)
1307 qemu_put_timer(f, v);
1310 const VMStateInfo vmstate_info_timer = {
1316 /* uint8_t buffers */
1318 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1321 qemu_get_buffer(f, v, size);
1325 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1328 qemu_put_buffer(f, v, size);
1331 const VMStateInfo vmstate_info_buffer = {
1337 /* unused buffers: space that was used for some fields that are
1338 not useful anymore */
1340 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1346 block_len = MIN(sizeof(buf), size);
1348 qemu_get_buffer(f, buf, block_len);
1353 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1355 static const uint8_t buf[1024];
1359 block_len = MIN(sizeof(buf), size);
1361 qemu_put_buffer(f, buf, block_len);
1365 const VMStateInfo vmstate_info_unused_buffer = {
1366 .name = "unused_buffer",
1367 .get = get_unused_buffer,
1368 .put = put_unused_buffer,
1371 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1372 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1373 * bit words with the bits in big endian order. The in-memory format
1374 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1376 /* This is the number of 64 bit words sent over the wire */
1377 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1378 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1380 unsigned long *bmp = pv;
1382 for (i = 0; i < BITS_TO_U64S(size); i++) {
1383 uint64_t w = qemu_get_be64(f);
1385 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1386 bmp[idx++] = w >> 32;
1392 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1394 unsigned long *bmp = pv;
1396 for (i = 0; i < BITS_TO_U64S(size); i++) {
1397 uint64_t w = bmp[idx++];
1398 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1399 w |= ((uint64_t)bmp[idx++]) << 32;
1401 qemu_put_be64(f, w);
1405 const VMStateInfo vmstate_info_bitmap = {
1411 typedef struct CompatEntry {
1416 typedef struct SaveStateEntry {
1417 QTAILQ_ENTRY(SaveStateEntry) entry;
1423 SaveVMHandlers *ops;
1424 const VMStateDescription *vmsd;
1426 CompatEntry *compat;
1432 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1433 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1434 static int global_section_id;
1436 static int calculate_new_instance_id(const char *idstr)
1439 int instance_id = 0;
1441 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1442 if (strcmp(idstr, se->idstr) == 0
1443 && instance_id <= se->instance_id) {
1444 instance_id = se->instance_id + 1;
1450 static int calculate_compat_instance_id(const char *idstr)
1453 int instance_id = 0;
1455 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1459 if (strcmp(idstr, se->compat->idstr) == 0
1460 && instance_id <= se->compat->instance_id) {
1461 instance_id = se->compat->instance_id + 1;
1467 /* TODO: Individual devices generally have very little idea about the rest
1468 of the system, so instance_id should be removed/replaced.
1469 Meanwhile pass -1 as instance_id if you do not already have a clearly
1470 distinguishing id for all instances of your device class. */
1471 int register_savevm_live(DeviceState *dev,
1475 SaveVMHandlers *ops,
1480 se = g_malloc0(sizeof(SaveStateEntry));
1481 se->version_id = version_id;
1482 se->section_id = global_section_id++;
1484 se->opaque = opaque;
1487 /* if this is a live_savem then set is_ram */
1488 if (ops->save_live_setup != NULL) {
1493 char *id = qdev_get_dev_path(dev);
1495 pstrcpy(se->idstr, sizeof(se->idstr), id);
1496 pstrcat(se->idstr, sizeof(se->idstr), "/");
1499 se->compat = g_malloc0(sizeof(CompatEntry));
1500 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1501 se->compat->instance_id = instance_id == -1 ?
