2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2019, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
10 #include "qemu/osdep.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
30 #include "pnv_xive_regs.h"
35 * Virtual structures table (VST)
37 #define SBE_PER_BYTE 4
39 typedef struct XiveVstInfo {
45 static const XiveVstInfo vst_infos[] = {
46 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
47 [VST_TSEL_SBE] = { "SBE", 1, 16 },
48 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
52 * Interrupt fifo backing store table (not modeled) :
57 * 3 - Second escalate,
59 * 5 - IPI cascaded queue ?
61 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
64 #define xive_error(xive, fmt, ...) \
65 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
66 (xive)->chip->chip_id, ## __VA_ARGS__);
69 * QEMU version of the GETFIELD/SETFIELD macros
71 * TODO: It might be better to use the existing extract64() and
72 * deposit64() but this means that all the register definitions will
73 * change and become incompatible with the ones found in skiboot.
75 * Keep it as it is for now until we find a common ground.
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
79 return (word & mask) >> ctz64(mask);
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
85 return (word & ~mask) | ((value << ctz64(mask)) & mask);
89 * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
90 * field overrides the hardwired chip ID in the Powerbus operations
91 * and for CAM compares
93 static uint8_t pnv_xive_block_id(PnvXive *xive)
95 uint8_t blk = xive->chip->chip_id;
96 uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
98 if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
99 blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
106 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
107 * of the chips is good enough.
109 * TODO: Block scope support
111 static PnvXive *pnv_xive_get_remote(uint8_t blk)
113 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
116 for (i = 0; i < pnv->num_chips; i++) {
117 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
118 PnvXive *xive = &chip9->xive;
120 if (pnv_xive_block_id(xive) == blk) {
128 * VST accessors for SBE, EAT, ENDT, NVT
130 * Indirect VST tables are arrays of VSDs pointing to a page (of same
131 * size). Each page is a direct VST table.
134 #define XIVE_VSD_SIZE 8
136 /* Indirect page size can be 4K, 64K, 2M, 16M. */
137 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
139 return page_shift == 12 || page_shift == 16 ||
140 page_shift == 21 || page_shift == 24;
143 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
144 uint64_t vsd, uint32_t idx)
146 const XiveVstInfo *info = &vst_infos[type];
147 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
148 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
151 idx_max = vst_tsize / info->size - 1;
154 xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
155 info->name, idx, idx_max);
160 return vst_addr + idx * info->size;
163 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
164 uint64_t vsd, uint32_t idx)
166 const XiveVstInfo *info = &vst_infos[type];
170 uint32_t vst_per_page;
172 /* Get the page size of the indirect table. */
173 vsd_addr = vsd & VSD_ADDRESS_MASK;
174 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
176 if (!(vsd & VSD_ADDRESS_MASK)) {
178 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
183 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
185 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
186 xive_error(xive, "VST: invalid %s page shift %d", info->name,
191 vst_per_page = (1ull << page_shift) / info->size;
192 vsd_idx = idx / vst_per_page;
194 /* Load the VSD we are looking for, if not already done */
196 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
197 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
199 if (!(vsd & VSD_ADDRESS_MASK)) {
201 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
207 * Check that the pages have a consistent size across the
210 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
211 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
217 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
220 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
223 const XiveVstInfo *info = &vst_infos[type];
226 if (blk >= info->max_blocks) {
227 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
228 blk, info->name, idx);
232 vsd = xive->vsds[type][blk];
234 /* Remote VST access */
235 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
236 xive = pnv_xive_get_remote(blk);
238 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
241 if (VSD_INDIRECT & vsd) {
242 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
245 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
248 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
249 uint32_t idx, void *data)
251 const XiveVstInfo *info = &vst_infos[type];
252 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
258 cpu_physical_memory_read(addr, data, info->size);
262 #define XIVE_VST_WORD_ALL -1
264 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
265 uint32_t idx, void *data, uint32_t word_number)
267 const XiveVstInfo *info = &vst_infos[type];
268 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
274 if (word_number == XIVE_VST_WORD_ALL) {
275 cpu_physical_memory_write(addr, data, info->size);
277 cpu_physical_memory_write(addr + word_number * 4,
278 data + word_number * 4, 4);
283 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
286 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
289 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
290 XiveEND *end, uint8_t word_number)
292 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
296 static int pnv_xive_end_update(PnvXive *xive)
298 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
303 uint64_t eqc_watch[4];
305 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
306 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
309 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
313 static void pnv_xive_end_cache_load(PnvXive *xive)
315 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
316 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
317 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
318 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
319 uint64_t eqc_watch[4] = { 0 };
322 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
323 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
326 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
327 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
331 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
334 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
337 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
338 XiveNVT *nvt, uint8_t word_number)
340 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
344 static int pnv_xive_nvt_update(PnvXive *xive)
346 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
351 uint64_t vpc_watch[8];
353 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
354 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
357 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
361 static void pnv_xive_nvt_cache_load(PnvXive *xive)
363 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
364 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
365 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
366 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
367 uint64_t vpc_watch[8] = { 0 };
370 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
371 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
374 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
375 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
379 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
382 PnvXive *xive = PNV_XIVE(xrtr);
385 * EAT lookups should be local to the IC
387 if (pnv_xive_block_id(xive) != blk) {
388 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
392 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
396 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
397 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
398 * second register covers cores 16-23 (normal) or 8-11 (fused).
