2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
40 /* Hardware MMIO register */
41 volatile uint32_t *doorbell;
45 BlockCompletionFunc *cb;
49 uint64_t prp_list_iova;
54 CoQueue free_req_queue;
57 /* Fields protected by BQL */
59 uint8_t *prp_list_pages;
61 /* Fields protected by @lock */
64 NVMeRequest reqs[NVME_QUEUE_SIZE];
70 /* Memory mapped registers */
71 typedef volatile struct {
85 uint8_t reserved1[0xec0];
86 uint8_t cmd_set_specfic[0x100];
90 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
93 AioContext *aio_context;
96 /* The submission/completion queue pairs.
100 NVMeQueuePair **queues;
103 /* How many uint32_t elements does each doorbell entry take. */
104 size_t doorbell_scale;
105 bool write_cache_supported;
106 EventNotifier irq_notifier;
108 uint64_t nsze; /* Namespace size reported by identify command */
109 int nsid; /* The namespace id to read/write data. */
112 uint64_t max_transfer;
115 CoMutex dma_map_lock;
116 CoQueue dma_flush_queue;
118 /* Total size of mapped qiov, accessed under dma_map_lock */
121 /* PCI address (required for nvme_refresh_filename()) */
125 #define NVME_BLOCK_OPT_DEVICE "device"
126 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
128 static QemuOptsList runtime_opts = {
130 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
133 .name = NVME_BLOCK_OPT_DEVICE,
134 .type = QEMU_OPT_STRING,
135 .help = "NVMe PCI device address",
138 .name = NVME_BLOCK_OPT_NAMESPACE,
139 .type = QEMU_OPT_NUMBER,
140 .help = "NVMe namespace",
142 { /* end of list */ }
146 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
147 int nentries, int entry_bytes, Error **errp)
149 BDRVNVMeState *s = bs->opaque;
153 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
154 q->head = q->tail = 0;
155 q->queue = qemu_try_blockalign0(bs, bytes);
158 error_setg(errp, "Cannot allocate queue");
161 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
163 error_setg(errp, "Cannot map queue");
167 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
169 qemu_vfree(q->prp_list_pages);
170 qemu_vfree(q->sq.queue);
171 qemu_vfree(q->cq.queue);
172 qemu_mutex_destroy(&q->lock);
176 static void nvme_free_req_queue_cb(void *opaque)
178 NVMeQueuePair *q = opaque;
180 qemu_mutex_lock(&q->lock);
181 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
182 /* Retry all pending requests */
184 qemu_mutex_unlock(&q->lock);
187 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
192 BDRVNVMeState *s = bs->opaque;
193 Error *local_err = NULL;
194 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
195 uint64_t prp_list_iova;
197 qemu_mutex_init(&q->lock);
199 qemu_co_queue_init(&q->free_req_queue);
200 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
201 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
202 s->page_size * NVME_QUEUE_SIZE,
203 false, &prp_list_iova);
207 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
208 NVMeRequest *req = &q->reqs[i];
210 req->prp_list_page = q->prp_list_pages + i * s->page_size;
211 req->prp_list_iova = prp_list_iova + i * s->page_size;
213 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
215 error_propagate(errp, local_err);
218 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
220 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
222 error_propagate(errp, local_err);
225 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
229 nvme_free_queue_pair(bs, q);
234 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
236 if (s->plugged || !q->need_kick) {
239 trace_nvme_kick(s, q->index);
240 assert(!(q->sq.tail & 0xFF00));
241 /* Fence the write to submission queue entry before notifying the device. */
243 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
244 q->inflight += q->need_kick;
248 /* Find a free request element if any, otherwise:
249 * a) if in coroutine context, try to wait for one to become available;
250 * b) if not in coroutine, return NULL;
252 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
255 NVMeRequest *req = NULL;
257 qemu_mutex_lock(&q->lock);
258 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
259 /* We have to leave one slot empty as that is the full queue case (head
261 if (qemu_in_coroutine()) {
262 trace_nvme_free_req_queue_wait(q);
263 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
265 qemu_mutex_unlock(&q->lock);
269 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
270 if (!q->reqs[i].busy) {
271 q->reqs[i].busy = true;
276 /* We have checked inflight and need_kick while holding q->lock, so one
277 * free req must be available. */
279 qemu_mutex_unlock(&q->lock);
283 static inline int nvme_translate_error(const NvmeCqe *c)
285 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
287 trace_nvme_error(le32_to_cpu(c->result),
288 le16_to_cpu(c->sq_head),
289 le16_to_cpu(c->sq_id),
291 le16_to_cpu(status));
306 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