1502 calculate_compat_instance_id(idstr) : instance_id;
1506 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1508 if (instance_id == -1) {
1509 se->instance_id = calculate_new_instance_id(se->idstr);
1511 se->instance_id = instance_id;
1513 assert(!se->compat || se->instance_id == 0);
1514 /* add at the end of list */
1515 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1519 int register_savevm(DeviceState *dev,
1523 SaveStateHandler *save_state,
1524 LoadStateHandler *load_state,
1527 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1528 ops->save_state = save_state;
1529 ops->load_state = load_state;
1530 return register_savevm_live(dev, idstr, instance_id, version_id,
1534 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1536 SaveStateEntry *se, *new_se;
1540 char *path = qdev_get_dev_path(dev);
1542 pstrcpy(id, sizeof(id), path);
1543 pstrcat(id, sizeof(id), "/");
1547 pstrcat(id, sizeof(id), idstr);
1549 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1550 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1551 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1561 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1562 const VMStateDescription *vmsd,
1563 void *opaque, int alias_id,
1564 int required_for_version)
1568 /* If this triggers, alias support can be dropped for the vmsd. */
1569 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1571 se = g_malloc0(sizeof(SaveStateEntry));
1572 se->version_id = vmsd->version_id;
1573 se->section_id = global_section_id++;
1574 se->opaque = opaque;
1576 se->alias_id = alias_id;
1577 se->no_migrate = vmsd->unmigratable;
1580 char *id = qdev_get_dev_path(dev);
1582 pstrcpy(se->idstr, sizeof(se->idstr), id);
1583 pstrcat(se->idstr, sizeof(se->idstr), "/");
1586 se->compat = g_malloc0(sizeof(CompatEntry));
1587 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1588 se->compat->instance_id = instance_id == -1 ?
1589 calculate_compat_instance_id(vmsd->name) : instance_id;
1593 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1595 if (instance_id == -1) {
1596 se->instance_id = calculate_new_instance_id(se->idstr);
1598 se->instance_id = instance_id;
1600 assert(!se->compat || se->instance_id == 0);
1601 /* add at the end of list */
1602 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1606 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1609 SaveStateEntry *se, *new_se;
1611 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1612 if (se->vmsd == vmsd && se->opaque == opaque) {
1613 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1622 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1624 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1627 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1628 void *opaque, int version_id)
1630 VMStateField *field = vmsd->fields;
1633 if (version_id > vmsd->version_id) {
1636 if (version_id < vmsd->minimum_version_id_old) {
1639 if (version_id < vmsd->minimum_version_id) {
1640 return vmsd->load_state_old(f, opaque, version_id);
1642 if (vmsd->pre_load) {
1643 int ret = vmsd->pre_load(opaque);
1647 while(field->name) {
1648 if ((field->field_exists &&
1649 field->field_exists(opaque, version_id)) ||
1650 (!field->field_exists &&
1651 field->version_id <= version_id)) {
1652 void *base_addr = opaque + field->offset;
1654 int size = field->size;
1656 if (field->flags & VMS_VBUFFER) {
1657 size = *(int32_t *)(opaque+field->size_offset);
1658 if (field->flags & VMS_MULTIPLY) {
1659 size *= field->size;
1662 if (field->flags & VMS_ARRAY) {
1663 n_elems = field->num;
1664 } else if (field->flags & VMS_VARRAY_INT32) {
1665 n_elems = *(int32_t *)(opaque+field->num_offset);
1666 } else if (field->flags & VMS_VARRAY_UINT32) {
1667 n_elems = *(uint32_t *)(opaque+field->num_offset);
1668 } else if (field->flags & VMS_VARRAY_UINT16) {
1669 n_elems = *(uint16_t *)(opaque+field->num_offset);
1670 } else if (field->flags & VMS_VARRAY_UINT8) {
