2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState *env)
54 return cpu_has_work(env);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env->jmp_env, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
100 unsigned long next_tb;
101 TranslationBlock *tb;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
114 if ((next_tb & 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env, tb);
119 tb_phys_invalidate(tb, -1);
123 static TranslationBlock *tb_find_slow(target_ulong pc,
124 target_ulong cs_base,
127 TranslationBlock *tb, **ptb1;
129 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131 tb_invalidated_flag = 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc = get_phys_addr_code(env, pc);
137 phys_page1 = phys_pc & TARGET_PAGE_MASK;
139 h = tb_phys_hash_func(phys_pc);
140 ptb1 = &tb_phys_hash[h];
146 tb->page_addr[0] == phys_page1 &&
147 tb->cs_base == cs_base &&
148 tb->flags == flags) {
149 /* check next page if needed */
150 if (tb->page_addr[1] != -1) {
151 virt_page2 = (pc & TARGET_PAGE_MASK) +
153 phys_page2 = get_phys_addr_code(env, virt_page2);
154 if (tb->page_addr[1] == phys_page2)
160 ptb1 = &tb->phys_hash_next;
163 /* if no translated code available, then translate it now */
164 tb = tb_gen_code(env, pc, cs_base, flags, 0);
167 /* we add the TB in the virtual pc hash table */
168 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
172 static inline TranslationBlock *tb_find_fast(void)
174 TranslationBlock *tb;
175 target_ulong cs_base, pc;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
182 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
183 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
184 tb->flags != flags)) {
185 tb = tb_find_slow(pc, cs_base, flags);
190 static CPUDebugExcpHandler *debug_excp_handler;
192 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
194 CPUDebugExcpHandler *old_handler = debug_excp_handler;
196 debug_excp_handler = handler;
200 static void cpu_handle_debug_exception(CPUState *env)
204 if (!env->watchpoint_hit)
205 TAILQ_FOREACH(wp, &env->watchpoints, entry)
206 wp->flags &= ~BP_WATCHPOINT_HIT;
208 if (debug_excp_handler)
209 debug_excp_handler(env);
212 /* main execution loop */
214 int cpu_exec(CPUState *env1)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret, interrupt_request;
219 TranslationBlock *tb;
221 unsigned long next_tb;
223 if (cpu_halted(env1) == EXCP_HALTED)
226 cpu_single_env = env1;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 DF = 1 - (2 * ((env->eflags >> 10) & 1));
238 CC_OP = CC_OP_EFLAGS;
239 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env->cc_op = CC_OP_FLAGS;
243 env->cc_dest = env->sr & 0xf;
244 env->cc_x = (env->sr >> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
254 #error unsupported target CPU
256 env->exception_index = -1;
258 /* prepare setjmp context for exception handling */
260 if (setjmp(env->jmp_env) == 0) {
261 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
263 env = cpu_single_env;
264 #define env cpu_single_env
266 env->current_tb = NULL;
267 /* if an exception is pending, we execute it here */
268 if (env->exception_index >= 0) {
269 if (env->exception_index >= EXCP_INTERRUPT) {
270 /* exit request from the cpu execution loop */
271 ret = env->exception_index;
272 if (ret == EXCP_DEBUG)
273 cpu_handle_debug_exception(env);
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
280 #if defined(TARGET_I386)
281 do_interrupt_user(env->exception_index,
282 env->exception_is_int,
284 env->exception_next_eip);
285 /* successfully delivered */
286 env->old_exception = -1;
288 ret = env->exception_index;
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env->exception_index,
296 env->exception_is_int,
298 env->exception_next_eip, 0);
299 /* successfully delivered */
300 env->old_exception = -1;
301 #elif defined(TARGET_PPC)
303 #elif defined(TARGET_MICROBLAZE)
305 #elif defined(TARGET_MIPS)
307 #elif defined(TARGET_SPARC)
309 #elif defined(TARGET_ARM)
311 #elif defined(TARGET_SH4)
313 #elif defined(TARGET_ALPHA)
315 #elif defined(TARGET_CRIS)
317 #elif defined(TARGET_M68K)
322 env->exception_index = -1;
327 longjmp(env->jmp_env, 1);
330 next_tb = 0; /* force lookup of first TB */
332 interrupt_request = env->interrupt_request;