308 bool progress = false;
313 trace_nvme_process_completion(s, q->index, q->inflight);
314 if (q->busy || s->plugged) {
315 trace_nvme_process_completion_queue_busy(s, q->index);
319 assert(q->inflight >= 0);
320 while (q->inflight) {
322 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
323 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
326 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
328 q->cq_phase = !q->cq_phase;
330 cid = le16_to_cpu(c->cid);
331 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
332 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
336 assert(cid <= NVME_QUEUE_SIZE);
337 trace_nvme_complete_command(s, q->index, cid);
338 preq = &q->reqs[cid - 1];
340 assert(req.cid == cid);
343 preq->cb = preq->opaque = NULL;
344 qemu_mutex_unlock(&q->lock);
345 req.cb(req.opaque, nvme_translate_error(c));
346 qemu_mutex_lock(&q->lock);
351 /* Notify the device so it can post more completions. */
353 *q->cq.doorbell = cpu_to_le32(q->cq.head);
354 if (!qemu_co_queue_empty(&q->free_req_queue)) {
355 replay_bh_schedule_oneshot_event(s->aio_context,
356 nvme_free_req_queue_cb, q);
363 static void nvme_trace_command(const NvmeCmd *cmd)
367 for (i = 0; i < 8; ++i) {
368 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
369 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
370 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
374 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
376 NvmeCmd *cmd, BlockCompletionFunc cb,
381 req->opaque = opaque;
382 cmd->cid = cpu_to_le32(req->cid);
384 trace_nvme_submit_command(s, q->index, req->cid);
385 nvme_trace_command(cmd);
386 qemu_mutex_lock(&q->lock);
387 memcpy((uint8_t *)q->sq.queue +
388 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
389 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
392 nvme_process_completion(s, q);
393 qemu_mutex_unlock(&q->lock);
396 static void nvme_cmd_sync_cb(void *opaque, int ret)
403 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
407 BDRVNVMeState *s = bs->opaque;
408 int ret = -EINPROGRESS;
409 req = nvme_get_free_req(q);
413 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
415 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
419 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
421 BDRVNVMeState *s = bs->opaque;
429 .opcode = NVME_ADM_CMD_IDENTIFY,
430 .cdw10 = cpu_to_le32(0x1),
433 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
435 error_setg(errp, "Cannot allocate buffer for identify response");
438 idctrl = (NvmeIdCtrl *)resp;
439 idns = (NvmeIdNs *)resp;
440 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
442 error_setg(errp, "Cannot map buffer for DMA");
445 cmd.prp1 = cpu_to_le64(iova);
447 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
448 error_setg(errp, "Failed to identify controller");
452 if (le32_to_cpu(idctrl->nn) < namespace) {
453 error_setg(errp, "Invalid namespace");
456 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
457 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
458 /* For now the page list buffer per command is one page, to hold at most
459 * s->page_size / sizeof(uint64_t) entries. */
460 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
461 s->page_size / sizeof(uint64_t) * s->page_size);
463 memset(resp, 0, 4096);
466 cmd.nsid = cpu_to_le32(namespace);
467 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
468 error_setg(errp, "Failed to identify namespace");
472 s->nsze = le64_to_cpu(idns->nsze);
473 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
476 error_setg(errp, "Namespaces with metadata are not yet supported");
480 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
481 (1 << lbaf->ds) > s->page_size)
483 error_setg(errp, "Namespace has unsupported block size (2^%d)",
488 s->blkshift = lbaf->ds;
490 qemu_vfio_dma_unmap(s->vfio, resp);
494 static bool nvme_poll_queues(BDRVNVMeState *s)
496 bool progress = false;
499 for (i = 0; i < s->nr_queues; i++) {
500 NVMeQueuePair *q = s->queues[i];
501 qemu_mutex_lock(&q->lock);
502 while (nvme_process_completion(s, q)) {
506 qemu_mutex_unlock(&q->lock);
511 static void nvme_handle_event(EventNotifier *n)
513 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
515 trace_nvme_handle_event(s);
516 event_notifier_test_and_clear(n);
520 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
522 BDRVNVMeState *s = bs->opaque;
523 int n = s->nr_queues;
526 int queue_size = NVME_QUEUE_SIZE;
528 q = nvme_create_queue_pair(bs, n, queue_size, errp);
533 .opcode = NVME_ADM_CMD_CREATE_CQ,
534 .prp1 = cpu_to_le64(q->cq.iova),
535 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
536 .cdw11 = cpu_to_le32(0x3),
538 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
539 error_setg(errp, "Failed to create io queue [%d]", n);
540 nvme_free_queue_pair(bs, q);
544 .opcode = NVME_ADM_CMD_CREATE_SQ,
545 .prp1 = cpu_to_le64(q->sq.iova),