400 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
402 int pir = ppc_cpu_pir(cpu);
403 uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
404 uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
405 uint32_t bit = pir & 0x3f;
407 return xive->regs[reg >> 3] & PPC_BIT(bit);
410 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
411 uint8_t nvt_blk, uint32_t nvt_idx,
412 bool cam_ignore, uint8_t priority,
413 uint32_t logic_serv, XiveTCTXMatch *match)
415 PnvXive *xive = PNV_XIVE(xptr);
416 PnvChip *chip = xive->chip;
420 for (i = 0; i < chip->nr_cores; i++) {
421 PnvCore *pc = chip->cores[i];
422 CPUCore *cc = CPU_CORE(pc);
424 for (j = 0; j < cc->nr_threads; j++) {
425 PowerPCCPU *cpu = pc->threads[j];
429 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
433 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
436 * Check the thread context CAM lines and record matches.
438 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
439 nvt_idx, cam_ignore, logic_serv);
441 * Save the context and follow on to catch duplicates, that we
446 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
447 "thread context NVT %x/%x\n",
462 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
464 return pnv_xive_block_id(PNV_XIVE(xrtr));
468 * The TIMA MMIO space is shared among the chips and to identify the
469 * chip from which the access is being done, we extract the chip id
472 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
474 int pir = ppc_cpu_pir(cpu);
478 chip = pnv_get_chip(PNV9_PIR2CHIP(pir));
480 xive = &PNV9_CHIP(chip)->xive;
482 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
483 xive_error(xive, "IC: CPU %x is not enabled", pir);
489 * The internal sources (IPIs) of the interrupt controller have no
490 * knowledge of the XIVE chip on which they reside. Encode the block
491 * id in the source interrupt number before forwarding the source
492 * event notification to the Router. This is required on a multichip
495 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
497 PnvXive *xive = PNV_XIVE(xn);
498 uint8_t blk = pnv_xive_block_id(xive);
500 xive_router_notify(xn, XIVE_EAS(blk, srcno));
507 static uint64_t pnv_xive_vc_size(PnvXive *xive)
509 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
512 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
514 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
517 static uint64_t pnv_xive_pc_size(PnvXive *xive)
519 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
522 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
524 uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
525 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
527 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
531 * Compute the number of entries per indirect subpage.
533 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
535 uint8_t blk = pnv_xive_block_id(xive);
536 uint64_t vsd = xive->vsds[type][blk];
537 const XiveVstInfo *info = &vst_infos[type];
541 /* For direct tables, fake a valid value */
542 if (!(VSD_INDIRECT & vsd)) {
546 /* Get the page size of the indirect table. */
547 vsd_addr = vsd & VSD_ADDRESS_MASK;
548 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
550 if (!(vsd & VSD_ADDRESS_MASK)) {
552 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
557 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
559 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
560 xive_error(xive, "VST: invalid %s page shift %d", info->name,
565 return (1ull << page_shift) / info->size;
571 * The Virtualization Controller MMIO region containing the IPI ESB
572 * pages and END ESB pages is sub-divided into "sets" which map
573 * portions of the VC region to the different ESB pages. It is
574 * configured at runtime through the EDT "Domain Table" to let the
575 * firmware decide how to split the VC address space between IPI ESB
576 * pages and END ESB pages.
580 * Computes the overall size of the IPI or the END ESB pages
582 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
584 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
588 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
589 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
591 if (edt_type == type) {
600 * Maps an offset of the VC region in the IPI or END region using the
601 * layout defined by the EDT "Domaine Table"
603 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
607 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
608 uint64_t edt_offset = vc_offset;
610 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
611 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
613 if (edt_type != type) {
614 edt_offset -= edt_size;
621 static void pnv_xive_edt_resize(PnvXive *xive)
623 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
624 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
626 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
627 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
629 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
630 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
634 * XIVE Table configuration. Only EDT is supported.