1671 n_elems = *(uint8_t *)(opaque+field->num_offset);
1673 if (field->flags & VMS_POINTER) {
1674 base_addr = *(void **)base_addr + field->start;
1676 for (i = 0; i < n_elems; i++) {
1677 void *addr = base_addr + size * i;
1679 if (field->flags & VMS_ARRAY_OF_POINTER) {
1680 addr = *(void **)addr;
1682 if (field->flags & VMS_STRUCT) {
1683 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1685 ret = field->info->get(f, addr, size);
1695 ret = vmstate_subsection_load(f, vmsd, opaque);
1699 if (vmsd->post_load) {
1700 return vmsd->post_load(opaque, version_id);
1705 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1708 VMStateField *field = vmsd->fields;
1710 if (vmsd->pre_save) {
1711 vmsd->pre_save(opaque);
1713 while(field->name) {
1714 if (!field->field_exists ||
1715 field->field_exists(opaque, vmsd->version_id)) {
1716 void *base_addr = opaque + field->offset;
1718 int size = field->size;
1720 if (field->flags & VMS_VBUFFER) {
1721 size = *(int32_t *)(opaque+field->size_offset);
1722 if (field->flags & VMS_MULTIPLY) {
1723 size *= field->size;
1726 if (field->flags & VMS_ARRAY) {
1727 n_elems = field->num;
1728 } else if (field->flags & VMS_VARRAY_INT32) {
1729 n_elems = *(int32_t *)(opaque+field->num_offset);
1730 } else if (field->flags & VMS_VARRAY_UINT32) {
1731 n_elems = *(uint32_t *)(opaque+field->num_offset);
1732 } else if (field->flags & VMS_VARRAY_UINT16) {
1733 n_elems = *(uint16_t *)(opaque+field->num_offset);
1734 } else if (field->flags & VMS_VARRAY_UINT8) {
1735 n_elems = *(uint8_t *)(opaque+field->num_offset);
1737 if (field->flags & VMS_POINTER) {
1738 base_addr = *(void **)base_addr + field->start;
1740 for (i = 0; i < n_elems; i++) {
1741 void *addr = base_addr + size * i;
1743 if (field->flags & VMS_ARRAY_OF_POINTER) {
1744 addr = *(void **)addr;
1746 if (field->flags & VMS_STRUCT) {
1747 vmstate_save_state(f, field->vmsd, addr);
1749 field->info->put(f, addr, size);
1755 vmstate_subsection_save(f, vmsd, opaque);
1758 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1760 if (!se->vmsd) { /* Old style */
1761 return se->ops->load_state(f, se->opaque, version_id);
1763 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1766 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1768 if (!se->vmsd) { /* Old style */
1769 se->ops->save_state(f, se->opaque);
1772 vmstate_save_state(f,se->vmsd, se->opaque);
1775 #define QEMU_VM_FILE_MAGIC 0x5145564d
1776 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1777 #define QEMU_VM_FILE_VERSION 0x00000003
1779 #define QEMU_VM_EOF 0x00
1780 #define QEMU_VM_SECTION_START 0x01
1781 #define QEMU_VM_SECTION_PART 0x02
1782 #define QEMU_VM_SECTION_END 0x03
1783 #define QEMU_VM_SECTION_FULL 0x04
1784 #define QEMU_VM_SUBSECTION 0x05
1786 bool qemu_savevm_state_blocked(Error **errp)
1790 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1791 if (se->no_migrate) {
1792 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1799 void qemu_savevm_state_begin(QEMUFile *f,
1800 const MigrationParams *params)
1805 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1806 if (!se->ops || !se->ops->set_params) {
1809 se->ops->set_params(params, se->opaque);
1812 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1813 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1815 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1818 if (!se->ops || !se->ops->save_live_setup) {
1821 if (se->ops && se->ops->is_active) {
1822 if (!se->ops->is_active(se->opaque)) {
1827 qemu_put_byte(f, QEMU_VM_SECTION_START);
1828 qemu_put_be32(f, se->section_id);
1831 len = strlen(se->idstr);
1832 qemu_put_byte(f, len);
1833 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1835 qemu_put_be32(f, se->instance_id);
1836 qemu_put_be32(f, se->version_id);
1838 ret = se->ops->save_live_setup(f, se->opaque);
1840 qemu_file_set_error(f, ret);
1847 * this function has three return values:
1848 * negative: there was one error, and we have -errno.