546 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
547 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
549 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
550 error_setg(errp, "Failed to create io queue [%d]", n);
551 nvme_free_queue_pair(bs, q);
554 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
560 static bool nvme_poll_cb(void *opaque)
562 EventNotifier *e = opaque;
563 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
564 bool progress = false;
566 trace_nvme_poll_cb(s);
567 progress = nvme_poll_queues(s);
571 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
574 BDRVNVMeState *s = bs->opaque;
578 uint64_t deadline, now;
579 Error *local_err = NULL;
581 qemu_co_mutex_init(&s->dma_map_lock);
582 qemu_co_queue_init(&s->dma_flush_queue);
583 s->device = g_strdup(device);
585 s->aio_context = bdrv_get_aio_context(bs);
586 ret = event_notifier_init(&s->irq_notifier, 0);
588 error_setg(errp, "Failed to init event notifier");
592 s->vfio = qemu_vfio_open_pci(device, errp);
598 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
604 /* Perform initialize sequence as described in NVMe spec "7.6.1
605 * Initialization". */
607 cap = le64_to_cpu(s->regs->cap);
608 if (!(cap & (1ULL << 37))) {
609 error_setg(errp, "Device doesn't support NVMe command set");
614 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
615 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
616 bs->bl.opt_mem_alignment = s->page_size;
617 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
619 /* Reset device to get a clean state. */
620 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
621 /* Wait for CSTS.RDY = 0. */
622 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
623 while (le32_to_cpu(s->regs->csts) & 0x1) {
624 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
625 error_setg(errp, "Timeout while waiting for device to reset (%"
633 /* Set up admin queue. */
634 s->queues = g_new(NVMeQueuePair *, 1);
635 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
641 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
642 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
643 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
644 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
646 /* After setting up all control registers we can enable device now. */
647 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
648 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
650 /* Wait for CSTS.RDY = 1. */
651 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
652 deadline = now + timeout_ms * 1000000;
653 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
654 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
655 error_setg(errp, "Timeout while waiting for device to start (%"
663 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
664 VFIO_PCI_MSIX_IRQ_INDEX, errp);
668 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
669 false, nvme_handle_event, nvme_poll_cb);
671 nvme_identify(bs, namespace, &local_err);
673 error_propagate(errp, local_err);
678 /* Set up command queues. */
679 if (!nvme_add_io_queue(bs, errp)) {
683 /* Cleaning up is done in nvme_file_open() upon error. */
687 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
689 * nvme://0000:44:00.0/1
691 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
692 * is the PCI address, and the last part is the namespace number starting from
693 * 1 according to the NVMe spec. */
694 static void nvme_parse_filename(const char *filename, QDict *options,
697 int pref = strlen("nvme://");
699 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
700 const char *tmp = filename + pref;
702 const char *namespace;
704 const char *slash = strchr(tmp, '/');
706 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
709 device = g_strndup(tmp, slash - tmp);
710 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
712 namespace = slash + 1;
713 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
714 error_setg(errp, "Invalid namespace '%s', positive number expected",
718 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
719 *namespace ? namespace : "1");
723 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
727 BDRVNVMeState *s = bs->opaque;
729 .opcode = NVME_ADM_CMD_SET_FEATURES,
730 .nsid = cpu_to_le32(s->nsid),
731 .cdw10 = cpu_to_le32(0x06),
732 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
735 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
737 error_setg(errp, "Failed to configure NVMe write cache");
742 static void nvme_close(BlockDriverState *bs)
745 BDRVNVMeState *s = bs->opaque;
747 for (i = 0; i < s->nr_queues; ++i) {
748 nvme_free_queue_pair(bs, s->queues[i]);
751 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
753 event_notifier_cleanup(&s->irq_notifier);
754 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
755 qemu_vfio_close(s->vfio);
