4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include <asm/hyperv.h>
35 #include "hw/pci/pci.h"
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_feature_control;
69 static bool has_msr_async_pf_en;
70 static bool has_msr_pv_eoi_en;
71 static bool has_msr_misc_enable;
72 static bool has_msr_bndcfgs;
73 static bool has_msr_kvm_steal_time;
74 static int lm_capable_kernel;
75 static bool has_msr_hv_hypercall;
76 static bool has_msr_hv_vapic;
77 static bool has_msr_hv_tsc;
79 static bool has_msr_architectural_pmu;
80 static uint32_t num_architectural_pmu_counters;
82 bool kvm_allows_irq0_override(void)
84 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
87 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
89 struct kvm_cpuid2 *cpuid;
92 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
93 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
95 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
96 if (r == 0 && cpuid->nent >= max) {
104 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
112 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
115 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
117 struct kvm_cpuid2 *cpuid;
119 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
125 struct kvm_para_features {
128 } para_features[] = {
129 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
130 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
131 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
132 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
136 static int get_para_features(KVMState *s)
140 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
141 if (kvm_check_extension(s, para_features[i].cap)) {
142 features |= (1 << para_features[i].feature);
150 /* Returns the value for a specific register on the cpuid entry
152 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
172 /* Find matching entry for function/index on kvm_cpuid2 struct
174 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
179 for (i = 0; i < cpuid->nent; ++i) {
180 if (cpuid->entries[i].function == function &&
181 cpuid->entries[i].index == index) {
182 return &cpuid->entries[i];
189 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
190 uint32_t index, int reg)
192 struct kvm_cpuid2 *cpuid;
194 uint32_t cpuid_1_edx;
197 cpuid = get_supported_cpuid(s);
199 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
202 ret = cpuid_entry_get_reg(entry, reg);
205 /* Fixups for the data returned by KVM, below */
207 if (function == 1 && reg == R_EDX) {
208 /* KVM before 2.6.30 misreports the following features */
209 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
210 } else if (function == 1 && reg == R_ECX) {
211 /* We can set the hypervisor flag, even if KVM does not return it on
212 * GET_SUPPORTED_CPUID
214 ret |= CPUID_EXT_HYPERVISOR;
215 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
216 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
217 * and the irqchip is in the kernel.
219 if (kvm_irqchip_in_kernel() &&
220 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
221 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
224 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
225 * without the in-kernel irqchip
227 if (!kvm_irqchip_in_kernel()) {
228 ret &= ~CPUID_EXT_X2APIC;
230 } else if (function == 0x80000001 && reg == R_EDX) {
231 /* On Intel, kvm returns cpuid according to the Intel spec,
232 * so add missing bits according to the AMD spec:
234 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
235 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
240 /* fallback for older kernels */
241 if ((function == KVM_CPUID_FEATURES) && !found) {
242 ret = get_para_features(s);
248 typedef struct HWPoisonPage {
250 QLIST_ENTRY(HWPoisonPage) list;
253 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
254 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
256 static void kvm_unpoison_all(void *param)
258 HWPoisonPage *page, *next_page;
260 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
261 QLIST_REMOVE(page, list);
262 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
267 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
271 QLIST_FOREACH(page, &hwpoison_page_list, list) {
272 if (page->ram_addr == ram_addr) {
276 page = g_malloc(sizeof(HWPoisonPage));
277 page->ram_addr = ram_addr;
278 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
281 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
286 r = kvm_check_extension(s, KVM_CAP_MCE);
289 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
294 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
296 CPUX86State *env = &cpu->env;
297 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
298 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
299 uint64_t mcg_status = MCG_STATUS_MCIP;
301 if (code == BUS_MCEERR_AR) {
302 status |= MCI_STATUS_AR | 0x134;
303 mcg_status |= MCG_STATUS_EIPV;
306 mcg_status |= MCG_STATUS_RIPV;
308 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
309 (MCM_ADDR_PHYS << 6) | 0xc,
310 cpu_x86_support_mca_broadcast(env) ?
311 MCE_INJECT_BROADCAST : 0);
314 static void hardware_memory_error(void)
316 fprintf(stderr, "Hardware memory error!\n");
320 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
322 X86CPU *cpu = X86_CPU(c);
323 CPUX86State *env = &cpu->env;
327 if ((env->mcg_cap & MCG_SER_P) && addr
328 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
329 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
330 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
331 fprintf(stderr, "Hardware memory error for memory used by "
332 "QEMU itself instead of guest system!\n");
333 /* Hope we are lucky for AO MCE */
334 if (code == BUS_MCEERR_AO) {
337 hardware_memory_error();
340 kvm_hwpoison_page_add(ram_addr);
341 kvm_mce_inject(cpu, paddr, code);
343 if (code == BUS_MCEERR_AO) {
345 } else if (code == BUS_MCEERR_AR) {
346 hardware_memory_error();
354 int kvm_arch_on_sigbus(int code, void *addr)
356 X86CPU *cpu = X86_CPU(first_cpu);
358 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
362 /* Hope we are lucky for AO MCE */
363 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
364 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
366 fprintf(stderr, "Hardware memory error for memory used by "
367 "QEMU itself instead of guest system!: %p\n", addr);
370 kvm_hwpoison_page_add(ram_addr);
371 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
373 if (code == BUS_MCEERR_AO) {
375 } else if (code == BUS_MCEERR_AR) {
376 hardware_memory_error();
384 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
386 CPUX86State *env = &cpu->env;
388 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
389 unsigned int bank, bank_num = env->mcg_cap & 0xff;
390 struct kvm_x86_mce mce;
392 env->exception_injected = -1;
395 * There must be at least one bank in use if an MCE is pending.
396 * Find it and use its values for the event injection.