333 if (unlikely(interrupt_request)) {
334 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
335 /* Mask out external interrupts for this step. */
336 interrupt_request &= ~(CPU_INTERRUPT_HARD |
341 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
342 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
343 env->exception_index = EXCP_DEBUG;
346 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
347 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
348 defined(TARGET_MICROBLAZE)
349 if (interrupt_request & CPU_INTERRUPT_HALT) {
350 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
352 env->exception_index = EXCP_HLT;
356 #if defined(TARGET_I386)
357 if (interrupt_request & CPU_INTERRUPT_INIT) {
358 svm_check_intercept(SVM_EXIT_INIT);
360 env->exception_index = EXCP_HALTED;
362 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
364 } else if (env->hflags2 & HF2_GIF_MASK) {
365 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
366 !(env->hflags & HF_SMM_MASK)) {
367 svm_check_intercept(SVM_EXIT_SMI);
368 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
371 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
372 !(env->hflags2 & HF2_NMI_MASK)) {
373 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
374 env->hflags2 |= HF2_NMI_MASK;
375 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
377 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
378 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
379 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
381 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
382 (((env->hflags2 & HF2_VINTR_MASK) &&
383 (env->hflags2 & HF2_HIF_MASK)) ||
384 (!(env->hflags2 & HF2_VINTR_MASK) &&
385 (env->eflags & IF_MASK &&
386 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
388 svm_check_intercept(SVM_EXIT_INTR);
389 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
390 intno = cpu_get_pic_interrupt(env);
391 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
392 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
394 env = cpu_single_env;
395 #define env cpu_single_env
397 do_interrupt(intno, 0, 0, 0, 1);
398 /* ensure that no TB jump will be modified as
399 the program flow was changed */
401 #if !defined(CONFIG_USER_ONLY)
402 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
403 (env->eflags & IF_MASK) &&
404 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
406 /* FIXME: this should respect TPR */
407 svm_check_intercept(SVM_EXIT_VINTR);
408 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
409 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
410 do_interrupt(intno, 0, 0, 0, 1);
411 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
416 #elif defined(TARGET_PPC)
418 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
422 if (interrupt_request & CPU_INTERRUPT_HARD) {
423 ppc_hw_interrupt(env);
424 if (env->pending_interrupts == 0)
425 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
428 #elif defined(TARGET_MICROBLAZE)
429 if ((interrupt_request & CPU_INTERRUPT_HARD)
430 && (env->sregs[SR_MSR] & MSR_IE)
431 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
432 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
433 env->exception_index = EXCP_IRQ;
437 #elif defined(TARGET_MIPS)
438 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
439 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
440 (env->CP0_Status & (1 << CP0St_IE)) &&
441 !(env->CP0_Status & (1 << CP0St_EXL)) &&
442 !(env->CP0_Status & (1 << CP0St_ERL)) &&
443 !(env->hflags & MIPS_HFLAG_DM)) {
445 env->exception_index = EXCP_EXT_INTERRUPT;
450 #elif defined(TARGET_SPARC)
451 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
452 cpu_interrupts_enabled(env)) {
453 int pil = env->interrupt_index & 15;
454 int type = env->interrupt_index & 0xf0;
456 if (((type == TT_EXTINT) &&
457 (pil == 15 || pil > env->psrpil)) ||
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460 env->exception_index = env->interrupt_index;
462 env->interrupt_index = 0;
465 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469 #elif defined(TARGET_ARM)
470 if (interrupt_request & CPU_INTERRUPT_FIQ
471 && !(env->uncached_cpsr & CPSR_F)) {
472 env->exception_index = EXCP_FIQ;