636 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
638 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
639 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
640 uint64_t *xive_table;
644 case CQ_TAR_TSEL_BLK:
645 max_index = ARRAY_SIZE(xive->blk);
646 xive_table = xive->blk;
648 case CQ_TAR_TSEL_MIG:
649 max_index = ARRAY_SIZE(xive->mig);
650 xive_table = xive->mig;
652 case CQ_TAR_TSEL_EDT:
653 max_index = ARRAY_SIZE(xive->edt);
654 xive_table = xive->edt;
656 case CQ_TAR_TSEL_VDT:
657 max_index = ARRAY_SIZE(xive->vdt);
658 xive_table = xive->vdt;
661 xive_error(xive, "IC: invalid table %d", (int) tsel);
665 if (tsel_index >= max_index) {
666 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
670 xive_table[tsel_index] = val;
672 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
673 xive->regs[CQ_TAR >> 3] =
674 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
678 * EDT configuration is complete. Resize the MMIO windows exposing
679 * the IPI and the END ESBs in the VC region.
681 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
682 pnv_xive_edt_resize(xive);
689 * Virtual Structure Tables (VST) configuration
691 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
692 uint8_t blk, uint64_t vsd)
694 XiveENDSource *end_xsrc = &xive->end_source;
695 XiveSource *xsrc = &xive->ipi_source;
696 const XiveVstInfo *info = &vst_infos[type];
697 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
698 uint64_t vst_tsize = 1ull << page_shift;
699 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
703 if (VSD_INDIRECT & vsd) {
704 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
705 xive_error(xive, "VST: %s indirect tables are not enabled",
710 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
711 xive_error(xive, "VST: invalid %s page shift %d", info->name,
717 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
718 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
719 " page shift %d", info->name, vst_addr, page_shift);
723 /* Record the table configuration (in SRAM on HW) */
724 xive->vsds[type][blk] = vsd;
726 /* Now tune the models with the configuration provided by the FW */
729 case VST_TSEL_IVT: /* Nothing to be done */
734 * Backing store pages for the END.
736 * If the table is direct, we can compute the number of PQ
737 * entries provisioned by FW (such as skiboot) and resize the
738 * END ESB window accordingly.
740 if (!(VSD_INDIRECT & vsd)) {
741 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
742 * (1ull << xsrc->esb_shift));
744 memory_region_add_subregion(&xive->end_edt_mmio, 0,
745 &end_xsrc->esb_mmio);
750 * Backing store pages for the source PQ bits. The model does
751 * not use these PQ bits backed in RAM because the XiveSource
754 * If the table is direct, we can compute the number of PQ
755 * entries provisioned by FW (such as skiboot) and resize the
756 * ESB window accordingly.
758 if (!(VSD_INDIRECT & vsd)) {
759 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
760 * (1ull << xsrc->esb_shift));
762 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
765 case VST_TSEL_VPDT: /* Not modeled */
766 case VST_TSEL_IRQ: /* Not modeled */
768 * These tables contains the backing store pages for the
769 * interrupt fifos of the VC sub-engine in case of overflow.
774 g_assert_not_reached();
779 * Both PC and VC sub-engines are configured as each use the Virtual
780 * Structure Tables : SBE, EAS, END and NVT.
782 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
784 uint8_t mode = GETFIELD(VSD_MODE, vsd);
785 uint8_t type = GETFIELD(VST_TABLE_SELECT,
786 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
787 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
788 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
789 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
791 if (type > VST_TSEL_IRQ) {
792 xive_error(xive, "VST: invalid table type %d", type);
796 if (blk >= vst_infos[type].max_blocks) {
797 xive_error(xive, "VST: invalid block id %d for"
798 " %s table", blk, vst_infos[type].name);
803 * Only take the VC sub-engine configuration into account because
804 * the XiveRouter model combines both VC and PC sub-engines
811 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
816 case VSD_MODE_FORWARD:
817 xive->vsds[type][blk] = vsd;
820 case VSD_MODE_EXCLUSIVE:
821 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