398 for (bank = 0; bank < bank_num; bank++) {
399 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
403 assert(bank < bank_num);
406 mce.status = env->mce_banks[bank * 4 + 1];
407 mce.mcg_status = env->mcg_status;
408 mce.addr = env->mce_banks[bank * 4 + 2];
409 mce.misc = env->mce_banks[bank * 4 + 3];
411 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
416 static void cpu_update_state(void *opaque, int running, RunState state)
418 CPUX86State *env = opaque;
421 env->tsc_valid = false;
425 unsigned long kvm_arch_vcpu_id(CPUState *cs)
427 X86CPU *cpu = X86_CPU(cs);
428 return cpu->env.cpuid_apic_id;
431 #ifndef KVM_CPUID_SIGNATURE_NEXT
432 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
435 static bool hyperv_hypercall_available(X86CPU *cpu)
437 return cpu->hyperv_vapic ||
438 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
441 static bool hyperv_enabled(X86CPU *cpu)
443 CPUState *cs = CPU(cpu);
444 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
445 (hyperv_hypercall_available(cpu) ||
447 cpu->hyperv_relaxed_timing);
450 #define KVM_MAX_CPUID_ENTRIES 100
452 int kvm_arch_init_vcpu(CPUState *cs)
455 struct kvm_cpuid2 cpuid;
456 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
457 } QEMU_PACKED cpuid_data;
458 X86CPU *cpu = X86_CPU(cs);
459 CPUX86State *env = &cpu->env;
460 uint32_t limit, i, j, cpuid_i;
462 struct kvm_cpuid_entry2 *c;
463 uint32_t signature[3];
464 int kvm_base = KVM_CPUID_SIGNATURE;
467 memset(&cpuid_data, 0, sizeof(cpuid_data));
471 /* Paravirtualization CPUIDs */
472 if (hyperv_enabled(cpu)) {
473 c = &cpuid_data.entries[cpuid_i++];
474 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
475 memcpy(signature, "Microsoft Hv", 12);
476 c->eax = HYPERV_CPUID_MIN;
477 c->ebx = signature[0];
478 c->ecx = signature[1];
479 c->edx = signature[2];
481 c = &cpuid_data.entries[cpuid_i++];
482 c->function = HYPERV_CPUID_INTERFACE;
483 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
484 c->eax = signature[0];
489 c = &cpuid_data.entries[cpuid_i++];
490 c->function = HYPERV_CPUID_VERSION;
494 c = &cpuid_data.entries[cpuid_i++];
495 c->function = HYPERV_CPUID_FEATURES;
496 if (cpu->hyperv_relaxed_timing) {
497 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
499 if (cpu->hyperv_vapic) {
500 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
501 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
502 has_msr_hv_vapic = true;
504 if (cpu->hyperv_time &&
505 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
506 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
507 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
509 has_msr_hv_tsc = true;
511 c = &cpuid_data.entries[cpuid_i++];
512 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
513 if (cpu->hyperv_relaxed_timing) {
514 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
516 if (has_msr_hv_vapic) {
517 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
519 c->ebx = cpu->hyperv_spinlock_attempts;
521 c = &cpuid_data.entries[cpuid_i++];
522 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
526 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
527 has_msr_hv_hypercall = true;
530 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
531 c = &cpuid_data.entries[cpuid_i++];
532 c->function = KVM_CPUID_SIGNATURE | kvm_base;
534 c->ebx = signature[0];
535 c->ecx = signature[1];
536 c->edx = signature[2];
538 c = &cpuid_data.entries[cpuid_i++];
539 c->function = KVM_CPUID_FEATURES | kvm_base;
540 c->eax = env->features[FEAT_KVM];
542 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
544 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
546 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
548 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
550 for (i = 0; i <= limit; i++) {
551 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
552 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
555 c = &cpuid_data.entries[cpuid_i++];
559 /* Keep reading function 2 till all the input is received */
563 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
564 KVM_CPUID_FLAG_STATE_READ_NEXT;
565 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
566 times = c->eax & 0xff;
568 for (j = 1; j < times; ++j) {
569 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
570 fprintf(stderr, "cpuid_data is full, no space for "
571 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
574 c = &cpuid_data.entries[cpuid_i++];
576 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
577 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
585 if (i == 0xd && j == 64) {
589 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
591 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
593 if (i == 4 && c->eax == 0) {
596 if (i == 0xb && !(c->ecx & 0xff00)) {
599 if (i == 0xd && c->eax == 0) {
602 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
603 fprintf(stderr, "cpuid_data is full, no space for "
604 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
607 c = &cpuid_data.entries[cpuid_i++];
613 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
621 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
622 if ((ver & 0xff) > 0) {
623 has_msr_architectural_pmu = true;
624 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
626 /* Shouldn't be more than 32, since that's the number of bits
627 * available in EBX to tell us _which_ counters are available.
630 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
631 num_architectural_pmu_counters = MAX_GP_COUNTERS;
636 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
638 for (i = 0x80000000; i <= limit; i++) {
639 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
640 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
643 c = &cpuid_data.entries[cpuid_i++];
647 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
650 /* Call Centaur's CPUID instructions they are supported. */
651 if (env->cpuid_xlevel2 > 0) {
652 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
654 for (i = 0xC0000000; i <= limit; i++) {
655 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
656 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
659 c = &cpuid_data.entries[cpuid_i++];
663 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
667 cpuid_data.cpuid.nent = cpuid_i;
669 if (((env->cpuid_version >> 8)&0xF) >= 6
670 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
671 (CPUID_MCE | CPUID_MCA)
672 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
677 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
679 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
683 if (banks > MCE_BANKS_DEF) {
684 banks = MCE_BANKS_DEF;
686 mcg_cap &= MCE_CAP_DEF;
688 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
690 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
694 env->mcg_cap = mcg_cap;
697 qemu_add_vm_change_state_handler(cpu_update_state, env);
699 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
701 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
702 !!(c->ecx & CPUID_EXT_SMX);
705 cpuid_data.cpuid.padding = 0;