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request & CPU_INTERRUPT_HARD
486 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
487 || !(env->uncached_cpsr & CPSR_I))) {
488 env->exception_index = EXCP_IRQ;
492 #elif defined(TARGET_SH4)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request & CPU_INTERRUPT_HARD) {
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request & CPU_INTERRUPT_HARD
504 && (env->pregs[PR_CCS] & I_FLAG)) {
505 env->exception_index = EXCP_IRQ;
509 if (interrupt_request & CPU_INTERRUPT_NMI
510 && (env->pregs[PR_CCS] & M_FLAG)) {
511 env->exception_index = EXCP_NMI;
515 #elif defined(TARGET_M68K)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && ((env->sr & SR_I) >> SR_I_SHIFT)
518 < env->pending_level) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
524 env->exception_index = env->pending_vector;
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
538 if (unlikely(env->exit_request)) {
539 env->exit_request = 0;
540 env->exception_index = EXCP_INTERRUPT;
543 #ifdef CONFIG_DEBUG_EXEC
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
545 /* restore flags in standard format */
547 #if defined(TARGET_I386)
548 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
549 log_cpu_state(env, X86_DUMP_CCOP);
550 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env, env->cc_op);
559 env->cc_op = CC_OP_FLAGS;
560 env->sr = (env->sr & 0xffe0)
561 | env->cc_dest | (env->cc_x << 4);
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_MICROBLAZE)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_MIPS)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_SH4)
568 log_cpu_state(env, 0);
569 #elif defined(TARGET_ALPHA)
570 log_cpu_state(env, 0);
571 #elif defined(TARGET_CRIS)
572 log_cpu_state(env, 0);
574 #error unsupported target CPU
580 /* Note: we do it here to avoid a gcc bug on Mac OS X when
581 doing it in tb_find_slow */
582 if (tb_invalidated_flag) {
583 /* as some TB could have been invalidated because
584 of memory exceptions while generating the code, we
585 must recompute the hash index here */
587 tb_invalidated_flag = 0;
589 #ifdef CONFIG_DEBUG_EXEC
590 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
591 (long)tb->tc_ptr, tb->pc,
592 lookup_symbol(tb->pc));
594 /* see if we can patch the calling TB. When the TB
595 spans two pages, we cannot safely do a direct
598 if (next_tb != 0 && tb->page_addr[1] == -1) {
599 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
602 spin_unlock(&tb_lock);
603 env->current_tb = tb;
605 /* cpu_interrupt might be called while translating the
606 TB, but before it is linked into a potentially
607 infinite loop and becomes env->current_tb. Avoid
608 starting execution if there is a pending interrupt. */
609 if (unlikely (env->exit_request))
610 env->current_tb = NULL;
612 while (env->current_tb) {
614 /* execute the generated code */
615 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
617 env = cpu_single_env;
618 #define env cpu_single_env
620 next_tb = tcg_qemu_tb_exec(tc_ptr);
621 env->current_tb = NULL;
622 if ((next_tb & 3) == 2) {
623 /* Instruction counter expired. */
625 tb = (TranslationBlock *)(long)(next_tb & ~3);
627 cpu_pc_from_tb(env, tb);
628 insns_left = env->icount_decr.u32;
629 if (env->icount_extra && insns_left >= 0) {
630 /* Refill decrementer and continue execution. */
631 env->icount_extra += insns_left;
632 if (env->icount_extra > 0xffff) {
635 insns_left = env->icount_extra;
637 env->icount_extra -= insns_left;
638 env->icount_decr.u16.low = insns_left;
640 if (insns_left > 0) {
641 /* Execute remaining instructions. */
642 cpu_exec_nocache(insns_left, tb);
644 env->exception_index = EXCP_INTERRUPT;
650 /* reset soft MMU for next block (it can currently
651 only be set by a memory fault) */
659 #if defined(TARGET_I386)
660 /* restore flags in standard format */
661 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
662 #elif defined(TARGET_ARM)
663 /* XXX: Save/restore host fpu exception state?. */
664 #elif defined(TARGET_SPARC)
665 #elif defined(TARGET_PPC)
666 #elif defined(TARGET_M68K)
667 cpu_m68k_flush_flags(env, env->cc_op);
668 env->cc_op = CC_OP_FLAGS;
669 env->sr = (env->sr & 0xffe0)
670 | env->cc_dest | (env->cc_x << 4);