825 xive_error(xive, "VST: unsupported table mode %d", mode);
831 * Interrupt controller MMIO region. The layout is compatible between
834 * Page 0 sub-engine BARs
835 * 0x000 - 0x3FF IC registers
836 * 0x400 - 0x7FF PC registers
837 * 0x800 - 0xFFF VC registers
839 * Page 1 Notify page (writes only)
840 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
841 * 0x800 - 0xFFF forwards and syncs
843 * Page 2 LSI Trigger page (writes only) (not modeled)
844 * Page 3 LSI SB EOI page (reads only) (not modeled)
846 * Page 4-7 indirect TIMA
850 * IC - registers MMIO
852 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
853 uint64_t val, unsigned size)
855 PnvXive *xive = PNV_XIVE(opaque);
856 MemoryRegion *sysmem = get_system_memory();
857 uint32_t reg = offset >> 3;
858 bool is_chip0 = xive->chip->chip_id == 0;
863 * XIVE CQ (PowerBus bridge) settings
865 case CQ_MSGSND: /* msgsnd for doorbells */
866 case CQ_FIRMASK_OR: /* FIR error reporting */
869 if (val & CQ_PBI_PC_64K) {
872 if (val & CQ_PBI_VC_64K) {
876 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
878 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
883 * XIVE Virtualization Controller settings
885 case VC_GLOBAL_CONFIG:
889 * XIVE Presenter Controller settings
891 case PC_GLOBAL_CONFIG:
893 * PC_GCONF_CHIPID_OVR
894 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
899 * TODO: block group support
905 * enable block tracking and exchange of block ownership
906 * information between Interrupt controllers
913 case VC_SBC_CONFIG: /* Store EOI configuration */
915 * Configure store EOI if required by firwmare (skiboot has removed
916 * support recently though)
918 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
919 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
923 case VC_EQC_CONFIG: /* TODO: silent escalation */
924 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
928 * XIVE BAR settings (XSCOM only)
931 /* bit4: resets all BAR registers */
934 case CQ_IC_BAR: /* IC BAR. 8 pages */
935 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
936 if (!(val & CQ_IC_BAR_VALID)) {
938 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
939 memory_region_del_subregion(&xive->ic_mmio,
941 memory_region_del_subregion(&xive->ic_mmio,
942 &xive->ic_notify_mmio);
943 memory_region_del_subregion(&xive->ic_mmio,
945 memory_region_del_subregion(&xive->ic_mmio,
946 &xive->tm_indirect_mmio);
948 memory_region_del_subregion(sysmem, &xive->ic_mmio);
951 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
952 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
953 memory_region_add_subregion(sysmem, xive->ic_base,
956 memory_region_add_subregion(&xive->ic_mmio, 0,
958 memory_region_add_subregion(&xive->ic_mmio,
959 1ul << xive->ic_shift,
960 &xive->ic_notify_mmio);
961 memory_region_add_subregion(&xive->ic_mmio,
962 2ul << xive->ic_shift,
964 memory_region_add_subregion(&xive->ic_mmio,
965 4ull << xive->ic_shift,
966 &xive->tm_indirect_mmio);
971 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
972 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
973 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
974 if (!(val & CQ_TM_BAR_VALID)) {
976 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
977 memory_region_del_subregion(sysmem, &xive->tm_mmio);
980 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
981 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
982 memory_region_add_subregion(sysmem, xive->tm_base,
989 xive->regs[reg] = val;
990 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
992 case CQ_PC_BAR: /* From 32M to 512G */
993 if (!(val & CQ_PC_BAR_VALID)) {
995 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
996 memory_region_del_subregion(sysmem, &xive->pc_mmio);
999 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
1000 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
1001 memory_region_add_subregion(sysmem, xive->pc_base,
1008 xive->regs[reg] = val;
1009 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1011 case CQ_VC_BAR: /* From 64M to 4TB */
1012 if (!(val & CQ_VC_BAR_VALID)) {
1014 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1015 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1018 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1019 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1020 memory_region_add_subregion(sysmem, xive->vc_base,
1027 * XIVE Table settings.