706 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
711 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
712 if (r && env->tsc_khz) {
713 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
715 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
720 if (kvm_has_xsave()) {
721 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
727 void kvm_arch_reset_vcpu(CPUState *cs)
729 X86CPU *cpu = X86_CPU(cs);
730 CPUX86State *env = &cpu->env;
732 env->exception_injected = -1;
733 env->interrupt_injected = -1;
735 if (kvm_irqchip_in_kernel()) {
736 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
737 KVM_MP_STATE_UNINITIALIZED;
739 env->mp_state = KVM_MP_STATE_RUNNABLE;
743 static int kvm_get_supported_msrs(KVMState *s)
745 static int kvm_supported_msrs;
749 if (kvm_supported_msrs == 0) {
750 struct kvm_msr_list msr_list, *kvm_msr_list;
752 kvm_supported_msrs = -1;
754 /* Obtain MSR list from KVM. These are the MSRs that we must
757 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
758 if (ret < 0 && ret != -E2BIG) {
761 /* Old kernel modules had a bug and could write beyond the provided
762 memory. Allocate at least a safe amount of 1K. */
763 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
765 sizeof(msr_list.indices[0])));
767 kvm_msr_list->nmsrs = msr_list.nmsrs;
768 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
772 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
773 if (kvm_msr_list->indices[i] == MSR_STAR) {
777 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
778 has_msr_hsave_pa = true;
781 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
782 has_msr_tsc_adjust = true;
785 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
786 has_msr_tsc_deadline = true;
789 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
790 has_msr_misc_enable = true;
793 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
794 has_msr_bndcfgs = true;
800 g_free(kvm_msr_list);
806 int kvm_arch_init(KVMState *s)
808 uint64_t identity_base = 0xfffbc000;
811 struct utsname utsname;
813 ret = kvm_get_supported_msrs(s);
819 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
822 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
823 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
824 * Since these must be part of guest physical memory, we need to allocate
825 * them, both by setting their start addresses in the kernel and by
826 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
828 * Older KVM versions may not support setting the identity map base. In
829 * that case we need to stick with the default, i.e. a 256K maximum BIOS
832 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
833 /* Allows up to 16M BIOSes. */
834 identity_base = 0xfeffc000;
836 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
842 /* Set TSS base one page after EPT identity map. */
843 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
848 /* Tell fw_cfg to notify the BIOS to reserve the range. */
849 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
851 fprintf(stderr, "e820_add_entry() table is full\n");
854 qemu_register_reset(kvm_unpoison_all, NULL);
856 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
857 "kvm_shadow_mem", -1);
858 if (shadow_mem != -1) {
860 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
868 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
870 lhs->selector = rhs->selector;
871 lhs->base = rhs->base;
872 lhs->limit = rhs->limit;
884 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
886 unsigned flags = rhs->flags;
887 lhs->selector = rhs->selector;
888 lhs->base = rhs->base;
889 lhs->limit = rhs->limit;
890 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
891 lhs->present = (flags & DESC_P_MASK) != 0;
892 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
893 lhs->db = (flags >> DESC_B_SHIFT) & 1;
894 lhs->s = (flags & DESC_S_MASK) != 0;
895 lhs->l = (flags >> DESC_L_SHIFT) & 1;
896 lhs->g = (flags & DESC_G_MASK) != 0;
897 lhs->avl = (flags & DESC_AVL_MASK) != 0;
902 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
904 lhs->selector = rhs->selector;
905 lhs->base = rhs->base;
906 lhs->limit = rhs->limit;
907 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
908 (rhs->present * DESC_P_MASK) |
909 (rhs->dpl << DESC_DPL_SHIFT) |
910 (rhs->db << DESC_B_SHIFT) |
911 (rhs->s * DESC_S_MASK) |
912 (rhs->l << DESC_L_SHIFT) |
913 (rhs->g * DESC_G_MASK) |
914 (rhs->avl * DESC_AVL_MASK);
917 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
920 *kvm_reg = *qemu_reg;
922 *qemu_reg = *kvm_reg;
926 static int kvm_getput_regs(X86CPU *cpu, int set)
928 CPUX86State *env = &cpu->env;
929 struct kvm_regs regs;
933 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s);
939 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
940 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
941 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
942 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
943 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
944 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
945 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
946 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
948 kvm_getput_reg(®s.r8, &env->regs[8], set);
949 kvm_getput_reg(®s.r9, &env->regs[9], set);
950 kvm_getput_reg(®s.r10, &env->regs[10], set);
951 kvm_getput_reg(®s.r11, &env->regs[11], set);
952 kvm_getput_reg(®s.r12, &env->regs[12], set);
953 kvm_getput_reg(®s.r13, &env->regs[13], set);
954 kvm_getput_reg(®s.r14, &env->regs[14], set);
955 kvm_getput_reg(®s.r15, &env->regs[15], set);
958 kvm_getput_reg(®s.rflags, &env->eflags, set);
959 kvm_getput_reg(®s.rip, &env->eip, set);
962 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s);
968 static int kvm_put_fpu(X86CPU *cpu)
970 CPUX86State *env = &cpu->env;
974 memset(&fpu, 0, sizeof fpu);
975 fpu.fsw = env->fpus & ~(7 << 11);
976 fpu.fsw |= (env->fpstt & 7) << 11;
978 fpu.last_opcode = env->fpop;
979 fpu.last_ip = env->fpip;
980 fpu.last_dp = env->fpdp;
981 for (i = 0; i < 8; ++i) {
982 fpu.ftwx |= (!env->fptags[i]) << i;
984 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
985 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
986 fpu.mxcsr = env->mxcsr;
988 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
991 #define XSAVE_FCW_FSW 0
992 #define XSAVE_FTW_FOP 1
993 #define XSAVE_CWD_RIP 2
994 #define XSAVE_CWD_RDP 4
995 #define XSAVE_MXCSR 6
996 #define XSAVE_ST_SPACE 8
997 #define XSAVE_XMM_SPACE 40
998 #define XSAVE_XSTATE_BV 128
999 #define XSAVE_YMMH_SPACE 144
1000 #define XSAVE_BNDREGS 240
1001 #define XSAVE_BNDCSR 256
1003 static int kvm_put_xsave(X86CPU *cpu)
1005 CPUX86State *env = &cpu->env;
1006 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1007 uint16_t cwd, swd, twd;
1010 if (!kvm_has_xsave()) {
1011 return kvm_put_fpu(cpu);
1014 memset(xsave, 0, sizeof(struct kvm_xsave));
1016 swd = env->fpus & ~(7 << 11);
1017 swd |= (env->fpstt & 7) << 11;
1019 for (i = 0; i < 8; ++i) {
1020 twd |= (!env->fptags[i]) << i;