671 #elif defined(TARGET_MICROBLAZE)
672 #elif defined(TARGET_MIPS)
673 #elif defined(TARGET_SH4)
674 #elif defined(TARGET_ALPHA)
675 #elif defined(TARGET_CRIS)
678 #error unsupported target CPU
681 /* restore global registers */
682 #include "hostregs_helper.h"
684 /* fail safe : never use cpu_single_env outside cpu_exec() */
685 cpu_single_env = NULL;
689 /* must only be called from the generated code as an exception can be
691 void tb_invalidate_page_range(target_ulong start, target_ulong end)
693 /* XXX: cannot enable it yet because it yields to MMU exception
694 where NIP != read address on PowerPC */
696 target_ulong phys_addr;
697 phys_addr = get_phys_addr_code(env, start);
698 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
702 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
704 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
706 CPUX86State *saved_env;
710 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
712 cpu_x86_load_seg_cache(env, seg_reg, selector,
713 (selector << 4), 0xffff, 0);
715 helper_load_seg(seg_reg, selector);
720 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
722 CPUX86State *saved_env;
727 helper_fsave(ptr, data32);
732 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
734 CPUX86State *saved_env;
739 helper_frstor(ptr, data32);
744 #endif /* TARGET_I386 */
746 #if !defined(CONFIG_SOFTMMU)
748 #if defined(TARGET_I386)
750 /* 'pc' is the host PC at which the exception was raised. 'address' is
751 the effective address of the memory exception. 'is_write' is 1 if a
752 write caused the exception and otherwise 0'. 'old_set' is the
753 signal set which should be restored */
754 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
755 int is_write, sigset_t *old_set,
758 TranslationBlock *tb;
762 env = cpu_single_env; /* XXX: find a correct solution for multithread */
763 #if defined(DEBUG_SIGNAL)
764 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
765 pc, address, is_write, *(unsigned long *)old_set);
767 /* XXX: locking issue */
768 if (is_write && page_unprotect(h2g(address), pc, puc)) {
772 /* see if it is an MMU fault */
773 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
775 return 0; /* not an MMU fault */
777 return 1; /* the MMU fault was handled without causing real CPU fault */
778 /* now we have a real cpu fault */
781 /* the PC is inside the translated code. It means that we have
782 a virtual CPU fault */
783 cpu_restore_state(tb, env, pc, puc);
787 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
788 env->eip, env->cr[2], env->error_code);
790 /* we restore the process signal mask as the sigreturn should
791 do it (XXX: use sigsetjmp) */
792 sigprocmask(SIG_SETMASK, old_set, NULL);
793 raise_exception_err(env->exception_index, env->error_code);
795 /* activate soft MMU for this block */
796 env->hflags |= HF_SOFTMMU_MASK;
797 cpu_resume_from_signal(env, puc);
799 /* never comes here */
803 #elif defined(TARGET_ARM)
804 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
805 int is_write, sigset_t *old_set,
808 TranslationBlock *tb;
812 env = cpu_single_env; /* XXX: find a correct solution for multithread */
813 #if defined(DEBUG_SIGNAL)
814 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
815 pc, address, is_write, *(unsigned long *)old_set);
817 /* XXX: locking issue */
818 if (is_write && page_unprotect(h2g(address), pc, puc)) {
821 /* see if it is an MMU fault */
822 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
824 return 0; /* not an MMU fault */
826 return 1; /* the MMU fault was handled without causing real CPU fault */
827 /* now we have a real cpu fault */
830 /* the PC is inside the translated code. It means that we have
831 a virtual CPU fault */
832 cpu_restore_state(tb, env, pc, puc);
834 /* we restore the process signal mask as the sigreturn should
835 do it (XXX: use sigsetjmp) */
836 sigprocmask(SIG_SETMASK, old_set, NULL);
838 /* never comes here */
841 #elif defined(TARGET_SPARC)
842 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
843 int is_write, sigset_t *old_set,
846 TranslationBlock *tb;
850 env = cpu_single_env; /* XXX: find a correct solution for multithread */
851 #if defined(DEBUG_SIGNAL)
852 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