1029 case CQ_TAR: /* Table Address */
1031 case CQ_TDR: /* Table Data */
1032 pnv_xive_table_set_data(xive, val);
1036 * XIVE VC & PC Virtual Structure Table settings
1038 case VC_VSD_TABLE_ADDR:
1039 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1041 case VC_VSD_TABLE_DATA: /* Virtual table setting */
1042 case PC_VSD_TABLE_DATA:
1043 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1047 * Interrupt fifo overflow in memory backing store (Not modeled)
1049 case VC_IRQ_CONFIG_IPI:
1050 case VC_IRQ_CONFIG_HW:
1051 case VC_IRQ_CONFIG_CASCADE1:
1052 case VC_IRQ_CONFIG_CASCADE2:
1053 case VC_IRQ_CONFIG_REDIST:
1054 case VC_IRQ_CONFIG_IPI_CASC:
1058 * XIVE hardware thread enablement
1060 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1061 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1064 case PC_THREAD_EN_REG0_SET:
1065 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1067 case PC_THREAD_EN_REG1_SET:
1068 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1070 case PC_THREAD_EN_REG0_CLR:
1071 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1073 case PC_THREAD_EN_REG1_CLR:
1074 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1078 * Indirect TIMA access set up. Defines the PIR of the HW thread
1081 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1085 * XIVE PC & VC cache updates for EAS, NVT and END
1087 case VC_IVC_SCRUB_MASK:
1088 case VC_IVC_SCRUB_TRIG:
1091 case VC_EQC_CWATCH_SPEC:
1092 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1094 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1096 case VC_EQC_CWATCH_DAT0:
1097 /* writing to DATA0 triggers the cache write */
1098 xive->regs[reg] = val;
1099 pnv_xive_end_update(xive);
1101 case VC_EQC_SCRUB_MASK:
1102 case VC_EQC_SCRUB_TRIG:
1104 * The scrubbing registers flush the cache in RAM and can also
1109 case PC_VPC_CWATCH_SPEC:
1110 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1112 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1114 case PC_VPC_CWATCH_DAT0:
1115 /* writing to DATA0 triggers the cache write */
1116 xive->regs[reg] = val;
1117 pnv_xive_nvt_update(xive);
1119 case PC_VPC_SCRUB_MASK:
1120 case PC_VPC_SCRUB_TRIG:
1122 * The scrubbing registers flush the cache in RAM and can also
1129 * XIVE PC & VC cache invalidation
1133 case VC_AT_MACRO_KILL:
1135 case PC_AT_KILL_MASK:
1136 case VC_AT_MACRO_KILL_MASK:
1140 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1144 xive->regs[reg] = val;
1147 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1149 PnvXive *xive = PNV_XIVE(opaque);
1151 uint32_t reg = offset >> 3;
1167 case PC_TCTXT_TRACK:
1168 case PC_TCTXT_INDIR0:
1169 case PC_TCTXT_INDIR1:
1170 case PC_TCTXT_INDIR2:
1171 case PC_TCTXT_INDIR3:
1172 case PC_GLOBAL_CONFIG:
1174 case PC_VPC_SCRUB_MASK:
1176 case VC_GLOBAL_CONFIG:
1177 case VC_AIB_TX_ORDER_TAG2:
1179 case VC_IRQ_CONFIG_IPI:
1180 case VC_IRQ_CONFIG_HW:
1181 case VC_IRQ_CONFIG_CASCADE1:
1182 case VC_IRQ_CONFIG_CASCADE2:
1183 case VC_IRQ_CONFIG_REDIST:
1184 case VC_IRQ_CONFIG_IPI_CASC:
1186 case VC_EQC_SCRUB_MASK:
1187 case VC_IVC_SCRUB_MASK:
1189 case VC_AT_MACRO_KILL_MASK:
1190 case VC_VSD_TABLE_ADDR:
1191 case PC_VSD_TABLE_ADDR:
1192 case VC_VSD_TABLE_DATA:
1193 case PC_VSD_TABLE_DATA:
1194 case PC_THREAD_EN_REG0:
1195 case PC_THREAD_EN_REG1:
1196 val = xive->regs[reg];
1200 * XIVE hardware thread enablement
1202 case PC_THREAD_EN_REG0_SET:
1203 case PC_THREAD_EN_REG0_CLR:
1204 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1206 case PC_THREAD_EN_REG1_SET:
1207 case PC_THREAD_EN_REG1_CLR:
1208 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1211 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1212 val = 0xffffff0000000000;
1216 * XIVE PC & VC cache updates for EAS, NVT and END
1218 case VC_EQC_CWATCH_SPEC:
1219 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1220 val = xive->regs[reg];
1222 case VC_EQC_CWATCH_DAT0:
1224 * Load DATA registers from cache with data requested by the
1227 pnv_xive_end_cache_load(xive);
1228 val = xive->regs[reg];
1230 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1231 val = xive->regs[reg];
1234 case PC_VPC_CWATCH_SPEC:
1235 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1236 val = xive->regs[reg];
1238 case PC_VPC_CWATCH_DAT0:
1240 * Load DATA registers from cache with data requested by the
1243 pnv_xive_nvt_cache_load(xive);
1244 val = xive->regs[reg];
1246 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1247 val = xive->regs[reg];
1250 case PC_VPC_SCRUB_TRIG:
1251 case VC_IVC_SCRUB_TRIG:
1252 case VC_EQC_SCRUB_TRIG:
1253 xive->regs[reg] &= ~VC_SCRUB_VALID;
1254 val = xive->regs[reg];
1258 * XIVE PC & VC cache invalidation
1261 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1262 val = xive->regs[reg];
1264 case VC_AT_MACRO_KILL:
1265 xive->regs[reg] &= ~VC_KILL_VALID;
1266 val = xive->regs[reg];
1270 * XIVE synchronisation
1273 val = VC_EQC_SYNC_MASK;
1277 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1283 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1284 .read = pnv_xive_ic_reg_read,
1285 .write = pnv_xive_ic_reg_write,
1286 .endianness = DEVICE_BIG_ENDIAN,
1288 .min_access_size = 8,
1289 .max_access_size = 8,
1292 .min_access_size = 8,
1293 .max_access_size = 8,
1298 * IC - Notify MMIO port page (write only)
1300 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1301 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1302 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1303 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1304 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1305 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1306 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1307 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1309 /* VC synchronisation */
1310 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1311 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1312 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1313 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1314 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1316 /* PC synchronisation */
1317 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1318 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1319 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1321 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1326 if (val & XIVE_TRIGGER_END) {
1327 xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1333 * Forward the source event notification directly to the Router.