760 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
767 BDRVNVMeState *s = bs->opaque;
769 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
770 qemu_opts_absorb_qdict(opts, options, &error_abort);
771 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
773 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
778 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
779 ret = nvme_init(bs, device, namespace, errp);
784 if (flags & BDRV_O_NOCACHE) {
785 if (!s->write_cache_supported) {
787 "NVMe controller doesn't support write cache configuration");
790 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
797 bs->supported_write_flags = BDRV_REQ_FUA;
804 static int64_t nvme_getlength(BlockDriverState *bs)
806 BDRVNVMeState *s = bs->opaque;
807 return s->nsze << s->blkshift;
810 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
812 BDRVNVMeState *s = bs->opaque;
813 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
814 return UINT32_C(1) << s->blkshift;
817 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
819 uint32_t blocksize = nvme_get_blocksize(bs);
820 bsz->phys = blocksize;
821 bsz->log = blocksize;
825 /* Called with s->dma_map_lock */
826 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
830 BDRVNVMeState *s = bs->opaque;
832 s->dma_map_count -= qiov->size;
833 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
834 r = qemu_vfio_dma_reset_temporary(s->vfio);
836 qemu_co_queue_restart_all(&s->dma_flush_queue);
842 /* Called with s->dma_map_lock */
843 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
844 NVMeRequest *req, QEMUIOVector *qiov)
846 BDRVNVMeState *s = bs->opaque;
847 uint64_t *pagelist = req->prp_list_page;
852 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
853 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
854 for (i = 0; i < qiov->niov; ++i) {
858 r = qemu_vfio_dma_map(s->vfio,
859 qiov->iov[i].iov_base,
860 qiov->iov[i].iov_len,
862 if (r == -ENOMEM && retry) {
864 trace_nvme_dma_flush_queue_wait(s);
865 if (s->dma_map_count) {
866 trace_nvme_dma_map_flush(s);
867 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
869 r = qemu_vfio_dma_reset_temporary(s->vfio);
880 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
881 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
883 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
884 qiov->iov[i].iov_len / s->page_size);
887 s->dma_map_count += qiov->size;
889 assert(entries <= s->page_size / sizeof(uint64_t));
894 cmd->prp1 = pagelist[0];
898 cmd->prp1 = pagelist[0];
899 cmd->prp2 = pagelist[1];
902 cmd->prp1 = pagelist[0];
903 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
906 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
907 for (i = 0; i < entries; ++i) {
908 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
912 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
913 * increment s->dma_map_count. This is okay for fixed mapping memory areas
914 * because they are already mapped before calling this function; for
915 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
916 * calling qemu_vfio_dma_reset_temporary when necessary. */
926 static void nvme_rw_cb_bh(void *opaque)
928 NVMeCoData *data = opaque;
929 qemu_coroutine_enter(data->co);
932 static void nvme_rw_cb(void *opaque, int ret)
934 NVMeCoData *data = opaque;
937 /* The rw coroutine hasn't yielded, don't try to enter. */
940 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
943 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
944 uint64_t offset, uint64_t bytes,
950 BDRVNVMeState *s = bs->opaque;
951 NVMeQueuePair *ioq = s->queues[1];
954 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
955 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
957 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
958 .nsid = cpu_to_le32(s->nsid),
959 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
960 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
961 .cdw12 = cpu_to_le32(cdw12),
964 .ctx = bdrv_get_aio_context(bs),
968 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
969 assert(s->nr_queues > 1);
970 req = nvme_get_free_req(ioq);
973 qemu_co_mutex_lock(&s->dma_map_lock);
974 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
975 qemu_co_mutex_unlock(&s->dma_map_lock);
980 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
982 data.co = qemu_coroutine_self();
983 while (data.ret == -EINPROGRESS) {
984 qemu_coroutine_yield();
987 qemu_co_mutex_lock(&s->dma_map_lock);
988 r = nvme_cmd_unmap_qiov(bs, qiov);
989 qemu_co_mutex_unlock(&s->dma_map_lock);
994 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
998 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
999 const QEMUIOVector *qiov)
1002 BDRVNVMeState *s = bs->opaque;
1004 for (i = 0; i < qiov->niov; ++i) {
1005 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1006 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1007 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1008 qiov->iov[i].iov_len, s->page_size);