853 pc, address, is_write, *(unsigned long *)old_set);
855 /* XXX: locking issue */
856 if (is_write && page_unprotect(h2g(address), pc, puc)) {
859 /* see if it is an MMU fault */
860 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
862 return 0; /* not an MMU fault */
864 return 1; /* the MMU fault was handled without causing real CPU fault */
865 /* now we have a real cpu fault */
868 /* the PC is inside the translated code. It means that we have
869 a virtual CPU fault */
870 cpu_restore_state(tb, env, pc, puc);
872 /* we restore the process signal mask as the sigreturn should
873 do it (XXX: use sigsetjmp) */
874 sigprocmask(SIG_SETMASK, old_set, NULL);
876 /* never comes here */
879 #elif defined (TARGET_PPC)
880 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
881 int is_write, sigset_t *old_set,
884 TranslationBlock *tb;
888 env = cpu_single_env; /* XXX: find a correct solution for multithread */
889 #if defined(DEBUG_SIGNAL)
890 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
891 pc, address, is_write, *(unsigned long *)old_set);
893 /* XXX: locking issue */
894 if (is_write && page_unprotect(h2g(address), pc, puc)) {
898 /* see if it is an MMU fault */
899 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
901 return 0; /* not an MMU fault */
903 return 1; /* the MMU fault was handled without causing real CPU fault */
905 /* now we have a real cpu fault */
908 /* the PC is inside the translated code. It means that we have
909 a virtual CPU fault */
910 cpu_restore_state(tb, env, pc, puc);
914 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
915 env->nip, env->error_code, tb);
917 /* we restore the process signal mask as the sigreturn should
918 do it (XXX: use sigsetjmp) */
919 sigprocmask(SIG_SETMASK, old_set, NULL);
922 /* activate soft MMU for this block */
923 cpu_resume_from_signal(env, puc);
925 /* never comes here */
929 #elif defined(TARGET_M68K)
930 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
931 int is_write, sigset_t *old_set,
934 TranslationBlock *tb;
938 env = cpu_single_env; /* XXX: find a correct solution for multithread */
939 #if defined(DEBUG_SIGNAL)
940 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
941 pc, address, is_write, *(unsigned long *)old_set);
943 /* XXX: locking issue */
944 if (is_write && page_unprotect(address, pc, puc)) {
947 /* see if it is an MMU fault */
948 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
950 return 0; /* not an MMU fault */
952 return 1; /* the MMU fault was handled without causing real CPU fault */
953 /* now we have a real cpu fault */
956 /* the PC is inside the translated code. It means that we have
957 a virtual CPU fault */
958 cpu_restore_state(tb, env, pc, puc);
960 /* we restore the process signal mask as the sigreturn should
961 do it (XXX: use sigsetjmp) */
962 sigprocmask(SIG_SETMASK, old_set, NULL);
964 /* never comes here */
968 #elif defined (TARGET_MIPS)
969 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
970 int is_write, sigset_t *old_set,
973 TranslationBlock *tb;
977 env = cpu_single_env; /* XXX: find a correct solution for multithread */
978 #if defined(DEBUG_SIGNAL)
979 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
980 pc, address, is_write, *(unsigned long *)old_set);
982 /* XXX: locking issue */
983 if (is_write && page_unprotect(h2g(address), pc, puc)) {
987 /* see if it is an MMU fault */
988 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
990 return 0; /* not an MMU fault */
992 return 1; /* the MMU fault was handled without causing real CPU fault */
994 /* now we have a real cpu fault */
997 /* the PC is inside the translated code. It means that we have
998 a virtual CPU fault */
999 cpu_restore_state(tb, env, pc, puc);
1003 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1004 env->PC, env->error_code, tb);
1006 /* we restore the process signal mask as the sigreturn should
1007 do it (XXX: use sigsetjmp) */
1008 sigprocmask(SIG_SETMASK, old_set, NULL);
1011 /* activate soft MMU for this block */
1012 cpu_resume_from_signal(env, puc);
1014 /* never comes here */
1018 #elif defined (TARGET_MICROBLAZE)
1019 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1020 int is_write, sigset_t *old_set,
1023 TranslationBlock *tb;