1849 * 0 : We haven't finished, caller have to go again
1850 * 1 : We have finished, we can go to complete phase
1852 int qemu_savevm_state_iterate(QEMUFile *f)
1857 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1858 if (!se->ops || !se->ops->save_live_iterate) {
1861 if (se->ops && se->ops->is_active) {
1862 if (!se->ops->is_active(se->opaque)) {
1866 if (qemu_file_rate_limit(f)) {
1869 trace_savevm_section_start();
1871 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1872 qemu_put_be32(f, se->section_id);
1874 ret = se->ops->save_live_iterate(f, se->opaque);
1875 trace_savevm_section_end(se->section_id);
1878 qemu_file_set_error(f, ret);
1881 /* Do not proceed to the next vmstate before this one reported
1882 completion of the current stage. This serializes the migration
1883 and reduces the probability that a faster changing state is
1884 synchronized over and over again. */
1891 void qemu_savevm_state_complete(QEMUFile *f)
1896 cpu_synchronize_all_states();
1898 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1899 if (!se->ops || !se->ops->save_live_complete) {
1902 if (se->ops && se->ops->is_active) {
1903 if (!se->ops->is_active(se->opaque)) {
1907 trace_savevm_section_start();
1909 qemu_put_byte(f, QEMU_VM_SECTION_END);
1910 qemu_put_be32(f, se->section_id);
1912 ret = se->ops->save_live_complete(f, se->opaque);
1913 trace_savevm_section_end(se->section_id);
1915 qemu_file_set_error(f, ret);
1920 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1923 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1926 trace_savevm_section_start();
1928 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1929 qemu_put_be32(f, se->section_id);
1932 len = strlen(se->idstr);
1933 qemu_put_byte(f, len);
1934 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1936 qemu_put_be32(f, se->instance_id);
1937 qemu_put_be32(f, se->version_id);
1939 vmstate_save(f, se);
1940 trace_savevm_section_end(se->section_id);
1943 qemu_put_byte(f, QEMU_VM_EOF);
1947 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1952 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1953 if (!se->ops || !se->ops->save_live_pending) {
1956 if (se->ops && se->ops->is_active) {
1957 if (!se->ops->is_active(se->opaque)) {
1961 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1966 void qemu_savevm_state_cancel(void)
1970 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1971 if (se->ops && se->ops->cancel) {
1972 se->ops->cancel(se->opaque);
1977 static int qemu_savevm_state(QEMUFile *f)
1980 MigrationParams params = {
1985 if (qemu_savevm_state_blocked(NULL)) {
1989 qemu_mutex_unlock_iothread();
1990 qemu_savevm_state_begin(f, ¶ms);
1991 qemu_mutex_lock_iothread();
1993 while (qemu_file_get_error(f) == 0) {
1994 if (qemu_savevm_state_iterate(f) > 0) {
1999 ret = qemu_file_get_error(f);
2001 qemu_savevm_state_complete(f);
2002 ret = qemu_file_get_error(f);
2005 qemu_savevm_state_cancel();
2010 static int qemu_save_device_state(QEMUFile *f)
2014 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
2015 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
2017 cpu_synchronize_all_states();
2019 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2025 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
2030 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
2031 qemu_put_be32(f, se->section_id);
2034 len = strlen(se->idstr);
2035 qemu_put_byte(f, len);
2036 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
2038 qemu_put_be32(f, se->instance_id);
2039 qemu_put_be32(f, se->version_id);
2041 vmstate_save(f, se);
2044 qemu_put_byte(f, QEMU_VM_EOF);
2046 return qemu_file_get_error(f);
2049 static SaveStateEntry *find_se(const char *idstr, int instance_id)
2053 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2054 if (!strcmp(se->idstr, idstr) &&
2055 (instance_id == se->instance_id ||
2056 instance_id == se->alias_id))
2058 /* Migrating from an older version? */
2059 if (strstr(se->idstr, idstr) && se->compat) {
2060 if (!strcmp(se->compat->idstr, idstr) &&
2061 (instance_id == se->compat->instance_id ||
2062 instance_id == se->alias_id))
2069 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
2071 while(sub && sub->needed) {
2072 if (strcmp(idstr, sub->vmsd->name) == 0) {
2080 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
2083 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
2086 uint8_t version_id, len, size;
2087 const VMStateDescription *sub_vmsd;
2089 len = qemu_peek_byte(f, 1);
2090 if (len < strlen(vmsd->name) + 1) {
2091 /* subsection name has be be "section_name/a" */
2094 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2100 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2101 /* it don't have a valid subsection name */
2104 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2105 if (sub_vmsd == NULL) {