1022 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1023 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1024 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1025 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1026 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1027 sizeof env->fpregs);
1028 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1029 sizeof env->xmm_regs);
1030 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1031 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1032 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1033 sizeof env->ymmh_regs);
1034 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1035 sizeof env->bnd_regs);
1036 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1037 sizeof(env->bndcs_regs));
1038 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1042 static int kvm_put_xcrs(X86CPU *cpu)
1044 CPUX86State *env = &cpu->env;
1045 struct kvm_xcrs xcrs;
1047 if (!kvm_has_xcrs()) {
1053 xcrs.xcrs[0].xcr = 0;
1054 xcrs.xcrs[0].value = env->xcr0;
1055 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1058 static int kvm_put_sregs(X86CPU *cpu)
1060 CPUX86State *env = &cpu->env;
1061 struct kvm_sregs sregs;
1063 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1064 if (env->interrupt_injected >= 0) {
1065 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1066 (uint64_t)1 << (env->interrupt_injected % 64);
1069 if ((env->eflags & VM_MASK)) {
1070 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1071 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1072 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1073 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1074 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1075 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1077 set_seg(&sregs.cs, &env->segs[R_CS]);
1078 set_seg(&sregs.ds, &env->segs[R_DS]);
1079 set_seg(&sregs.es, &env->segs[R_ES]);
1080 set_seg(&sregs.fs, &env->segs[R_FS]);
1081 set_seg(&sregs.gs, &env->segs[R_GS]);
1082 set_seg(&sregs.ss, &env->segs[R_SS]);
1085 set_seg(&sregs.tr, &env->tr);
1086 set_seg(&sregs.ldt, &env->ldt);
1088 sregs.idt.limit = env->idt.limit;
1089 sregs.idt.base = env->idt.base;
1090 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1091 sregs.gdt.limit = env->gdt.limit;
1092 sregs.gdt.base = env->gdt.base;
1093 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1095 sregs.cr0 = env->cr[0];
1096 sregs.cr2 = env->cr[2];
1097 sregs.cr3 = env->cr[3];
1098 sregs.cr4 = env->cr[4];
1100 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1101 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1103 sregs.efer = env->efer;
1105 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1108 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1109 uint32_t index, uint64_t value)
1111 entry->index = index;
1112 entry->data = value;
1115 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1117 CPUX86State *env = &cpu->env;
1119 struct kvm_msrs info;
1120 struct kvm_msr_entry entries[1];
1122 struct kvm_msr_entry *msrs = msr_data.entries;
1124 if (!has_msr_tsc_deadline) {
1128 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1130 msr_data.info.nmsrs = 1;
1132 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1136 * Provide a separate write service for the feature control MSR in order to
1137 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1138 * before writing any other state because forcibly leaving nested mode
1139 * invalidates the VCPU state.
1141 static int kvm_put_msr_feature_control(X86CPU *cpu)
1144 struct kvm_msrs info;
1145 struct kvm_msr_entry entry;
1148 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1149 cpu->env.msr_ia32_feature_control);
1150 msr_data.info.nmsrs = 1;
1151 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1154 static int kvm_put_msrs(X86CPU *cpu, int level)
1156 CPUX86State *env = &cpu->env;
1158 struct kvm_msrs info;
1159 struct kvm_msr_entry entries[100];
1161 struct kvm_msr_entry *msrs = msr_data.entries;
1164 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1165 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1166 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1167 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1169 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1171 if (has_msr_hsave_pa) {
1172 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1174 if (has_msr_tsc_adjust) {
1175 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1177 if (has_msr_misc_enable) {
1178 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1179 env->msr_ia32_misc_enable);
1181 if (has_msr_bndcfgs) {
1182 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1184 #ifdef TARGET_X86_64
1185 if (lm_capable_kernel) {
1186 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1187 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1188 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1189 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1193 * The following MSRs have side effects on the guest or are too heavy
1194 * for normal writeback. Limit them to reset or full state updates.
1196 if (level >= KVM_PUT_RESET_STATE) {
1197 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1198 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1199 env->system_time_msr);
1200 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1201 if (has_msr_async_pf_en) {
1202 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1203 env->async_pf_en_msr);
1205 if (has_msr_pv_eoi_en) {
1206 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1207 env->pv_eoi_en_msr);
1209 if (has_msr_kvm_steal_time) {
1210 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1211 env->steal_time_msr);
1213 if (has_msr_architectural_pmu) {
1214 /* Stop the counter. */
1215 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1216 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1218 /* Set the counter values. */
1219 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1220 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1221 env->msr_fixed_counters[i]);
1223 for (i = 0; i < num_architectural_pmu_counters; i++) {
1224 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1225 env->msr_gp_counters[i]);
1226 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1227 env->msr_gp_evtsel[i]);
1229 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1230 env->msr_global_status);
1231 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1232 env->msr_global_ovf_ctrl);
1234 /* Now start the PMU. */
1235 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1236 env->msr_fixed_ctr_ctrl);
1237 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1238 env->msr_global_ctrl);
1240 if (has_msr_hv_hypercall) {
1241 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1242 env->msr_hv_guest_os_id);
1243 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1244 env->msr_hv_hypercall);
1246 if (has_msr_hv_vapic) {
1247 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1250 if (has_msr_hv_tsc) {