1027 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1028 #if defined(DEBUG_SIGNAL)
1029 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1030 pc, address, is_write, *(unsigned long *)old_set);
1032 /* XXX: locking issue */
1033 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1037 /* see if it is an MMU fault */
1038 ret = cpu_mb_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1040 return 0; /* not an MMU fault */
1042 return 1; /* the MMU fault was handled without causing real CPU fault */
1044 /* now we have a real cpu fault */
1045 tb = tb_find_pc(pc);
1047 /* the PC is inside the translated code. It means that we have
1048 a virtual CPU fault */
1049 cpu_restore_state(tb, env, pc, puc);
1053 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1054 env->PC, env->error_code, tb);
1056 /* we restore the process signal mask as the sigreturn should
1057 do it (XXX: use sigsetjmp) */
1058 sigprocmask(SIG_SETMASK, old_set, NULL);
1061 /* activate soft MMU for this block */
1062 cpu_resume_from_signal(env, puc);
1064 /* never comes here */
1068 #elif defined (TARGET_SH4)
1069 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1070 int is_write, sigset_t *old_set,
1073 TranslationBlock *tb;
1077 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1078 #if defined(DEBUG_SIGNAL)
1079 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1080 pc, address, is_write, *(unsigned long *)old_set);
1082 /* XXX: locking issue */
1083 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1087 /* see if it is an MMU fault */
1088 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1090 return 0; /* not an MMU fault */
1092 return 1; /* the MMU fault was handled without causing real CPU fault */
1094 /* now we have a real cpu fault */
1095 tb = tb_find_pc(pc);
1097 /* the PC is inside the translated code. It means that we have
1098 a virtual CPU fault */
1099 cpu_restore_state(tb, env, pc, puc);
1102 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1103 env->nip, env->error_code, tb);
1105 /* we restore the process signal mask as the sigreturn should
1106 do it (XXX: use sigsetjmp) */
1107 sigprocmask(SIG_SETMASK, old_set, NULL);
1109 /* never comes here */
1113 #elif defined (TARGET_ALPHA)
1114 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1115 int is_write, sigset_t *old_set,
1118 TranslationBlock *tb;
1122 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1123 #if defined(DEBUG_SIGNAL)
1124 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1125 pc, address, is_write, *(unsigned long *)old_set);
1127 /* XXX: locking issue */
1128 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1132 /* see if it is an MMU fault */
1133 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1135 return 0; /* not an MMU fault */
1137 return 1; /* the MMU fault was handled without causing real CPU fault */
1139 /* now we have a real cpu fault */
1140 tb = tb_find_pc(pc);
1142 /* the PC is inside the translated code. It means that we have
1143 a virtual CPU fault */
1144 cpu_restore_state(tb, env, pc, puc);
1147 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1148 env->nip, env->error_code, tb);
1150 /* we restore the process signal mask as the sigreturn should
1151 do it (XXX: use sigsetjmp) */
1152 sigprocmask(SIG_SETMASK, old_set, NULL);
1154 /* never comes here */
1157 #elif defined (TARGET_CRIS)
1158 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1159 int is_write, sigset_t *old_set,
1162 TranslationBlock *tb;
1166 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1167 #if defined(DEBUG_SIGNAL)
1168 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1169 pc, address, is_write, *(unsigned long *)old_set);
1171 /* XXX: locking issue */
1172 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1176 /* see if it is an MMU fault */
1177 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1179 return 0; /* not an MMU fault */
1181 return 1; /* the MMU fault was handled without causing real CPU fault */
1183 /* now we have a real cpu fault */
1184 tb = tb_find_pc(pc);
1186 /* the PC is inside the translated code. It means that we have
1187 a virtual CPU fault */
1188 cpu_restore_state(tb, env, pc, puc);
1190 /* we restore the process signal mask as the sigreturn should