1015 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1016 QEMUIOVector *qiov, bool is_write, int flags)
1018 BDRVNVMeState *s = bs->opaque;
1020 uint8_t *buf = NULL;
1021 QEMUIOVector local_qiov;
1023 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1024 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1025 assert(bytes <= s->max_transfer);
1026 if (nvme_qiov_aligned(bs, qiov)) {
1027 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1029 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1030 buf = qemu_try_blockalign(bs, bytes);
1035 qemu_iovec_init(&local_qiov, 1);
1037 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1039 qemu_iovec_add(&local_qiov, buf, bytes);
1040 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1041 qemu_iovec_destroy(&local_qiov);
1042 if (!r && !is_write) {
1043 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1049 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1050 uint64_t offset, uint64_t bytes,
1051 QEMUIOVector *qiov, int flags)
1053 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1056 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1057 uint64_t offset, uint64_t bytes,
1058 QEMUIOVector *qiov, int flags)
1060 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1063 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1065 BDRVNVMeState *s = bs->opaque;
1066 NVMeQueuePair *ioq = s->queues[1];
1069 .opcode = NVME_CMD_FLUSH,
1070 .nsid = cpu_to_le32(s->nsid),
1073 .ctx = bdrv_get_aio_context(bs),
1074 .ret = -EINPROGRESS,
1077 assert(s->nr_queues > 1);
1078 req = nvme_get_free_req(ioq);
1080 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1082 data.co = qemu_coroutine_self();
1083 if (data.ret == -EINPROGRESS) {
1084 qemu_coroutine_yield();
1091 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1092 BlockReopenQueue *queue, Error **errp)
1097 static void nvme_refresh_filename(BlockDriverState *bs)
1099 BDRVNVMeState *s = bs->opaque;
1101 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1102 s->device, s->nsid);
1105 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1107 BDRVNVMeState *s = bs->opaque;
1109 bs->bl.opt_mem_alignment = s->page_size;
1110 bs->bl.request_alignment = s->page_size;
1111 bs->bl.max_transfer = s->max_transfer;
1114 static void nvme_detach_aio_context(BlockDriverState *bs)
1116 BDRVNVMeState *s = bs->opaque;
1118 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1122 static void nvme_attach_aio_context(BlockDriverState *bs,
1123 AioContext *new_context)
1125 BDRVNVMeState *s = bs->opaque;
1127 s->aio_context = new_context;
1128 aio_set_event_notifier(new_context, &s->irq_notifier,
1129 false, nvme_handle_event, nvme_poll_cb);
1132 static void nvme_aio_plug(BlockDriverState *bs)
1134 BDRVNVMeState *s = bs->opaque;
1135 assert(!s->plugged);
1139 static void nvme_aio_unplug(BlockDriverState *bs)
1142 BDRVNVMeState *s = bs->opaque;
1145 for (i = 1; i < s->nr_queues; i++) {
1146 NVMeQueuePair *q = s->queues[i];
1147 qemu_mutex_lock(&q->lock);
1149 nvme_process_completion(s, q);
1150 qemu_mutex_unlock(&q->lock);
1154 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1157 BDRVNVMeState *s = bs->opaque;
1159 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1161 /* FIXME: we may run out of IOVA addresses after repeated
1162 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1163 * doesn't reclaim addresses for fixed mappings. */
1164 error_report("nvme_register_buf failed: %s", strerror(-ret));
1168 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1170 BDRVNVMeState *s = bs->opaque;
1172 qemu_vfio_dma_unmap(s->vfio, host);
1175 static const char *const nvme_strong_runtime_opts[] = {
1176 NVME_BLOCK_OPT_DEVICE,
1177 NVME_BLOCK_OPT_NAMESPACE,
1182 static BlockDriver bdrv_nvme = {
1183 .format_name = "nvme",
1184 .protocol_name = "nvme",
1185 .instance_size = sizeof(BDRVNVMeState),
1187 .bdrv_parse_filename = nvme_parse_filename,
1188 .bdrv_file_open = nvme_file_open,
1189 .bdrv_close = nvme_close,
1190 .bdrv_getlength = nvme_getlength,
1191 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1193 .bdrv_co_preadv = nvme_co_preadv,
1194 .bdrv_co_pwritev = nvme_co_pwritev,
1195 .bdrv_co_flush_to_disk = nvme_co_flush,
1196 .bdrv_reopen_prepare = nvme_reopen_prepare,
1198 .bdrv_refresh_filename = nvme_refresh_filename,
1199 .bdrv_refresh_limits = nvme_refresh_limits,
1200 .strong_runtime_opts = nvme_strong_runtime_opts,
1202 .bdrv_detach_aio_context = nvme_detach_aio_context,
1203 .bdrv_attach_aio_context = nvme_attach_aio_context,
1205 .bdrv_io_plug = nvme_aio_plug,
1206 .bdrv_io_unplug = nvme_aio_unplug,
1208 .bdrv_register_buf = nvme_register_buf,
1209 .bdrv_unregister_buf = nvme_unregister_buf,
1212 static void bdrv_nvme_init(void)
1214 bdrv_register(&bdrv_nvme);
1217 block_init(bdrv_nvme_init);