1251 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1255 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1256 * kvm_put_msr_feature_control. */
1261 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1262 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1263 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1264 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1268 msr_data.info.nmsrs = n;
1270 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1275 static int kvm_get_fpu(X86CPU *cpu)
1277 CPUX86State *env = &cpu->env;
1281 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1286 env->fpstt = (fpu.fsw >> 11) & 7;
1287 env->fpus = fpu.fsw;
1288 env->fpuc = fpu.fcw;
1289 env->fpop = fpu.last_opcode;
1290 env->fpip = fpu.last_ip;
1291 env->fpdp = fpu.last_dp;
1292 for (i = 0; i < 8; ++i) {
1293 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1295 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1296 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1297 env->mxcsr = fpu.mxcsr;
1302 static int kvm_get_xsave(X86CPU *cpu)
1304 CPUX86State *env = &cpu->env;
1305 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1307 uint16_t cwd, swd, twd;
1309 if (!kvm_has_xsave()) {
1310 return kvm_get_fpu(cpu);
1313 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1318 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1319 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1320 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1321 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1322 env->fpstt = (swd >> 11) & 7;
1325 for (i = 0; i < 8; ++i) {
1326 env->fptags[i] = !((twd >> i) & 1);
1328 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1329 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1330 env->mxcsr = xsave->region[XSAVE_MXCSR];
1331 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1332 sizeof env->fpregs);
1333 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1334 sizeof env->xmm_regs);
1335 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1336 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1337 sizeof env->ymmh_regs);
1338 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1339 sizeof env->bnd_regs);
1340 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1341 sizeof(env->bndcs_regs));
1345 static int kvm_get_xcrs(X86CPU *cpu)
1347 CPUX86State *env = &cpu->env;
1349 struct kvm_xcrs xcrs;
1351 if (!kvm_has_xcrs()) {
1355 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1360 for (i = 0; i < xcrs.nr_xcrs; i++) {
1361 /* Only support xcr0 now */
1362 if (xcrs.xcrs[i].xcr == 0) {
1363 env->xcr0 = xcrs.xcrs[i].value;
1370 static int kvm_get_sregs(X86CPU *cpu)
1372 CPUX86State *env = &cpu->env;
1373 struct kvm_sregs sregs;
1377 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1382 /* There can only be one pending IRQ set in the bitmap at a time, so try
1383 to find it and save its number instead (-1 for none). */
1384 env->interrupt_injected = -1;
1385 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1386 if (sregs.interrupt_bitmap[i]) {
1387 bit = ctz64(sregs.interrupt_bitmap[i]);
1388 env->interrupt_injected = i * 64 + bit;
1393 get_seg(&env->segs[R_CS], &sregs.cs);
1394 get_seg(&env->segs[R_DS], &sregs.ds);
1395 get_seg(&env->segs[R_ES], &sregs.es);
1396 get_seg(&env->segs[R_FS], &sregs.fs);
1397 get_seg(&env->segs[R_GS], &sregs.gs);
1398 get_seg(&env->segs[R_SS], &sregs.ss);
1400 get_seg(&env->tr, &sregs.tr);
1401 get_seg(&env->ldt, &sregs.ldt);
1403 env->idt.limit = sregs.idt.limit;
1404 env->idt.base = sregs.idt.base;
1405 env->gdt.limit = sregs.gdt.limit;
1406 env->gdt.base = sregs.gdt.base;
1408 env->cr[0] = sregs.cr0;
1409 env->cr[2] = sregs.cr2;
1410 env->cr[3] = sregs.cr3;
1411 env->cr[4] = sregs.cr4;
1413 env->efer = sregs.efer;
1415 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1417 #define HFLAG_COPY_MASK \
1418 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1419 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1420 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1421 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1423 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1424 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1425 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1426 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1427 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1428 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1429 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1431 if (env->efer & MSR_EFER_LMA) {
1432 hflags |= HF_LMA_MASK;
1435 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1436 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1438 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1439 (DESC_B_SHIFT - HF_CS32_SHIFT);
1440 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1441 (DESC_B_SHIFT - HF_SS32_SHIFT);
1442 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1443 !(hflags & HF_CS32_MASK)) {
1444 hflags |= HF_ADDSEG_MASK;
1446 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1447 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1450 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1455 static int kvm_get_msrs(X86CPU *cpu)
1457 CPUX86State *env = &cpu->env;
1459 struct kvm_msrs info;
1460 struct kvm_msr_entry entries[100];
1462 struct kvm_msr_entry *msrs = msr_data.entries;
1466 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1467 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1468 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1469 msrs[n++].index = MSR_PAT;
1471 msrs[n++].index = MSR_STAR;
1473 if (has_msr_hsave_pa) {
1474 msrs[n++].index = MSR_VM_HSAVE_PA;
1476 if (has_msr_tsc_adjust) {
1477 msrs[n++].index = MSR_TSC_ADJUST;
1479 if (has_msr_tsc_deadline) {
1480 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1482 if (has_msr_misc_enable) {
1483 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1485 if (has_msr_feature_control) {
1486 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1488 if (has_msr_bndcfgs) {
1489 msrs[n++].index = MSR_IA32_BNDCFGS;
1492 if (!env->tsc_valid) {
1493 msrs[n++].index = MSR_IA32_TSC;
1494 env->tsc_valid = !runstate_is_running();
1497 #ifdef TARGET_X86_64
1498 if (lm_capable_kernel) {
1499 msrs[n++].index = MSR_CSTAR;
1500 msrs[n++].index = MSR_KERNELGSBASE;
1501 msrs[n++].index = MSR_FMASK;
1502 msrs[n++].index = MSR_LSTAR;
1505 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1506 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1507 if (has_msr_async_pf_en) {
1508 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1510 if (has_msr_pv_eoi_en) {
1511 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1513 if (has_msr_kvm_steal_time) {
1514 msrs[n++].index = MSR_KVM_STEAL_TIME;
1516 if (has_msr_architectural_pmu) {
1517 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1518 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1519 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1520 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1521 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1522 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1524 for (i = 0; i < num_architectural_pmu_counters; i++) {