1191 do it (XXX: use sigsetjmp) */
1192 sigprocmask(SIG_SETMASK, old_set, NULL);
1194 /* never comes here */
1199 #error unsupported target CPU
1202 #if defined(__i386__)
1204 #if defined(__APPLE__)
1205 # include <sys/ucontext.h>
1207 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1208 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1209 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1210 # define MASK_sig(context) ((context)->uc_sigmask)
1211 #elif defined(__OpenBSD__)
1212 # define EIP_sig(context) ((context)->sc_eip)
1213 # define TRAP_sig(context) ((context)->sc_trapno)
1214 # define ERROR_sig(context) ((context)->sc_err)
1215 # define MASK_sig(context) ((context)->sc_mask)
1217 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1218 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1219 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1220 # define MASK_sig(context) ((context)->uc_sigmask)
1223 int cpu_signal_handler(int host_signum, void *pinfo,
1226 siginfo_t *info = pinfo;
1227 #if defined(__OpenBSD__)
1228 struct sigcontext *uc = puc;
1230 struct ucontext *uc = puc;
1239 #define REG_TRAPNO TRAPNO
1242 trapno = TRAP_sig(uc);
1243 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1245 (ERROR_sig(uc) >> 1) & 1 : 0,
1246 &MASK_sig(uc), puc);
1249 #elif defined(__x86_64__)
1252 #define PC_sig(context) _UC_MACHINE_PC(context)
1253 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1254 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1255 #define MASK_sig(context) ((context)->uc_sigmask)
1256 #elif defined(__OpenBSD__)
1257 #define PC_sig(context) ((context)->sc_rip)
1258 #define TRAP_sig(context) ((context)->sc_trapno)
1259 #define ERROR_sig(context) ((context)->sc_err)
1260 #define MASK_sig(context) ((context)->sc_mask)
1262 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1263 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1264 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1265 #define MASK_sig(context) ((context)->uc_sigmask)
1268 int cpu_signal_handler(int host_signum, void *pinfo,
1271 siginfo_t *info = pinfo;
1274 ucontext_t *uc = puc;
1275 #elif defined(__OpenBSD__)
1276 struct sigcontext *uc = puc;
1278 struct ucontext *uc = puc;
1282 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1283 TRAP_sig(uc) == 0xe ?
1284 (ERROR_sig(uc) >> 1) & 1 : 0,
1285 &MASK_sig(uc), puc);
1288 #elif defined(_ARCH_PPC)
1290 /***********************************************************************
1291 * signal context platform-specific definitions
1295 /* All Registers access - only for local access */
1296 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1297 /* Gpr Registers access */
1298 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1299 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1300 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1301 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1302 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1303 # define LR_sig(context) REG_sig(link, context) /* Link register */
1304 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1305 /* Float Registers access */
1306 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1307 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1308 /* Exception Registers access */
1309 # define DAR_sig(context) REG_sig(dar, context)
1310 # define DSISR_sig(context) REG_sig(dsisr, context)
1311 # define TRAP_sig(context) REG_sig(trap, context)
1315 # include <sys/ucontext.h>
1316 typedef struct ucontext SIGCONTEXT;
1317 /* All Registers access - only for local access */
1318 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1319 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1320 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1321 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1322 /* Gpr Registers access */
1323 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1324 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1325 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1326 # define CTR_sig(context) REG_sig(ctr, context)
1327 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1328 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1329 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1330 /* Float Registers access */