2108 qemu_file_skip(f, 1); /* subsection */
2109 qemu_file_skip(f, 1); /* len */
2110 qemu_file_skip(f, len); /* idstr */
2111 version_id = qemu_get_be32(f);
2113 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2121 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2124 const VMStateSubsection *sub = vmsd->subsections;
2126 while (sub && sub->needed) {
2127 if (sub->needed(opaque)) {
2128 const VMStateDescription *vmsd = sub->vmsd;
2131 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2132 len = strlen(vmsd->name);
2133 qemu_put_byte(f, len);
2134 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2135 qemu_put_be32(f, vmsd->version_id);
2136 vmstate_save_state(f, vmsd, opaque);
2142 typedef struct LoadStateEntry {
2143 QLIST_ENTRY(LoadStateEntry) entry;
2149 int qemu_loadvm_state(QEMUFile *f)
2151 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2152 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2153 LoadStateEntry *le, *new_le;
2154 uint8_t section_type;
2158 if (qemu_savevm_state_blocked(NULL)) {
2162 v = qemu_get_be32(f);
2163 if (v != QEMU_VM_FILE_MAGIC)
2166 v = qemu_get_be32(f);
2167 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2168 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2171 if (v != QEMU_VM_FILE_VERSION)
2174 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2175 uint32_t instance_id, version_id, section_id;
2180 switch (section_type) {
2181 case QEMU_VM_SECTION_START:
2182 case QEMU_VM_SECTION_FULL:
2183 /* Read section start */
2184 section_id = qemu_get_be32(f);
2185 len = qemu_get_byte(f);
2186 qemu_get_buffer(f, (uint8_t *)idstr, len);
2188 instance_id = qemu_get_be32(f);
2189 version_id = qemu_get_be32(f);
2191 /* Find savevm section */
2192 se = find_se(idstr, instance_id);
2194 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2199 /* Validate version */
2200 if (version_id > se->version_id) {
2201 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2202 version_id, idstr, se->version_id);
2208 le = g_malloc0(sizeof(*le));
2211 le->section_id = section_id;
2212 le->version_id = version_id;
2213 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2215 ret = vmstate_load(f, le->se, le->version_id);
2217 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2218 instance_id, idstr);
2222 case QEMU_VM_SECTION_PART:
2223 case QEMU_VM_SECTION_END:
2224 section_id = qemu_get_be32(f);
2226 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2227 if (le->section_id == section_id) {
2232 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2237 ret = vmstate_load(f, le->se, le->version_id);
2239 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2245 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2251 cpu_synchronize_all_post_init();
2256 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2257 QLIST_REMOVE(le, entry);
2262 ret = qemu_file_get_error(f);
2268 static BlockDriverState *find_vmstate_bs(void)
2270 BlockDriverState *bs = NULL;
2271 while ((bs = bdrv_next(bs))) {
2272 if (bdrv_can_snapshot(bs)) {
2280 * Deletes snapshots of a given name in all opened images.
2282 static int del_existing_snapshots(Monitor *mon, const char *name)
2284 BlockDriverState *bs;
2285 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2289 while ((bs = bdrv_next(bs))) {
2290 if (bdrv_can_snapshot(bs) &&
2291 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2293 ret = bdrv_snapshot_delete(bs, name);
2296 "Error while deleting snapshot on '%s'\n",
2297 bdrv_get_device_name(bs));
2306 void do_savevm(Monitor *mon, const QDict *qdict)
2308 BlockDriverState *bs, *bs1;
2309 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2312 int saved_vm_running;
2313 uint64_t vm_state_size;
2316 const char *name = qdict_get_try_str(qdict, "name");
2318 /* Verify if there is a device that doesn't support snapshots and is writable */
2320 while ((bs = bdrv_next(bs))) {
2322 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2326 if (!bdrv_can_snapshot(bs)) {
2327 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2328 bdrv_get_device_name(bs));
2333 bs = find_vmstate_bs();
2335 monitor_printf(mon, "No block device can accept snapshots\n");
2339 saved_vm_running = runstate_is_running();
2340 vm_stop(RUN_STATE_SAVE_VM);
2342 memset(sn, 0, sizeof(*sn));
2344 /* fill auxiliary fields */
2345 qemu_gettimeofday(&tv);
2346 sn->date_sec = tv.tv_sec;
2347 sn->date_nsec = tv.tv_usec * 1000;
2348 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2351 ret = bdrv_snapshot_find(bs, old_sn, name);
2353 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2354 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2356 pstrcpy(sn->name, sizeof(sn->name), name);
2359 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2360 localtime_r((const time_t *)&tv.tv_sec, &tm);