1525 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1526 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1531 msrs[n++].index = MSR_MCG_STATUS;
1532 msrs[n++].index = MSR_MCG_CTL;
1533 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1534 msrs[n++].index = MSR_MC0_CTL + i;
1538 if (has_msr_hv_hypercall) {
1539 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1540 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1542 if (has_msr_hv_vapic) {
1543 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1545 if (has_msr_hv_tsc) {
1546 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1549 msr_data.info.nmsrs = n;
1550 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1555 for (i = 0; i < ret; i++) {
1556 uint32_t index = msrs[i].index;
1558 case MSR_IA32_SYSENTER_CS:
1559 env->sysenter_cs = msrs[i].data;
1561 case MSR_IA32_SYSENTER_ESP:
1562 env->sysenter_esp = msrs[i].data;
1564 case MSR_IA32_SYSENTER_EIP:
1565 env->sysenter_eip = msrs[i].data;
1568 env->pat = msrs[i].data;
1571 env->star = msrs[i].data;
1573 #ifdef TARGET_X86_64
1575 env->cstar = msrs[i].data;
1577 case MSR_KERNELGSBASE:
1578 env->kernelgsbase = msrs[i].data;
1581 env->fmask = msrs[i].data;
1584 env->lstar = msrs[i].data;
1588 env->tsc = msrs[i].data;
1590 case MSR_TSC_ADJUST:
1591 env->tsc_adjust = msrs[i].data;
1593 case MSR_IA32_TSCDEADLINE:
1594 env->tsc_deadline = msrs[i].data;
1596 case MSR_VM_HSAVE_PA:
1597 env->vm_hsave = msrs[i].data;
1599 case MSR_KVM_SYSTEM_TIME:
1600 env->system_time_msr = msrs[i].data;
1602 case MSR_KVM_WALL_CLOCK:
1603 env->wall_clock_msr = msrs[i].data;
1605 case MSR_MCG_STATUS:
1606 env->mcg_status = msrs[i].data;
1609 env->mcg_ctl = msrs[i].data;
1611 case MSR_IA32_MISC_ENABLE:
1612 env->msr_ia32_misc_enable = msrs[i].data;
1614 case MSR_IA32_FEATURE_CONTROL:
1615 env->msr_ia32_feature_control = msrs[i].data;
1617 case MSR_IA32_BNDCFGS:
1618 env->msr_bndcfgs = msrs[i].data;
1621 if (msrs[i].index >= MSR_MC0_CTL &&
1622 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1623 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1626 case MSR_KVM_ASYNC_PF_EN:
1627 env->async_pf_en_msr = msrs[i].data;
1629 case MSR_KVM_PV_EOI_EN:
1630 env->pv_eoi_en_msr = msrs[i].data;
1632 case MSR_KVM_STEAL_TIME:
1633 env->steal_time_msr = msrs[i].data;
1635 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1636 env->msr_fixed_ctr_ctrl = msrs[i].data;
1638 case MSR_CORE_PERF_GLOBAL_CTRL:
1639 env->msr_global_ctrl = msrs[i].data;
1641 case MSR_CORE_PERF_GLOBAL_STATUS:
1642 env->msr_global_status = msrs[i].data;
1644 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1645 env->msr_global_ovf_ctrl = msrs[i].data;
1647 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1648 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1650 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1651 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1653 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1654 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1656 case HV_X64_MSR_HYPERCALL:
1657 env->msr_hv_hypercall = msrs[i].data;
1659 case HV_X64_MSR_GUEST_OS_ID:
1660 env->msr_hv_guest_os_id = msrs[i].data;
1662 case HV_X64_MSR_APIC_ASSIST_PAGE:
1663 env->msr_hv_vapic = msrs[i].data;
1665 case HV_X64_MSR_REFERENCE_TSC:
1666 env->msr_hv_tsc = msrs[i].data;
1674 static int kvm_put_mp_state(X86CPU *cpu)
1676 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1678 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1681 static int kvm_get_mp_state(X86CPU *cpu)
1683 CPUState *cs = CPU(cpu);
1684 CPUX86State *env = &cpu->env;
1685 struct kvm_mp_state mp_state;
1688 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1692 env->mp_state = mp_state.mp_state;
1693 if (kvm_irqchip_in_kernel()) {
1694 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1699 static int kvm_get_apic(X86CPU *cpu)
1701 DeviceState *apic = cpu->apic_state;
1702 struct kvm_lapic_state kapic;
1705 if (apic && kvm_irqchip_in_kernel()) {
1706 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1711 kvm_get_apic_state(apic, &kapic);
1716 static int kvm_put_apic(X86CPU *cpu)
1718 DeviceState *apic = cpu->apic_state;
1719 struct kvm_lapic_state kapic;
1721 if (apic && kvm_irqchip_in_kernel()) {
1722 kvm_put_apic_state(apic, &kapic);
1724 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1729 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1731 CPUX86State *env = &cpu->env;
1732 struct kvm_vcpu_events events;
1734 if (!kvm_has_vcpu_events()) {
1738 events.exception.injected = (env->exception_injected >= 0);
1739 events.exception.nr = env->exception_injected;
1740 events.exception.has_error_code = env->has_error_code;
1741 events.exception.error_code = env->error_code;
1742 events.exception.pad = 0;
1744 events.interrupt.injected = (env->interrupt_injected >= 0);
1745 events.interrupt.nr = env->interrupt_injected;
1746 events.interrupt.soft = env->soft_interrupt;
1748 events.nmi.injected = env->nmi_injected;
1749 events.nmi.pending = env->nmi_pending;
1750 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1753 events.sipi_vector = env->sipi_vector;
1756 if (level >= KVM_PUT_RESET_STATE) {
1758 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1761 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1764 static int kvm_get_vcpu_events(X86CPU *cpu)
1766 CPUX86State *env = &cpu->env;
1767 struct kvm_vcpu_events events;
1770 if (!kvm_has_vcpu_events()) {
1774 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1778 env->exception_injected =
1779 events.exception.injected ? events.exception.nr : -1;
1780 env->has_error_code = events.exception.has_error_code;
1781 env->error_code = events.exception.error_code;
1783 env->interrupt_injected =
1784 events.interrupt.injected ? events.interrupt.nr : -1;
1785 env->soft_interrupt = events.interrupt.soft;
1787 env->nmi_injected = events.nmi.injected;
1788 env->nmi_pending = events.nmi.pending;
1789 if (events.nmi.masked) {
1790 env->hflags2 |= HF2_NMI_MASK;
1792 env->hflags2 &= ~HF2_NMI_MASK;
1795 env->sipi_vector = events.sipi_vector;
1800 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1802 CPUState *cs = CPU(cpu);
1803 CPUX86State *env = &cpu->env;
1805 unsigned long reinject_trap = 0;
1807 if (!kvm_has_vcpu_events()) {
1808 if (env->exception_injected == 1) {
1809 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1810 } else if (env->exception_injected == 3) {
1811 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1813 env->exception_injected = -1;
1817 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1818 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1819 * by updating the debug state once again if single-stepping is on.
1820 * Another reason to call kvm_update_guest_debug here is a pending debug
1821 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1822 * reinject them via SET_GUEST_DEBUG.