1331 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1332 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1333 /* Exception Registers access */
1334 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1335 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1336 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1337 #endif /* __APPLE__ */
1339 int cpu_signal_handler(int host_signum, void *pinfo,
1342 siginfo_t *info = pinfo;
1343 struct ucontext *uc = puc;
1351 if (DSISR_sig(uc) & 0x00800000)
1354 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1357 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1358 is_write, &uc->uc_sigmask, puc);
1361 #elif defined(__alpha__)
1363 int cpu_signal_handler(int host_signum, void *pinfo,
1366 siginfo_t *info = pinfo;
1367 struct ucontext *uc = puc;
1368 uint32_t *pc = uc->uc_mcontext.sc_pc;
1369 uint32_t insn = *pc;
1372 /* XXX: need kernel patch to get write flag faster */
1373 switch (insn >> 26) {
1388 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1389 is_write, &uc->uc_sigmask, puc);
1391 #elif defined(__sparc__)
1393 int cpu_signal_handler(int host_signum, void *pinfo,
1396 siginfo_t *info = pinfo;
1399 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1400 uint32_t *regs = (uint32_t *)(info + 1);
1401 void *sigmask = (regs + 20);
1402 /* XXX: is there a standard glibc define ? */
1403 unsigned long pc = regs[1];
1406 struct sigcontext *sc = puc;
1407 unsigned long pc = sc->sigc_regs.tpc;
1408 void *sigmask = (void *)sc->sigc_mask;
1409 #elif defined(__OpenBSD__)
1410 struct sigcontext *uc = puc;
1411 unsigned long pc = uc->sc_pc;
1412 void *sigmask = (void *)(long)uc->sc_mask;
1416 /* XXX: need kernel patch to get write flag faster */
1418 insn = *(uint32_t *)pc;
1419 if ((insn >> 30) == 3) {
1420 switch((insn >> 19) & 0x3f) {
1444 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1445 is_write, sigmask, NULL);
1448 #elif defined(__arm__)
1450 int cpu_signal_handler(int host_signum, void *pinfo,
1453 siginfo_t *info = pinfo;
1454 struct ucontext *uc = puc;
1458 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1459 pc = uc->uc_mcontext.gregs[R15];
1461 pc = uc->uc_mcontext.arm_pc;
1463 /* XXX: compute is_write */
1465 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1467 &uc->uc_sigmask, puc);
1470 #elif defined(__mc68000)
1472 int cpu_signal_handler(int host_signum, void *pinfo,
1475 siginfo_t *info = pinfo;
1476 struct ucontext *uc = puc;
1480 pc = uc->uc_mcontext.gregs[16];
1481 /* XXX: compute is_write */
1483 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1485 &uc->uc_sigmask, puc);
1488 #elif defined(__ia64)
1491 /* This ought to be in <bits/siginfo.h>... */
1492 # define __ISR_VALID 1
1495 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1497 siginfo_t *info = pinfo;
1498 struct ucontext *uc = puc;
1502 ip = uc->uc_mcontext.sc_ip;
1503 switch (host_signum) {
1509 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1510 /* ISR.W (write-access) is bit 33: */
1511 is_write = (info->si_isr >> 33) & 1;
1517 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1519 &uc->uc_sigmask, puc);
1522 #elif defined(__s390__)
1524 int cpu_signal_handler(int host_signum, void *pinfo,
1527 siginfo_t *info = pinfo;
1528 struct ucontext *uc = puc;
1532 pc = uc->uc_mcontext.psw.addr;
1533 /* XXX: compute is_write */
1535 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1536 is_write, &uc->uc_sigmask, puc);
1539 #elif defined(__mips__)
1541 int cpu_signal_handler(int host_signum, void *pinfo,
1544 siginfo_t *info = pinfo;
1545 struct ucontext *uc = puc;
1546 greg_t pc = uc->uc_mcontext.pc;
1549 /* XXX: compute is_write */
1551 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1552 is_write, &uc->uc_sigmask, puc);
1555 #elif defined(__hppa__)
1557 int cpu_signal_handler(int host_signum, void *pinfo,
1560 struct siginfo *info = pinfo;
1561 struct ucontext *uc = puc;
1565 pc = uc->uc_mcontext.sc_iaoq[0];
1566 /* FIXME: compute is_write */
1568 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1570 &uc->uc_sigmask, puc);
1575 #error host CPU specific signal handler needed
1579 #endif /* !defined(CONFIG_SOFTMMU) */