2361 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2364 /* Delete old snapshots of the same name */
2365 if (name && del_existing_snapshots(mon, name) < 0) {
2369 /* save the VM state */
2370 f = qemu_fopen_bdrv(bs, 1);
2372 monitor_printf(mon, "Could not open VM state file\n");
2375 ret = qemu_savevm_state(f);
2376 vm_state_size = qemu_ftell(f);
2379 monitor_printf(mon, "Error %d while writing VM\n", ret);
2383 /* create the snapshots */
2386 while ((bs1 = bdrv_next(bs1))) {
2387 if (bdrv_can_snapshot(bs1)) {
2388 /* Write VM state size only to the image that contains the state */
2389 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2390 ret = bdrv_snapshot_create(bs1, sn);
2392 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2393 bdrv_get_device_name(bs1));
2399 if (saved_vm_running)
2403 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2406 int saved_vm_running;
2409 saved_vm_running = runstate_is_running();
2410 vm_stop(RUN_STATE_SAVE_VM);
2412 f = qemu_fopen(filename, "wb");
2414 error_setg_file_open(errp, errno, filename);
2417 ret = qemu_save_device_state(f);
2420 error_set(errp, QERR_IO_ERROR);
2424 if (saved_vm_running)
2428 int load_vmstate(const char *name)
2430 BlockDriverState *bs, *bs_vm_state;
2431 QEMUSnapshotInfo sn;
2435 bs_vm_state = find_vmstate_bs();
2437 error_report("No block device supports snapshots");
2441 /* Don't even try to load empty VM states */
2442 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2445 } else if (sn.vm_state_size == 0) {
2446 error_report("This is a disk-only snapshot. Revert to it offline "
2451 /* Verify if there is any device that doesn't support snapshots and is
2452 writable and check if the requested snapshot is available too. */
2454 while ((bs = bdrv_next(bs))) {
2456 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2460 if (!bdrv_can_snapshot(bs)) {
2461 error_report("Device '%s' is writable but does not support snapshots.",
2462 bdrv_get_device_name(bs));
2466 ret = bdrv_snapshot_find(bs, &sn, name);
2468 error_report("Device '%s' does not have the requested snapshot '%s'",
2469 bdrv_get_device_name(bs), name);
2474 /* Flush all IO requests so they don't interfere with the new state. */
2478 while ((bs = bdrv_next(bs))) {
2479 if (bdrv_can_snapshot(bs)) {
2480 ret = bdrv_snapshot_goto(bs, name);
2482 error_report("Error %d while activating snapshot '%s' on '%s'",
2483 ret, name, bdrv_get_device_name(bs));
2489 /* restore the VM state */
2490 f = qemu_fopen_bdrv(bs_vm_state, 0);
2492 error_report("Could not open VM state file");
2496 qemu_system_reset(VMRESET_SILENT);
2497 ret = qemu_loadvm_state(f);
2501 error_report("Error %d while loading VM state", ret);
2508 void do_delvm(Monitor *mon, const QDict *qdict)
2510 BlockDriverState *bs, *bs1;
2512 const char *name = qdict_get_str(qdict, "name");
2514 bs = find_vmstate_bs();
2516 monitor_printf(mon, "No block device supports snapshots\n");
2521 while ((bs1 = bdrv_next(bs1))) {
2522 if (bdrv_can_snapshot(bs1)) {
2523 ret = bdrv_snapshot_delete(bs1, name);
2525 if (ret == -ENOTSUP)
2527 "Snapshots not supported on device '%s'\n",
2528 bdrv_get_device_name(bs1));
2530 monitor_printf(mon, "Error %d while deleting snapshot on "
2531 "'%s'\n", ret, bdrv_get_device_name(bs1));
2537 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2539 BlockDriverState *bs, *bs1;
2540 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2541 int nb_sns, i, ret, available;
2543 int *available_snapshots;
2545 bs = find_vmstate_bs();
2547 monitor_printf(mon, "No available block device supports snapshots\n");
2551 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2553 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2558 monitor_printf(mon, "There is no snapshot available.\n");
2562 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2564 for (i = 0; i < nb_sns; i++) {
2569 while ((bs1 = bdrv_next(bs1))) {
2570 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2571 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2580 available_snapshots[total] = i;
2586 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, NULL);
2587 monitor_printf(mon, "\n");
2588 for (i = 0; i < total; i++) {
2589 sn = &sn_tab[available_snapshots[i]];
2590 bdrv_snapshot_dump((fprintf_function)monitor_printf, mon, sn);
2591 monitor_printf(mon, "\n");
2594 monitor_printf(mon, "There is no suitable snapshot available\n");
2598 g_free(available_snapshots);
2602 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2604 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2605 memory_region_name(mr), dev);
2608 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2610 /* Nothing do to while the implementation is in RAMBlock */
2613 void vmstate_register_ram_global(MemoryRegion *mr)
2615 vmstate_register_ram(mr, NULL);