1824 if (reinject_trap ||
1825 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1826 ret = kvm_update_guest_debug(cs, reinject_trap);
1831 static int kvm_put_debugregs(X86CPU *cpu)
1833 CPUX86State *env = &cpu->env;
1834 struct kvm_debugregs dbgregs;
1837 if (!kvm_has_debugregs()) {
1841 for (i = 0; i < 4; i++) {
1842 dbgregs.db[i] = env->dr[i];
1844 dbgregs.dr6 = env->dr[6];
1845 dbgregs.dr7 = env->dr[7];
1848 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1851 static int kvm_get_debugregs(X86CPU *cpu)
1853 CPUX86State *env = &cpu->env;
1854 struct kvm_debugregs dbgregs;
1857 if (!kvm_has_debugregs()) {
1861 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1865 for (i = 0; i < 4; i++) {
1866 env->dr[i] = dbgregs.db[i];
1868 env->dr[4] = env->dr[6] = dbgregs.dr6;
1869 env->dr[5] = env->dr[7] = dbgregs.dr7;
1874 int kvm_arch_put_registers(CPUState *cpu, int level)
1876 X86CPU *x86_cpu = X86_CPU(cpu);
1879 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1881 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
1882 ret = kvm_put_msr_feature_control(x86_cpu);
1888 ret = kvm_getput_regs(x86_cpu, 1);
1892 ret = kvm_put_xsave(x86_cpu);
1896 ret = kvm_put_xcrs(x86_cpu);
1900 ret = kvm_put_sregs(x86_cpu);
1904 /* must be before kvm_put_msrs */
1905 ret = kvm_inject_mce_oldstyle(x86_cpu);
1909 ret = kvm_put_msrs(x86_cpu, level);
1913 if (level >= KVM_PUT_RESET_STATE) {
1914 ret = kvm_put_mp_state(x86_cpu);
1918 ret = kvm_put_apic(x86_cpu);
1924 ret = kvm_put_tscdeadline_msr(x86_cpu);
1929 ret = kvm_put_vcpu_events(x86_cpu, level);
1933 ret = kvm_put_debugregs(x86_cpu);
1938 ret = kvm_guest_debug_workarounds(x86_cpu);
1945 int kvm_arch_get_registers(CPUState *cs)
1947 X86CPU *cpu = X86_CPU(cs);
1950 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1952 ret = kvm_getput_regs(cpu, 0);
1956 ret = kvm_get_xsave(cpu);
1960 ret = kvm_get_xcrs(cpu);
1964 ret = kvm_get_sregs(cpu);
1968 ret = kvm_get_msrs(cpu);
1972 ret = kvm_get_mp_state(cpu);
1976 ret = kvm_get_apic(cpu);
1980 ret = kvm_get_vcpu_events(cpu);
1984 ret = kvm_get_debugregs(cpu);
1991 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1993 X86CPU *x86_cpu = X86_CPU(cpu);
1994 CPUX86State *env = &x86_cpu->env;
1998 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1999 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2000 DPRINTF("injected NMI\n");
2001 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2003 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2008 if (!kvm_irqchip_in_kernel()) {
2009 /* Force the VCPU out of its inner loop to process any INIT requests
2010 * or pending TPR access reports. */
2011 if (cpu->interrupt_request &
2012 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2013 cpu->exit_request = 1;
2016 /* Try to inject an interrupt if the guest can accept it */
2017 if (run->ready_for_interrupt_injection &&
2018 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2019 (env->eflags & IF_MASK)) {
2022 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2023 irq = cpu_get_pic_interrupt(env);
2025 struct kvm_interrupt intr;
2028 DPRINTF("injected interrupt %d\n", irq);
2029 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2032 "KVM: injection failed, interrupt lost (%s)\n",
2038 /* If we have an interrupt but the guest is not ready to receive an
2039 * interrupt, request an interrupt window exit. This will
2040 * cause a return to userspace as soon as the guest is ready to
2041 * receive interrupts. */
2042 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2043 run->request_interrupt_window = 1;
2045 run->request_interrupt_window = 0;
2048 DPRINTF("setting tpr\n");
2049 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2053 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2055 X86CPU *x86_cpu = X86_CPU(cpu);
2056 CPUX86State *env = &x86_cpu->env;
2059 env->eflags |= IF_MASK;
2061 env->eflags &= ~IF_MASK;
2063 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2064 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2067 int kvm_arch_process_async_events(CPUState *cs)
2069 X86CPU *cpu = X86_CPU(cs);
2070 CPUX86State *env = &cpu->env;
2072 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2073 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2074 assert(env->mcg_cap);
2076 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2078 kvm_cpu_synchronize_state(cs);
2080 if (env->exception_injected == EXCP08_DBLE) {
2081 /* this means triple fault */
2082 qemu_system_reset_request();
2083 cs->exit_request = 1;
2086 env->exception_injected = EXCP12_MCHK;
2087 env->has_error_code = 0;
2090 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2091 env->mp_state = KVM_MP_STATE_RUNNABLE;
2095 if (kvm_irqchip_in_kernel()) {
2099 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2100 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2101 apic_poll_irq(cpu->apic_state);
2103 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2104 (env->eflags & IF_MASK)) ||
2105 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2108 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
2109 kvm_cpu_synchronize_state(cs);
2112 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2113 kvm_cpu_synchronize_state(cs);
2116 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2117 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2118 kvm_cpu_synchronize_state(cs);
2119 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2120 env->tpr_access_type);
2126 static int kvm_handle_halt(X86CPU *cpu)
2128 CPUState *cs = CPU(cpu);
2129 CPUX86State *env = &cpu->env;
2131 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2132 (env->eflags & IF_MASK)) &&
2133 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2141 static int kvm_handle_tpr_access(X86CPU *cpu)
2143 CPUState *cs = CPU(cpu);
2144 struct kvm_run *run = cs->kvm_run;
2146 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2147 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2152 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2154 static const uint8_t int3 = 0xcc;
2156 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2157 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2163 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2167 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2168 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2180 static int nb_hw_breakpoint;
2182 static int find_hw_breakpoint(target_ulong addr, int len, int type)
2186 for (n = 0; n < nb_hw_breakpoint; n++) {
2187 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2188 (hw_breakpoint[n].len == len || len == -1)) {
2195 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2196 target_ulong len, int type)
2199 case GDB_BREAKPOINT_HW:
2202 case GDB_WATCHPOINT_WRITE:
2203 case GDB_WATCHPOINT_ACCESS:
2210 if (addr & (len - 1)) {
2222 if (nb_hw_breakpoint == 4) {
2225 if (find_hw_breakpoint(addr, len, type) >= 0) {
2228 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2229 hw_breakpoint[nb_hw_breakpoint].len = len;
2230 hw_breakpoint[nb_hw_breakpoint].type = type;
2236 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2237 target_ulong len, int type)