1334 * The source interrupt number should already be correctly encoded
1335 * with the chip block id by the sending device (PHB, PSI).
1337 blk = XIVE_EAS_BLOCK(val);
1338 idx = XIVE_EAS_INDEX(val);
1340 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1343 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1346 PnvXive *xive = PNV_XIVE(opaque);
1348 /* VC: HW triggers */
1350 case 0x000 ... 0x7FF:
1351 pnv_xive_ic_hw_trigger(opaque, addr, val);
1354 /* VC: Forwarded IRQs */
1355 case PNV_XIVE_FORWARD_IPI:
1356 case PNV_XIVE_FORWARD_HW:
1357 case PNV_XIVE_FORWARD_OS_ESC:
1358 case PNV_XIVE_FORWARD_HW_ESC:
1359 case PNV_XIVE_FORWARD_REDIS:
1360 /* TODO: forwarded IRQs. Should be like HW triggers */
1361 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1366 case PNV_XIVE_SYNC_IPI:
1367 case PNV_XIVE_SYNC_HW:
1368 case PNV_XIVE_SYNC_OS_ESC:
1369 case PNV_XIVE_SYNC_HW_ESC:
1370 case PNV_XIVE_SYNC_REDIS:
1374 case PNV_XIVE_SYNC_PULL:
1375 case PNV_XIVE_SYNC_PUSH:
1376 case PNV_XIVE_SYNC_VPC:
1380 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1384 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1387 PnvXive *xive = PNV_XIVE(opaque);
1389 /* loads are invalid */
1390 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1394 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1395 .read = pnv_xive_ic_notify_read,
1396 .write = pnv_xive_ic_notify_write,
1397 .endianness = DEVICE_BIG_ENDIAN,
1399 .min_access_size = 8,
1400 .max_access_size = 8,
1403 .min_access_size = 8,
1404 .max_access_size = 8,
1409 * IC - LSI MMIO handlers (not modeled)
1412 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1413 uint64_t val, unsigned size)
1415 PnvXive *xive = PNV_XIVE(opaque);
1417 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1420 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1422 PnvXive *xive = PNV_XIVE(opaque);
1424 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1428 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1429 .read = pnv_xive_ic_lsi_read,
1430 .write = pnv_xive_ic_lsi_write,
1431 .endianness = DEVICE_BIG_ENDIAN,
1433 .min_access_size = 8,
1434 .max_access_size = 8,
1437 .min_access_size = 8,
1438 .max_access_size = 8,
1443 * IC - Indirect TIMA MMIO handlers
1447 * When the TIMA is accessed from the indirect page, the thread id of
1448 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1449 * use. This is used for resets and for debug purpose also.
1451 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1453 PnvChip *chip = xive->chip;
1454 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1455 PowerPCCPU *cpu = NULL;
1458 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1459 xive_error(xive, "IC: no indirect TIMA access in progress");
1463 pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1464 cpu = pnv_chip_find_cpu(chip, pir);
1466 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1470 /* Check that HW thread is XIVE enabled */
1471 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1472 xive_error(xive, "IC: CPU %x is not enabled", pir);
1475 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1478 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1479 uint64_t value, unsigned size)
1481 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1483 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1486 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1489 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1491 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1494 static const MemoryRegionOps xive_tm_indirect_ops = {
1495 .read = xive_tm_indirect_read,
1496 .write = xive_tm_indirect_write,
1497 .endianness = DEVICE_BIG_ENDIAN,
1499 .min_access_size = 1,
1500 .max_access_size = 8,
1503 .min_access_size = 1,
1504 .max_access_size = 8,
1508 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1509 uint64_t value, unsigned size)
1511 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1512 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1513 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1515 xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1518 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1520 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1521 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1522 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1524 return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1527 const MemoryRegionOps pnv_xive_tm_ops = {
1528 .read = pnv_xive_tm_read,
1529 .write = pnv_xive_tm_write,
1530 .endianness = DEVICE_BIG_ENDIAN,
1532 .min_access_size = 1,
1533 .max_access_size = 8,
1536 .min_access_size = 1,
1537 .max_access_size = 8,
1542 * Interrupt controller XSCOM region.