2241 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2246 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2251 void kvm_arch_remove_all_hw_breakpoints(void)
2253 nb_hw_breakpoint = 0;
2256 static CPUWatchpoint hw_watchpoint;
2258 static int kvm_handle_debug(X86CPU *cpu,
2259 struct kvm_debug_exit_arch *arch_info)
2261 CPUState *cs = CPU(cpu);
2262 CPUX86State *env = &cpu->env;
2266 if (arch_info->exception == 1) {
2267 if (arch_info->dr6 & (1 << 14)) {
2268 if (cs->singlestep_enabled) {
2272 for (n = 0; n < 4; n++) {
2273 if (arch_info->dr6 & (1 << n)) {
2274 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2280 env->watchpoint_hit = &hw_watchpoint;
2281 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2282 hw_watchpoint.flags = BP_MEM_WRITE;
2286 env->watchpoint_hit = &hw_watchpoint;
2287 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2288 hw_watchpoint.flags = BP_MEM_ACCESS;
2294 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2298 cpu_synchronize_state(CPU(cpu));
2299 assert(env->exception_injected == -1);
2302 env->exception_injected = arch_info->exception;
2303 env->has_error_code = 0;
2309 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2311 const uint8_t type_code[] = {
2312 [GDB_BREAKPOINT_HW] = 0x0,
2313 [GDB_WATCHPOINT_WRITE] = 0x1,
2314 [GDB_WATCHPOINT_ACCESS] = 0x3
2316 const uint8_t len_code[] = {
2317 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2321 if (kvm_sw_breakpoints_active(cpu)) {
2322 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2324 if (nb_hw_breakpoint > 0) {
2325 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2326 dbg->arch.debugreg[7] = 0x0600;
2327 for (n = 0; n < nb_hw_breakpoint; n++) {
2328 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2329 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2330 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2331 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2336 static bool host_supports_vmx(void)
2338 uint32_t ecx, unused;
2340 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2341 return ecx & CPUID_EXT_VMX;
2344 #define VMX_INVALID_GUEST_STATE 0x80000021
2346 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2348 X86CPU *cpu = X86_CPU(cs);
2352 switch (run->exit_reason) {
2354 DPRINTF("handle_hlt\n");
2355 ret = kvm_handle_halt(cpu);
2357 case KVM_EXIT_SET_TPR:
2360 case KVM_EXIT_TPR_ACCESS:
2361 ret = kvm_handle_tpr_access(cpu);
2363 case KVM_EXIT_FAIL_ENTRY:
2364 code = run->fail_entry.hardware_entry_failure_reason;
2365 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2367 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2369 "\nIf you're running a guest on an Intel machine without "
2370 "unrestricted mode\n"
2371 "support, the failure can be most likely due to the guest "
2372 "entering an invalid\n"
2373 "state for Intel VT. For example, the guest maybe running "
2374 "in big real mode\n"
2375 "which is not supported on less recent Intel processors."
2380 case KVM_EXIT_EXCEPTION:
2381 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2382 run->ex.exception, run->ex.error_code);
2385 case KVM_EXIT_DEBUG:
2386 DPRINTF("kvm_exit_debug\n");
2387 ret = kvm_handle_debug(cpu, &run->debug.arch);
2390 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2398 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2400 X86CPU *cpu = X86_CPU(cs);
2401 CPUX86State *env = &cpu->env;
2403 kvm_cpu_synchronize_state(cs);
2404 return !(env->cr[0] & CR0_PE_MASK) ||
2405 ((env->segs[R_CS].selector & 3) != 3);
2408 void kvm_arch_init_irq_routing(KVMState *s)
2410 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2411 /* If kernel can't do irq routing, interrupt source
2412 * override 0->2 cannot be set up as required by HPET.
2413 * So we have to disable it.
2417 /* We know at this point that we're using the in-kernel
2418 * irqchip, so we can use irqfds, and on x86 we know
2419 * we can use msi via irqfd and GSI routing.
2421 kvm_irqfds_allowed = true;
2422 kvm_msi_via_irqfd_allowed = true;
2423 kvm_gsi_routing_allowed = true;
2426 /* Classic KVM device assignment interface. Will remain x86 only. */
2427 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2428 uint32_t flags, uint32_t *dev_id)
2430 struct kvm_assigned_pci_dev dev_data = {
2431 .segnr = dev_addr->domain,
2432 .busnr = dev_addr->bus,
2433 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2438 dev_data.assigned_dev_id =
2439 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2441 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2446 *dev_id = dev_data.assigned_dev_id;
2451 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2453 struct kvm_assigned_pci_dev dev_data = {
2454 .assigned_dev_id = dev_id,
2457 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2460 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2461 uint32_t irq_type, uint32_t guest_irq)
2463 struct kvm_assigned_irq assigned_irq = {
2464 .assigned_dev_id = dev_id,
2465 .guest_irq = guest_irq,
2469 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2470 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2472 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2476 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2479 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2480 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2482 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2485 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2487 struct kvm_assigned_pci_dev dev_data = {
2488 .assigned_dev_id = dev_id,
2489 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2492 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2495 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2498 struct kvm_assigned_irq assigned_irq = {
2499 .assigned_dev_id = dev_id,
2503 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2506 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2508 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2509 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2512 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2514 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2515 KVM_DEV_IRQ_GUEST_MSI, virq);
2518 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2520 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2521 KVM_DEV_IRQ_HOST_MSI);
2524 bool kvm_device_msix_supported(KVMState *s)
2526 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2527 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2528 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2531 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2532 uint32_t nr_vectors)
2534 struct kvm_assigned_msix_nr msix_nr = {
2535 .assigned_dev_id = dev_id,
2536 .entry_nr = nr_vectors,
2539 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2542 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2545 struct kvm_assigned_msix_entry msix_entry = {
2546 .assigned_dev_id = dev_id,
2551 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2554 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2556 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2557 KVM_DEV_IRQ_GUEST_MSIX, 0);
2560 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2562 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2563 KVM_DEV_IRQ_HOST_MSIX);