1544 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1546 switch (addr >> 3) {
1547 case X_VC_EQC_CONFIG:
1548 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1549 return VC_EQC_SYNC_MASK;
1551 return pnv_xive_ic_reg_read(opaque, addr, size);
1555 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1556 uint64_t val, unsigned size)
1558 pnv_xive_ic_reg_write(opaque, addr, val, size);
1561 static const MemoryRegionOps pnv_xive_xscom_ops = {
1562 .read = pnv_xive_xscom_read,
1563 .write = pnv_xive_xscom_write,
1564 .endianness = DEVICE_BIG_ENDIAN,
1566 .min_access_size = 8,
1567 .max_access_size = 8,
1570 .min_access_size = 8,
1571 .max_access_size = 8,
1576 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1578 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1581 PnvXive *xive = PNV_XIVE(opaque);
1582 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1583 uint64_t edt_type = 0;
1584 uint64_t edt_offset;
1586 AddressSpace *edt_as = NULL;
1589 if (edt_index < XIVE_TABLE_EDT_MAX) {
1590 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1594 case CQ_TDR_EDT_IPI:
1595 edt_as = &xive->ipi_as;
1598 edt_as = &xive->end_as;
1601 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1605 /* Remap the offset for the targeted address space */
1606 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1608 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1611 if (result != MEMTX_OK) {
1612 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1613 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1614 offset, edt_offset);
1621 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1622 uint64_t val, unsigned size)
1624 PnvXive *xive = PNV_XIVE(opaque);
1625 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1626 uint64_t edt_type = 0;
1627 uint64_t edt_offset;
1629 AddressSpace *edt_as = NULL;
1631 if (edt_index < XIVE_TABLE_EDT_MAX) {
1632 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1636 case CQ_TDR_EDT_IPI:
1637 edt_as = &xive->ipi_as;
1640 edt_as = &xive->end_as;
1643 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1648 /* Remap the offset for the targeted address space */
1649 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1651 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1652 if (result != MEMTX_OK) {
1653 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1657 static const MemoryRegionOps pnv_xive_vc_ops = {
1658 .read = pnv_xive_vc_read,
1659 .write = pnv_xive_vc_write,
1660 .endianness = DEVICE_BIG_ENDIAN,
1662 .min_access_size = 8,
1663 .max_access_size = 8,
1666 .min_access_size = 8,
1667 .max_access_size = 8,
1672 * Presenter Controller MMIO region. The Virtualization Controller
1673 * updates the IPB in the NVT table when required. Not modeled.
1675 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1678 PnvXive *xive = PNV_XIVE(opaque);
1680 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1684 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1685 uint64_t value, unsigned size)
1687 PnvXive *xive = PNV_XIVE(opaque);
1689 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1692 static const MemoryRegionOps pnv_xive_pc_ops = {
1693 .read = pnv_xive_pc_read,
1694 .write = pnv_xive_pc_write,
1695 .endianness = DEVICE_BIG_ENDIAN,
1697 .min_access_size = 8,
1698 .max_access_size = 8,
1701 .min_access_size = 8,
1702 .max_access_size = 8,
1706 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1709 uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1710 uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1712 if (!xive_nvt_is_valid(nvt)) {
1716 monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1718 xive_get_field32(NVT_W4_IPB, nvt->w4));
1721 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1723 XiveRouter *xrtr = XIVE_ROUTER(xive);
1724 uint8_t blk = pnv_xive_block_id(xive);
1725 uint8_t chip_id = xive->chip->chip_id;
1726 uint32_t srcno0 = XIVE_EAS(blk, 0);
1727 uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1732 uint64_t xive_nvt_per_subpage;
1734 monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1735 srcno0, srcno0 + nr_ipis - 1);
1736 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1738 monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1739 srcno0, srcno0 + nr_ipis - 1);
1740 for (i = 0; i < nr_ipis; i++) {
1741 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1744 if (!xive_eas_is_masked(&eas)) {
1745 xive_eas_pic_print_info(&eas, i, mon);
1749 monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1751 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1752 xive_end_pic_print_info(&end, i++, mon);
1755 monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1757 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1758 xive_end_eas_pic_print_info(&end, i++, mon);
1761 monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1762 0, XIVE_NVT_COUNT - 1);
1763 xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1764 for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1765 while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1766 xive_nvt_pic_print_info(&nvt, i++, mon);
1771 static void pnv_xive_reset(void *dev)
1773 PnvXive *xive = PNV_XIVE(dev);
1774 XiveSource *xsrc = &xive->ipi_source;
1775 XiveENDSource *end_xsrc = &xive->end_source;
1777 /* Default page size (Should be changed at runtime to 64k) */
1778 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1780 /* Clear subregions */
1781 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1782 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1785 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1786 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1789 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1790 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1793 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1794 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1798 static void pnv_xive_init(Object *obj)
1800 PnvXive *xive = PNV_XIVE(obj);
1802 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1803 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1804 &error_abort, NULL);
1805 object_initialize_child(obj, "end_source", &xive->end_source,
1806 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1807 &error_abort, NULL);
1811 * Maximum number of IRQs and ENDs supported by HW
1813 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1814 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1816 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1818 PnvXive *xive = PNV_XIVE(dev);
1819 XiveSource *xsrc = &xive->ipi_source;
1820 XiveENDSource *end_xsrc = &xive->end_source;
1821 Error *local_err = NULL;
1826 * The XiveSource and XiveENDSource objects are realized with the
1827 * maximum allowed HW configuration. The ESB MMIO regions will be
1828 * resized dynamically when the controller is configured by the FW
1829 * to limit accesses to resources not provisioned.
1831 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1833 object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1835 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1837 error_propagate(errp, local_err);
1841 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1843 object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
1845 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1847 error_propagate(errp, local_err);
1851 /* Default page size. Generally changed at runtime to 64k */
1852 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1854 /* XSCOM region, used for initial configuration of the BARs */
1855 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1856 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1858 /* Interrupt controller MMIO regions */
1859 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1862 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1863 xive, "xive-ic-reg", 1 << xive->ic_shift);
1864 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1865 &pnv_xive_ic_notify_ops,
1866 xive, "xive-ic-notify", 1 << xive->ic_shift);
1868 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1869 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1870 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1872 /* Thread Interrupt Management Area (Indirect) */
1873 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1874 &xive_tm_indirect_ops,
1875 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1877 * Overall Virtualization Controller MMIO region containing the
1878 * IPI ESB pages and END ESB pages. The layout is defined by the
1879 * EDT "Domain table" and the accesses are dispatched using
1880 * address spaces for each.
1882 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1883 "xive-vc", PNV9_XIVE_VC_SIZE);
1885 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1887 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1888 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1890 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1893 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1894 * VC region. Their size is configured by the FW in the EDT table.
1896 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1897 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1899 /* Presenter Controller MMIO region (not modeled) */
1900 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1901 "xive-pc", PNV9_XIVE_PC_SIZE);
1903 /* Thread Interrupt Management Area (Direct) */
1904 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1905 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1907 qemu_register_reset(pnv_xive_reset, dev);
1910 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1913 const char compat[] = "ibm,power9-xive-x";
1916 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1918 cpu_to_be32(lpc_pcba),
1919 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1922 name = g_strdup_printf("xive@%x", lpc_pcba);
1923 offset = fdt_add_subnode(fdt, xscom_offset, name);
1927 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1928 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1933 static Property pnv_xive_properties[] = {
1934 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1935 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1936 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1937 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1938 /* The PnvChip id identifies the XIVE interrupt controller. */
1939 DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1940 DEFINE_PROP_END_OF_LIST(),
1943 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1945 DeviceClass *dc = DEVICE_CLASS(klass);
1946 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1947 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1948 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1949 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1951 xdc->dt_xscom = pnv_xive_dt_xscom;
1953 dc->desc = "PowerNV XIVE Interrupt Controller";
1954 dc->realize = pnv_xive_realize;
1955 dc->props = pnv_xive_properties;
1957 xrc->get_eas = pnv_xive_get_eas;
1958 xrc->get_end = pnv_xive_get_end;
1959 xrc->write_end = pnv_xive_write_end;
1960 xrc->get_nvt = pnv_xive_get_nvt;
1961 xrc->write_nvt = pnv_xive_write_nvt;
1962 xrc->get_block_id = pnv_xive_get_block_id;
1964 xnc->notify = pnv_xive_notify;
1965 xpc->match_nvt = pnv_xive_match_nvt;
1968 static const TypeInfo pnv_xive_info = {
1969 .name = TYPE_PNV_XIVE,
1970 .parent = TYPE_XIVE_ROUTER,
1971 .instance_init = pnv_xive_init,
1972 .instance_size = sizeof(PnvXive),
1973 .class_init = pnv_xive_class_init,
1974 .interfaces = (InterfaceInfo[]) {
1975 { TYPE_PNV_XSCOM_INTERFACE },
1980 static void pnv_xive_register_types(void)
1982 type_register_static(&pnv_xive_info);
1985 type_init(pnv_xive_register_types)